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Abstract

For a system of smooth Jordan curves asymptotics for Christoffel func-
tions is established almost everywhere for measures belonging to Szegd’s
class.

1 The result

Let p be a finite Borel-measure on the plane with compact support consisting of
infinitely many points. The Christoffel functions associated with p are defined
as

Mz = int [P,
where the infimum is taken for all polynomials of degree at most n that take
the value 1 at z.

Christoffel functions are closely related to orthogonal polynomials (for a
survey see [15] by P. Nevai and [22] by B. Simon), to statistical physics (see e.g.
[16] by L. Pastur), to universality in random matrix theory (see e.g. the recent
breakthrough [11] by D. Lubinsky, as well as [3],[23],[29]), to spectral theory (see
e.g. [24], [22] by B. Simon and [1] by Breuer, Last and Simon) and to several
other fields in mathematics. For the role and various use of Christoffel functions
see [5], [7], [24], and particularly [15] by P. Nevai and [22] by B. Simon.

Their asymptotics on the real line and on the unit circle has been thoroughly
investigated (see e.g. [11], [12], [13], [24], [23], [21], [26], [28]), but until recently
not much has been known on their asymptotic behavior on general curves. In
this work we prove
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Theorem 1 Let ' be the union of finitely many C?-smooth Jordan curves lying
exterior to one another, and let i be a Borel-measure on I' such that its Radon-
Nikodym derivative w = du/dsr with respect to the arc measure sy on T satisfies
the Szegé condition logw € L(sr). Then for sp-almost every z € T we have

: _ dp(z)
nhﬂn;(} nin(z, 1) = dor

(1)
where wr denotes the equilibrium measure of T', and on the right-hand side
du(z)/dwr is the Radon-Nikodym derivative of p with respect to wr.

Recall that the equilibrium measure wr is the unique probability Borel-
measure on I' that minimizes the logarithmic energy

//log e ! b)),

See e.g. [18] for the concepts from potential theory that are used in this paper.
In what follows, let

du(z) = w(@)dse(x) + dptsing (x)

be the Lebesgue-Radon-Nikodym decomposition of p into its absolutely contin-
uous and singular part with respect to the arc measure sp. With this notation
we will actually show that (1) holds at every z € T' which is a Lebesgue-point
(with respect to sr) for both p and logw (c.f. (27)—(28)). The theorem can be
written in the alternate form (c.f. [30, (3.4)])
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sp-almost everywhere, where g (2o, 00) denotes the Green’s function with pole
at infinity associated with the unbounded component 2 of C\ T, and 9(-)/0n
denotes normal derivative in the direction of the inner normal to 0f2. Note
also that if or is the density of the equilibrium measure wr with respect to arc
measure, then the limit on the right-hand side of (1) is w(z)/or(2).

A feature of the limit in (1) is that the Christoffel functions “feel” the com-
plete support of x. This is through the condition logw € L!(sr), and in a sense
some global condition like that is necessary (just consider that it follows from
the theorem itself that if we zero out g on a component of I' then the limit on
other components will change even though locally there is no change there in
the measure). For a much less restrictive global condition see Theorem 2 below.

A brief history of asymptotics of Christoffel functions is as follows. In 1915
G. Szegd proved that if du(t) = p/(t)dt is an absolutely continuous measure on
the unit circle (identified with [—m, 7]) then
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provided log 11/ is integrable (otherwise the limit on the left is 0). This was later
generalized by several authors (see e.g. [7], [9], [10]). On the boundary of the
circle \,, decreases as 1/n, and Szegé ([27, Th. T’, p. 461]) established that on
the unit circle, i.e. on the support of the measure,
lim n\, (", u) = 271/ (6) (3)
n—roo
under the condition that p is absolutely continuous and u’ > 0 is twice con-

tinuously differentiable. L. Golinskii [6] extended this to the arc case: if u is a
so-called Bernstein-Szegd weight on the arc {e? |a < 6 < 27 — a}, then

a [
i (a0 _ /9\/00s257cos2§ A
im nAn,(e", p) = 2mp'(0) (4)
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for €*? in this arc.

