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Abstract

For a system of smooth Jordan curves asymptotics for Christoffel func-

tions is established almost everywhere for measures belonging to Szegő’s

class.

1 The result

Let µ be a finite Borel-measure on the plane with compact support consisting of
infinitely many points. The Christoffel functions associated with µ are defined
as

λn(z, µ) = inf
Pn(z)=1

∫

|Pn|2dµ,

where the infimum is taken for all polynomials of degree at most n that take
the value 1 at z.

Christoffel functions are closely related to orthogonal polynomials (for a
survey see [15] by P. Nevai and [22] by B. Simon), to statistical physics (see e.g.
[16] by L. Pastur), to universality in random matrix theory (see e.g. the recent
breakthrough [11] by D. Lubinsky, as well as [3],[23],[29]), to spectral theory (see
e.g. [24], [22] by B. Simon and [1] by Breuer, Last and Simon) and to several
other fields in mathematics. For the role and various use of Christoffel functions
see [5], [7], [24], and particularly [15] by P. Nevai and [22] by B. Simon.

Their asymptotics on the real line and on the unit circle has been thoroughly
investigated (see e.g. [11], [12], [13], [24], [23], [21], [26], [28]), but until recently
not much has been known on their asymptotic behavior on general curves. In
this work we prove

∗AMS Subject Classification 42C05, 30C85, 31A15; Key words: Christoffel functions,

asymptotics, families of Jordan curves, harmonic measures
†Supported by NSF DMS0968530

1



Theorem 1 Let Γ be the union of finitely many C2-smooth Jordan curves lying

exterior to one another, and let µ be a Borel-measure on Γ such that its Radon-

Nikodym derivative w = dµ/dsΓ with respect to the arc measure sΓ on Γ satisfies

the Szegő condition logw ∈ L1(sΓ). Then for sΓ-almost every z ∈ Γ we have

lim
n→∞

nλn(z, µ) =
dµ(z)

dωΓ
, (1)

where ωΓ denotes the equilibrium measure of Γ, and on the right-hand side

dµ(z)/dωΓ is the Radon-Nikodym derivative of µ with respect to ωΓ.

Recall that the equilibrium measure ωΓ is the unique probability Borel-
measure on Γ that minimizes the logarithmic energy

∫ ∫

log
1

|z − t|dω(t)dω(z).

See e.g. [18] for the concepts from potential theory that are used in this paper.
In what follows, let

dµ(x) = w(x)dsΓ(x) + dµsing(x)

be the Lebesgue-Radon-Nikodym decomposition of µ into its absolutely contin-
uous and singular part with respect to the arc measure sΓ. With this notation
we will actually show that (1) holds at every z ∈ Γ which is a Lebesgue-point
(with respect to sΓ) for both µ and logw (c.f. (27)–(28)). The theorem can be
written in the alternate form (c.f. [30, (3.4)])

lim
n→∞

nλn(z, µ) = 2πw(z)

(

∂gΩ(z0,∞)

∂n

)−1

(2)

sΓ-almost everywhere, where gΩ(z0,∞) denotes the Green’s function with pole
at infinity associated with the unbounded component Ω of C \ Γ, and ∂(·)/∂n
denotes normal derivative in the direction of the inner normal to ∂Ω. Note
also that if σΓ is the density of the equilibrium measure ωΓ with respect to arc
measure, then the limit on the right-hand side of (1) is w(z)/σΓ(z).

A feature of the limit in (1) is that the Christoffel functions “feel” the com-
plete support of µ. This is through the condition logw ∈ L1(sΓ), and in a sense
some global condition like that is necessary (just consider that it follows from
the theorem itself that if we zero out µ on a component of Γ then the limit on
other components will change even though locally there is no change there in
the measure). For a much less restrictive global condition see Theorem 2 below.