The almost everywhere part of (3) was harder, it was proved only in 1991 by
A. Mété, P. Nevai and V. Totik [13] that (3) is true almost everywhere provided
log it is integrable. This has a consequence for measures lying on an interval:
if the support of p is [~1,1] and log i/ € L (—1,1) then

loc

lim nA,(z,u) = 71— 224/ () (5)
n—oo
for Lebesgue-almost every x € [—1,1]. On the proof in [13] (for the unit circle)
Simon wrote in [22]: “The proof is clever but involved; it would be good to find
a simpler proof”’. The proof we give for Theorem 1 provides such a new proof.
In [30] the Szegd asymptotics (3) (the case when w is continuous) was shown
to be true on C? curves, namely it was proved that (1) is true if w is continuous
and figing = 0. M. Findley [4] verified the almost everywhere result: if I" consists
of a single smooth Jordan curve and logw € L!(sr), then (1) is true sp-almost
everywhere. His method was a nontrivial refinement of the original proof in [13]
(which was for the circle case) by mixing in the original argument conformal
maps and Faber polynomials. This approach does not work when I' has more
than one components, and the general case remained open and requires different
ideas. In this paper we present a new approach which not only solves this
problem, but in a certain sense gives more than the proof in [13] even when I'
is the unit circle. Basically, we shall show that the almost everywhere result
follows from the continuous one with the help of sharp estimates on harmonic
measures. In a nutshell the proof is based on the new type inequality

P (2)[2 < MMVl n/F \PyPwdsr, 2 €T, deg(P) <n, (6)

provided logw € L(st) and zg € T is a Lebesgue-point for logw. The other
ingredient is the use of fast decreasing polynomials: there are polynomials R,,



of degree at most m such that R,,(z9) = 1 and with some constants Cy, cg
|Rm(2)] < Co exp(—co(m|z - z()|)2/3)7 zel, (7)

i.e. these polynomials decrease very fast as we move away from zg. The point

is that even if m is small compared to n, say m = en, the factor e—co(mlz=z)*/*

in (7) kills the factor eMV7lz=2l in (6).

Finally, we note that Theorem 1 has a local form. To formulate it let p© be
an arbitrary Borel-measure with compact support on C and let K = supp(u)
be the support of u. We assume that €, the unbounded component of C \ K,
is regular with respect to solving Dirichlet problems. g is called to be in the
Reg class (see [25, Theorem 3.2.3]) if the L?(u)-norms and the L°(u) norms
of polynomials are asymptotically the same in n-th root sense, i.e. if

1Pall oy \ ™
lim sup (“ — 1, (8)
n=c p, \ [|Pallr2(w)

where the supremum is taken for all (nonzero) polynomials of degree at most
n. This is a fairly weak condition on p—see [25] for general regularity criteria
and different equivalent formulations of 1 € Reg. For example, in the scenario
of Theorem 1 if w(t) = du(t)/dsr > 0 is true sp-almost everywhere, then
i € Reg, so Theorem 1 is a special case of the following one, in which cap(K)
stands for the logarithmic capacity of K, wk for its equilibrium measure, and
Pc(K) = C\ Q is the so called polynomial convex hull of K (this is the union
of K with the bounded components of C\ K).

Theorem 2 Assume that p is in the Reg class and its support K satisfies
cap(K) = cap(Int(Pc(K))), where Int means two dimensional interior. Suppose
that for some open disk D with center on O the intersection D N K is a C?
Jordan arc J, and on J the Radon-Nikodym deriative w = du/dsy of p with
respect to arc length s; on J satisfies logw € L'(s;). Then

. _ du(z)
nh—>I20 n)\n(z7u) N dwK

(9)
for sj-almost every z € J.

This again has the equivalent form (2) (see [30, (3.4)]).

We shall not prove Theorem 2, for the additional difficulties compared with
Theorem 1 has already been dealt with in [30] (see particularly the difference
in between the proofs of Theorems 1.1 and 1.2 in [30]).

2 Preliminaries for the proof

First we make some notations (see Figure 1). For some 0 < o < 1 let v be
a positively oriented C1T%-smooth Jordan curve, Q* = Q*(v) resp. Q = Q(v)



Figure 1:

its inner resp. outer domains. Fix a conformal map ® = &, from ) onto
the exterior of the unit circle A, and let ¥ be the inverse of ®. In a similar
manner, let ®* be a conformal map from 2* onto the unit disk A, and let U* be
its inverse. We shall frequently use the Kellogg-Warschawski theorem (see [17,
Theorems 3.5, 3.6]: @, ¥, ®* ¥* are C1T up to the boundary. Furthermore,
their derivatives vanish nowhere (including the boundary).

Let T' be a system of curves consisting of finitely many such C2-smooth ~’s
lying exterior to one another. We shall denote by s = sr the arc length on I'.
Let u be a measure on I' such that its Radon-Nikodym derivative (with respect
to arc length) w = dy/ds satisfies logw € L!(s). It is enough to prove Theorem
1 on an arbitrary component of I', which we shall denote by ~. With this ~
and with w on v we shall consider the associated Szegd function D* in Q*. Its
definition is

1 T it
D) =ew (1 [ G lpuw o)), <L (o)
so on 7 the function D*(z) has nontangential boundary limit D*(¢) s,-almost
everywhere, and |D*(¢)|> = w(¢) for s,-almost every ¢ € 7.

The proof of Theorem 1 is based on the next lemma. As usual, we say that
Co € v is a Lebesgue-point for w (with respect to s) if

. 1 _
Jm /J [ (¢) — w(Go)lds(C) = 0,

where the limit is taken for subarcs J of v that contain (g, the arc length s(J)
of which tends to 0.



Lemma 3 Let v be a C1** Jordan curve, w > 0 a (s.-measurable) function
on v such that w,logw € Ll(sv), and let (o € v be a Lebesque-point for logw.
Then there is a constant M such that for z € v we have

|P,(2)|> < MeMVmlz=6ol n/ | P, %w ds., (11)
vy

for any polynomials P, of degree at mostn=1,2,....

For later reference we mention that (11) is actually true on and inside . Indeed,
to verify this let 2* be the inner domain of v, and we may assume

n/ |Po|?w ds < 1. (12)
8!
By the subharmonicity of log |P,(z)| we have for z € Q*

log | Pa(2)” < [ log|Pa(OPdi(z. 6,2,
2l

where @(z, -, Q%) is the harmonic measure of z on Q*. The conformal invariance
of harmonic measures and [18, Table 4.1] show that if Jj is the part of ~y for
which 2¥|z — (o] < |¢ — (o] < 282 — (|, then @(z, Ji, Q*) < C/2F, so (11)
applied with ¢ instead of z gives

e c
| 0B IO D=, €. 0°) < lom M S M n2E 41 — Gl < CHOVAE G
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Note however, that outside 7 nothing more than
|P,(2)] < MeMnlz—Col (more precisely |P,(z)] < MeMndist(z,'y))

can be said (just think of the unit circle with Lebesgue-measure and P, (z) = 2™).

Proof of Lemma 3. Without loss of generality we may assume (; = 1 and
the bound (12).

In what follows we shall denote by v} the image of |z| = 1 —¢ under the con-
formal map U* (see Figure 1). Then v}, 0 < § < 1/2, are all uniformly C**2,
and the corresponding conformal maps Q- (mapping the unbounded compo-
nent Q(v;) of C\ 7} onto the exterior of the unit disk A) are uniformly C**+<
up to the boundary. Therefore, if gQ(Wg)(z, o0) denotes the Green’s function of
Q(v3) with pole at infinity, then the functions gQ(ﬂ/g)(z, o0) are also uniformly
O because 9oy (2,00) = log [ (2)].

For a Jordan domain D bounded by a rectifiable C't*-smooth Jordan curve
0D let w(z,(,D)dsspp(¢) be the harmonic measure of z € D, where sypp is



the arc measure on 0D (one can easily see that this harmonic measure is ab-
solutely continuous with respect to ssp, hence it can be written in the form
w(z,¢,D)dssp(€) actually with a continuous w(z,(, D)). This is a unit mea-
sure on 0D.