A brief history of asymptotics of Christoffel functions is as follows. In 1915
G. Szegő proved that if dµ(t) = µ′(t)dt is an absolutely continuous measure on
the unit circle (identified with [−π, π]) then

lim
n→∞

λn(z, µ) = (1− |z|2) exp
(

ℜ 1

2π

∫ π

−π

eit − z

eit + z
log µ′(t)dt

)

, |z| < 1,
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provided log µ′ is integrable (otherwise the limit on the left is 0). This was later
generalized by several authors (see e.g. [7], [9], [10]). On the boundary of the
circle λn decreases as 1/n, and Szegő ([27, Th. I’, p. 461]) established that on
the unit circle, i.e. on the support of the measure,

lim
n→∞

nλn(e
iθ, µ) = 2πµ′(θ) (3)

under the condition that µ is absolutely continuous and µ′ > 0 is twice con-
tinuously differentiable. L. Golinskii [6] extended this to the arc case: if µ is a
so-called Bernstein-Szegő weight on the arc {eiθ α ≤ θ ≤ 2π − α}, then

lim
n→∞

nλn(e
iθ, µ) = 2πµ′(θ)

√

cos2 α
2 − cos2 θ

2

sin θ
2

(4)

for eiθ in this arc.
The almost everywhere part of (3) was harder, it was proved only in 1991 by

A. Máté, P. Nevai and V. Totik [13] that (3) is true almost everywhere provided
log µ′ is integrable. This has a consequence for measures lying on an interval:
if the support of µ is [−1, 1] and log µ′ ∈ L1

loc(−1, 1) then

lim
n→∞

nλn(x, µ) = π
√

1− x2µ′(x) (5)

for Lebesgue-almost every x ∈ [−1, 1]. On the proof in [13] (for the unit circle)
Simon wrote in [22]: “The proof is clever but involved; it would be good to find
a simpler proof”. The proof we give for Theorem 1 provides such a new proof.

In [30] the Szegő asymptotics (3) (the case when w is continuous) was shown
to be true on C2 curves, namely it was proved that (1) is true if w is continuous
and µsing = 0. M. Findley [4] verified the almost everywhere result: if Γ consists
of a single smooth Jordan curve and logw ∈ L1(sΓ), then (1) is true sΓ-almost
everywhere. His method was a nontrivial refinement of the original proof in [13]
(which was for the circle case) by mixing in the original argument conformal
maps and Faber polynomials. This approach does not work when Γ has more
than one components, and the general case remained open and requires different
ideas. In this paper we present a new approach which not only solves this
problem, but in a certain sense gives more than the proof in [13] even when Γ
is the unit circle. Basically, we shall show that the almost everywhere result
follows from the continuous one with the help of sharp estimates on harmonic
measures. In a nutshell the proof is based on the new type inequality

|Pn(z)|2 ≤ MeM
√

n|z−z0| n

∫

Γ

|Pn|2w dsΓ, z ∈ Γ, deg(Pn) ≤ n, (6)

provided logw ∈ L1(sΓ) and z0 ∈ Γ is a Lebesgue-point for logw. The other
ingredient is the use of fast decreasing polynomials: there are polynomials Rm
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of degree at most m such that Rm(z0) = 1 and with some constants C0, c0

|Rm(z)| ≤ C0 exp
(

−c0(m|z − z0|)2/3
)

, z ∈ Γ, (7)

i.e. these polynomials decrease very fast as we move away from z0. The point

is that even if m is small compared to n, say m = εn, the factor e−c0(m|z−z0|)
2/3

in (7) kills the factor eM
√

n|z−z0| in (6).
Finally, we note that Theorem 1 has a local form. To formulate it let µ be

an arbitrary Borel-measure with compact support on C and let K = supp(µ)
be the support of µ. We assume that Ω, the unbounded component of C \K,
is regular with respect to solving Dirichlet problems. µ is called to be in the
Reg class (see [25, Theorem 3.2.3]) if the L2(µ)-norms and the L∞(µ) norms
of polynomials are asymptotically the same in n-th root sense, i.e. if

lim
n→∞

sup
Pn

(‖Pn‖L∞(µ)

‖Pn‖L2(µ)

)1/n

→ 1, (8)

where the supremum is taken for all (nonzero) polynomials of degree at most
n. This is a fairly weak condition on µ—see [25] for general regularity criteria
and different equivalent formulations of µ ∈ Reg. For example, in the scenario
of Theorem 1 if w(t) = dµ(t)/dsΓ > 0 is true sΓ-almost everywhere, then
µ ∈ Reg, so Theorem 1 is a special case of the following one, in which cap(K)
stands for the logarithmic capacity of K, ωK for its equilibrium measure, and
Pc(K) = C \ Ω is the so called polynomial convex hull of K (this is the union
of K with the bounded components of C \K).