We claim that

d(z,7)

Q*) ~ O* 1
(JJ(27C7 ) |C — Z|2 ¥ d(Z,’y)2’ z € 5 C € Y, ( 3)
and uniformly in 0 < § < 1/2
. d(z,75 ,
(2,6, 9(8)) (75) sem e, ()

I = 2 +d(2,75)*

where d(z,7) denotes the distance from z to 7, and ~ means that the ratio of
the two sides lies in between two fixed constants. In fact, if ®*({) = ¢ then
¢ = U*(t) and ds,(¢) = |d¢| = |(¥*)'(t)]|dt|, hence, by the conformal invariance
of harmonic measure,

w(z, ¢, Q") dsy(C) = w(®"(2), £, A)| (W) ()|t

and here |(¥*)’(¢)| is uniformly bounded away from 0 and co (recall that A =
{l]z| < 1} denotes the unit disk). Furthermore, | — z| ~ |®*({) — ®*(2)| =
[t —®*(2)| and d(z,7) ~ d(P*(z),A). Now the claim follows, since for the unit
circle w(®*(z),t, A) is the Poisson kernel, and hence

_ 11— d(®*(2), 0A)

w(®*(2),t,A)

The proof of (14) is the same if we use the uniform C'T*-smoothness of v}
and the associated mappings (recall that the harmonic measure in the exterior
of the unit disk is given again by the Poisson kernel).

We shall also use that (13) is true with Q* replaced by Q*(vs) (this is the
inner domain enclosed by the curve 5, and actually it is the image of |2| < 1—6
under the mapping ¥* of A onto *), i.e. uniformly in 0 < § < 1/2

d(2,75)

W(Z,C,Q*(’y;)) ~ |<~_ Z|2 —‘rd(Z,’Yg)z’

2€Q(75), ¢€vs-  (15)

Indeed, this is immediate from the proof of (13) just given.
Next, note that for z € v we have d(z,75) ~ ¢ and for € ~f we have
d(0,7) ~ 6. Now we claim that for {,z € v

« " d
[yg w(0, ¢, )W(Zaer(’Y&))dsvg(Q) < Cm (16)



with a constant C' independent of {,z € vy and 0 < § < 1/2. In fact, if § € ~;
and |0 — (| > |¢ — z|/2, then (13) (with z replaced by 0) gives

)
0,(,0)<C—7—=
(note that d(6,v) ~ 6). Hence the integral over that part of 4§ which is of
distance > |¢ — z|/2 from ¢ has this bound. On the other hand, if |§ — (| <
|¢ — z|/2 then necessarily |0 — z| > |¢ — z|/2, and then (14) (with ¢ replaced by
0) gives

. 0
UJ(Z,Q,Q(’}/(;)) < C|C—Z|2 +52
Therefore, the integral over the rest of 5 is
0
O 0,¢, 0% )ds~+(0). 1
Clepag [, 0:6005,0) (1)

But w(#, ¢, Q%) is a harmonic function of 6 in ©* and on ~; the measure ds.,: (6)
is less than a constant times the harmonic measure

w(¥™(0),0, Q27 (75))ds; (6)

(c.f. (15)), therefore the integral in (17) is at most Cw(¥*(0), ¢, 2*), which is
bounded for ¢ € v according to (13). With this the proof of (16) is complete.
After these we turn to the statement in the lemma. For z € ~ set in the

formulas above
{ 1/n iflz—1]<1/n

Vig=1/n if|z—=1]>1/n.

Recall now the Szegd function D* from (10). For 6 € ~; we have from (13) with
some constant C

(18)

| Pa(0) D" (0)]?

/P"(C)QD*(C)2W(97Cvg*)dS’Y(C)

IA

! 11
016/7|Pn(C)|2D*(C)|2dsﬁ,(§) < Clgﬁ <Cy, (19)

where we used that |[D*(¢)]? = w(¢) s,-almost everywhere, and we also used
the bound (12) for the integral. Here the equality needs some explanation, since
the analytic (and hence harmonic) function (P, D*)? is represented in Q* by the
Poisson integral (relative to Q*, i.e. when the Poisson kernel is w(6, ¢, 2*)ds~(())
involving its nontangential limit (denoted again by (P, D*)?()) on ~. However,
everything is conformal invariant, so the equality needs to be verified only when
7 is the unit circle, in which case the formula follows from the fact that (P, D*)?



is in H', and therefore it is represented in the unit disk as the Poisson integral
of it boundary values.

Let now h be the solution of the Dirichlet problem in Q(v3) (the outer do-
main of 75) with boundary data log [D*(6)[ on 75, and go(yz)(2,00) the Green’s
function of Q(~¥) with pole at infinity. The function

u(z) = log |Pn(2)| 4+ h(z) — nga(yx)(z,0)

is subharmonic in Q(vj), is harmonic around co and, as we have seen in (19),
is < log C’l1 /2 on the boundary 0Q(v3) = v;, so it is < log Cll /2 everywhere in
Q(v3). Thus,

Pa(2)] < 0% exp(—h(=) + ngagy(2.00)). 2y (20)

What we have said about the uniform C'*® property of the Green’s functions
9a(v:) (z,00) implies that

C if|z—1<1/n
Cy/nlz —1] otherwise

by the choice of ¢ in (18). For h we have the representation

nga(y)(z,00) < Cnd < { (21)

*
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and here

log |D*(0)] = [ 5 (g w())w(6. ¢, 9)ds, (€)

(this latter one follows from the definition of D* if we apply the conformal map

®* of * onto the unit disk). Substitute this into the previous formula, switch
the order of integration and use (16) to conclude

0
) < € [ og (@) gz ©)

Now let first |z — 1| > 1/n. By the Lebesgue-point property of log |w(()| at
¢=1

)
1 %9 4
/|g—1g2|z_1| | log w(C)| ¢ — 22 4 02 s+(C)

1 -1
<5/ log(()lds, (¢) < 02
IC—11<2]z—1]



with a constant C' that may depend on the value w(1), but is independent of
z € . Similarly, for every k =1,2,...

log w(¢)|—— o ds
LMlMCMWW1|g<oK_w+p L0
< e | [ log w(O)lds (¢)
T (2|2 = 10/2)% Jicoqj<orrrpaa K
5 i 5
. — ) L3 ) P | I N —
= (2k|z—1|/2)20 E |—Czk\z—1\

Adding these together for all k£ we obtain (cf. also the choice of ¢ in (18))
|z — 1] ]

Ih(2)] <c( 5 Z_1|> < Cy/nlz — 1. (22)

+

When |z — 1| < 1/n we get similarly

)
1 -
/c—ugz/n [logw(©)] IC — 2| + 02 ds,(C)

1 1
<5 [ lesu©lds, (0 < sCem <.
[(—1[<2/n
and for every k =1,2,...
logw(()| —————=ds~(C
/2"’/11§|C—1§2k+1/n| ( )|\C—Z|2+52 ()

1/n 1
< TP o B0 = O

which yield |h(z)| < C.
Now this, (22), (21) and (20) prove the lemma.

We shall also use

Lemma 4 Let K be a compact subset of the plane, € the unbounded component
of its complement, and Z € 00 a point on the outer boundary of K. Assume
that there is a disk in Q that contains Z on its boundary. Then for every § < 1
there are constants cg,Cg > 0 and for every n = 1,2,... polynomials P, of
degree at most n such that P,(Z) =1, |P,(2)| <1 for z € K and

|P,(2)| < Cgemeslz=2D" L c K. (23)

10



We mention that this lemma is optimal in the sense that 8 = 1 is not possible
in it.

The polynomials P,, allow good localization, for they decrease fast on K as
we move away from Z.

A similar statement was proved in [30, Theorem 4.1], but there (n|z — Z|)?
was replaced by n|z — Z|7 with some v > 1. Nevertheless, we shall follow the
argument in [30, Theorem 4.1].

Proof of Lemma 4. First we prove the claim for the closed unit disk, thus
let first K = A. Without loss of generality we may assume Z = 1. It was
proved in [8] that for every 8 < 1 there are constants dg,Dg > 0 and for
every n = 1,2,... polynomials R,, of degree at most n such that R,(0) = 1,
|R,(z)] <1 for x € [-1,1] and

IR, (x)| < Dge~ds™l#D” 5 e [—1,1]. (24)

By replacing R,(z) with (R,(z) + Rn(—2))/2 if necessary, we may assume
that R, is even. Then R, (sin(¢/2)) is a trigonometric polynomial of degree
at most n/2, hence ¢l"/2* R, (sin(t/2)) coincides with some P (e™), where P
is an algebraic polynomial of degree at most n. It is clear that Pf(1) = 1,
|Pr(et)] < 1, and for t € [—m, 7] (see (24))

)?

|P;; (eit)| < DBefdﬂ(n\ sin(t/2)| < Dﬁefdﬁ(nm)ﬁ/ﬂ—(f’ (25)
where we used that |sin(t/2)| > [t|/7 for ¢ € [—m,7]. We claim that this is
enough to prove the statement for the unit disk, i.e. P} also satisfies (23) with
Z = 1. By the maximum principle we certainly have |P*(z)| < 1 in the closed
unit disk A.
Let
Jo={e*[t € [-m, =1 = 2] U[11 - 2|, ]}

be the arc of the unit circle consisting of points with arc length distance > |1 —z|
from the point 1. Let @(z;J, A) denote the harmonic measure of J C JA at z
with respect to the unit disk A. It is clear (use that

— 2P,

IC z[?

or apply a conformal map onto the upper half plane and note that on the upper
half plane the harmonic measure is nothing else (see [18, Table 4.1] or [2]) than
1/m-times the angle the set is seen from the point z) that there is a constant
~ > 0 such that &(z; J,,A) >~ for all z € A. Since on J, we have by (25) the
estimate

W(z; J.,A) =

dic|

|P;(€it)| < Dge*d/a(nll—z\)ﬂ/wﬂ

11



while | P¥(z)| < 1 everywhere in the closed unit disk, it follows from a comparison
of the subharmonic function log | P (w)| with the harmonic function

@(w; J.,A) (log Dg — dg(n|l — 2|)P /77)

that 0
|P*(w)] < Dge*’Ydﬁ("u*wD /= , (26)

as was claimed.

After these we complete the proof for arbitrary sets. Since it is assumed that
there is a disk in  that contains Z on its boundary, it is easy to construct a
simply connected domain G with C? boundary containing K \ Z in its interior
such that Z € 9G. Choose a lemniscate (a level set of a polynomial) o such
that o is a Jordan curve, its interior contains G \ Z and Z € o. The existence
of o immediately follows from [14, Theorem 1.1]. Let T be a polynomial for
which o = {z||Tn(2)| = 1}, and without loss of generality we may assume that
Tn(Z) = 1. In the rest of the proof this Ty (and hence N) is fixed, and it
is also true that T3, (Z) # 0 since o is a Jordan curve. We claim that if P}
are the polynomials from (23) for the closed unit disk (i.e. P} is actually the
polynomials from (26)), then P,(z) = P}, (T (2)) satisfy (23) with some
constants Cg, cg. In fact, if z € K is in a small neighborhood of Z then Ty (z)
is in a small neighborhood of 1, and |z — Z| ~ [Ty (2) — 1|, so (23) follows from
(26) (applied with w = Tn(z)), for, say, |z — Z| < §. On the other hand, if
z € K and |z —Z| > 0, then |Tx(z) — 1| > 0; for some ¢; (note that K\ {Z} lies
strictly inside o, so for z € K, |z — Z| > ¢ the value Ty (z) cannot be close even
to the boundary of the unit circle). Hence (23) follows again from (26) applied
with w = T (z).

|

3 Proof of Theorem 1

Assume, as in the theorem, that the system of curves I' is C2 and p is a finite
measure on I' such that logw € L!(st), where w is the Radon-Nikodym deriva-
tive of 1 with respect to the arc length measure sr on I'. We need to prove the
theorem on each component of I', so let v be one of the components of I'.

Let du(z) = w(z)ds(z) + dpsing(x) be, as before, the decomposition of p
into its absolutely continuous and singular part with respect to the arc measure
s = sy on I'. The Lebesgue-point property of p at a point (p, say at (s = 1,
means that for every € > 0 there is a p > 0 such that if 0 < 7 < p then

/<—1|< w(¢) — w(1)|ds(¢) < e (27)
s ({C 10— 1] < 7)) < er. (28)

12



Since the derivative of iging With respect to sr is 0 sp-almost everywhere (see [19,
Theorem 7.13]), standard proof shows that sp-almost every point is a Lebesgue-
point for p. So the theorem follows if we can prove (1) at every z which is a
Lebesgue-point for both p and logw.

Let 1 € v be a Lebesgue-point for p. We define the measure v as dv(¢) =
w(1)ds,(¢) on v and dv = du on other components of I', and we shall compare
the values A, (1, ) and A, (1,v) of the Christoffel functions associated with p
and v, respectively. The theorem will follow, since the measure v has continuous
Radon-Nikodym derivative (= w(1)) with respect to sr on 7 and on other com-
ponents of I" this Radon-Nikodym derivative w is positive sp-almost everywhere
(recall that we have assumed logw € L!(sr)), and hence, by [30, Theorem 1.1],
for it we have (36) below.

Denote the derivative dwr/dsr by or (to be more precise, let

wr(J)
1m
sr(J)—0 sp(J)

or(z) =

where the limit, which is taken for subarcs J of I' containing z, exists). Since
I is assumed to be C?, this o, which is the density of the equilibrium measure
of I with respect to arc length, is easily seen to be continuous.

Since du/dwr = (du/dsr)(dst/dwr) = w/or, we need to prove that under
the assumption that the point 1 is a Lebesgue-point for both p and logw we
have

1
lim sup nn(1, p) < 2 (29)
n— o0 JF(I)
and )
. . w
lim inf n Ay (1, 1) > (1) (30)

Proof of (29). This part of the proof uses only the Lebesgue-point property
for p.

It was proven in [30, Theorem 1.1] that there are polynomials @,, of degree
at most n such that Q,(1) =1, |Qn(2)] <1 for all z €T and

. 2 w(1)
nh_}n;On/|Qn| dv = o (1) (31)
With 8 = 2/3 and some ¢ > 0 consider the polynomials Ps,, of degree dn from
Lemma 4 for the point Z =1 and for the set T', and set R, (z) = @Qn(2)Psn(2).
This is a polynomial of degree at most n(1 + §) with R,(1) = 1, |R,({)| <
|@n(¢)] <1 (¢ eT), and this will be our test polynomial to get an upper bound
for Ap146) (1, ).

We estimate the integral of |R,|? against p first on v, using the Lebesgue-
point properties (27)—(28). Since

[Ba(€)] < Coexp((—co(ndl¢ — 1))
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with some cg, Cp, it follows for 2¥/nd < p/2, k = 1,2,... (see (27)) that (the
next three integrals are taken on +)

k+1
5 eXp(—C()22k/3),

/ [RaQ () ~ w(1)lds(€) < Che
2k /nd<|C—1| <2k /ng n

and also

[ IRUOPI(©) ~ wnlds(0) < £
¢=1]<2/no n

On the other hand, for the integral over |( — 1| > p/2, we just write
[ IRUOPI(O) ~ w(v)lds(©) < Cexp(~co(ndp/2)").
p/2<|¢—1]
Summing these up we obtain
/ | R [wds — / IR, [2dv < C— + o(1/n).
vy 2! on
Similar reasoning based on (28) rather than (27) gives

3]
L (R Paing < < 4 0(1/n).

On other components of I' the measures p and v coincide, therefore

/\Rn|2du§ /|R7L|2d1/+02%+0(1/n)

follows. Hence, in view of |R,, ()] < |@n(¢)], we obtain from (31)

limsup n(1 4 8)Ap140) (L) < lirnsupn(1+5)/|Rn\2du

n— o0 n—oo
< limsupn(l+06) / QuPdy + Co5(1+ 6)
n— 00
w(l) €
< —
< (1+5)UF(1) +Cg§(1+6)

with some fixed constant C3. Now the monotonicity of A, in n implies that
then for the whole sequence of natural numbers

_ w(1)
<

+Co(1+9).

On letting € — 0 and then § — 0 we obtain

) w(1)
limsupnA, (1, 1) < ,
msup (1, 1) or (1)

14



what was needed to be proven.
|

Proof of (30). Let du(z) = w(x)ds(z) + dusing(x) be as before, and recall
that the assumption of Theorem 1 is that logw € L!(sr). Assume now, as
in the beginning of the proof, that 1 € 7 is a Lebesgue-point for both u (see
(27)-(28)) and log w, and select p so that (27)—(28) is true for all 7 < p.

Assume to the contrary that there is an o« < 1 and an infinite sequence
N C N such that for every n € N there are polynomials @, of degree at most
n with the properties @, (1) =1

w(l)

1
2du < —. 2
In particular,
2 w(l) 1
< —
[{|Qn wds_agr(l)n, (33)

and then Lemma 3 gives

1Qn(Q)] < Mexp(My/n|¢ —1]), (€7, (34)

with some constant M (recall that 1 is a Lebesgue-point for logw, so Lemma 3
is applicable).

With 8 =2/3 and some § > 0 consider again the polynomials Pj,, of degree
on from Lemma 4 for the point Z = 1 and for the set I', and set R,(z) =
Qn(2)Psp(z). This is a polynomial of degree at most n(1 + ¢) with R, (1) =1,
|R,(¢)] < |Qn(¢)] (¢ €T), and this will be our test polynomial to get an upper
bound for A, 146)(1,7), n € N. Since

[Pa(O)] < Coexp(—colnélc —1)**),  CeT,
it immediately follows that
[Ba()] < MCyexp(My/nlC =1 = co(mdl¢ — 1)), e,
and hence
[Ba(Q)] < My exp(—(o/2(malc = 1)), C ey (35)

with an My depending on ¢. In particular, |R,(¢)| < My for all ¢ € ~.

It follows from (27) and (35) for 28 /nd < p/2, k = 1,2,... that (the next
three integrals being taken on 7)
k+1

2 C
/ [Ba(Q)21w(¢) = w(D)lds(C) < Mie——exp(—-F2%/%),
2k /nd<|(—1|<2k+1 /nd né 2
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and also

| R (O w(¢) — w(1)]ds(¢) < Mgg%.
[¢—1|<2/né n

For the integral over |z — 1| > p/2, we write

¢
[ RO ~ w1)ids(O) < OMF exp( - G (ndp/2°).
p/2<1¢—1]

Summing these up we obtain

/ Ry [2dv — / R Pwds < CMZ<- 4 o(1/n).

¥ 2 on

These yield again (as ¥ = p on other components of T')

/|Rn\2dl/ < /|Rn|2du + C’Mg% +o(1/n).
Hence, in view of |R, ()| < |Qx(¢)], it follows from (32)
limsupn(l +6)Ay1445)(1,v) < limsupn(l+0) |R,,[*dv

neN neN

limsupn(1l 4+ 4) /|R [*du + C Mg~ (1+5)
neN )

IN

< +5)agr(( )) +CM, 5(1 +4)

with some fixed constant C. But for (14+¢)a < 1 (and we can make this happen
by selecting a small §) and small ¢ this contradicts the fact that

lim mn (1, ) = 20 (36)

R

which was proved in [30, Theorem 1.1] (note again that v has continuous (ac-
tually constant) density with respect to s, on 7, so [30, Theorem 1.1] can be
applied). This contradiction proves the lower estimate in (30) and the proof is
complete.
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