Theorem 2 Assume that µ is in the Reg class and its support K satisfies

cap(K) = cap(Int(Pc(K))), where Int means two dimensional interior. Suppose

that for some open disk D with center on ∂Ω the intersection D ∩ K is a C2

Jordan arc J , and on J the Radon-Nikodym derivative w = dµ/dsJ of µ with

respect to arc length sJ on J satisfies logw ∈ L1(sJ ). Then

lim
n→∞

nλn(z, µ) =
dµ(z)

dωK
(9)

for sJ -almost every z ∈ J .

This again has the equivalent form (2) (see [30, (3.4)]).
We shall not prove Theorem 2, for the additional difficulties compared with

Theorem 1 has already been dealt with in [30] (see particularly the difference
in between the proofs of Theorems 1.1 and 1.2 in [30]).

2 Preliminaries for the proof

First we make some notations (see Figure 1). For some 0 < α < 1 let γ be
a positively oriented C1+α-smooth Jordan curve, Ω∗ = Ω∗(γ) resp. Ω = Ω(γ)
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its inner resp. outer domains. Fix a conformal map Φ = Φγ from Ω onto
the exterior of the unit circle ∆, and let Ψ be the inverse of Φ. In a similar
manner, let Φ∗ be a conformal map from Ω∗ onto the unit disk ∆, and let Ψ∗ be
its inverse. We shall frequently use the Kellogg-Warschawski theorem (see [17,
Theorems 3.5, 3.6]: Φ, Ψ, Φ∗, Ψ∗ are C1+α up to the boundary. Furthermore,
their derivatives vanish nowhere (including the boundary).

Let Γ be a system of curves consisting of finitely many such C2-smooth γ’s
lying exterior to one another. We shall denote by s = sΓ the arc length on Γ.
Let µ be a measure on Γ such that its Radon-Nikodym derivative (with respect
to arc length) w = dµ/ds satisfies logw ∈ L1(s). It is enough to prove Theorem
1 on an arbitrary component of Γ, which we shall denote by γ. With this γ
and with w on γ we shall consider the associated Szegő function D∗ in Ω∗. Its
definition is

D∗(Ψ∗(z)) = exp

(

1

4π

∫ π

−π

eit − z

eit + z
logw(Ψ∗(t))dt

)

, |z| < 1, (10)

so on γ the function D∗(z) has nontangential boundary limit D∗(ζ) sγ-almost
everywhere, and |D∗(ζ)|2 = w(ζ) for sγ-almost every ζ ∈ γ.

The proof of Theorem 1 is based on the next lemma. As usual, we say that
ζ0 ∈ γ is a Lebesgue-point for w (with respect to s) if

lim
s(J)→0

1

s(J)

∫

J

|w(ζ)− w(ζ0)|ds(ζ) = 0,

where the limit is taken for subarcs J of γ that contain ζ0, the arc length s(J)
of which tends to 0.
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Lemma 3 Let γ be a C1+α Jordan curve, w ≥ 0 a (sγ-measurable) function

on γ such that w, logw ∈ L1(sγ), and let ζ0 ∈ γ be a Lebesgue-point for logw.
Then there is a constant M such that for z ∈ γ we have

|Pn(z)|2 ≤ MeM
√

n|z−ζ0| n

∫

γ

|Pn|2w dsγ (11)

for any polynomials Pn of degree at most n = 1, 2, . . ..

For later reference we mention that (11) is actually true on and inside γ. Indeed,
to verify this let Ω∗ be the inner domain of γ, and we may assume

n

∫

γ

|Pn|2w ds ≤ 1. (12)

By the subharmonicity of log |Pn(z)| we have for z ∈ Ω∗

log |Pn(z)|2 ≤
∫

γ

log |Pn(ζ)|2dω̃(z, ζ,Ω∗),

where ω̃(z, ·,Ω∗) is the harmonic measure of z on Ω∗. The conformal invariance
of harmonic measures and [18, Table 4.1] show that if Jk is the part of γ for
which 2k|z − ζ0| ≤ |ζ − ζ0| ≤ 2k+1|z − ζ0|, then ω̃(z, Jk,Ω

∗) ≤ C/2k, so (11)
applied with ζ instead of z gives

∫

γ

log |Pn(ζ)|2dω̃(z, ζ,Ω∗) ≤ logM+
∑

k≥0

M
√

n2k+1|z − ζ0|
C

2k
≤ C+C

√

n|z − ζ0|.

Note however, that outside γ nothing more than

|Pn(z)| ≤ MeMn|z−ζ0| (more precisely |Pn(z)| ≤ MeMndist(z,γ))

can be said (just think of the unit circle with Lebesgue-measure and Pn(z) = zn).

Proof of Lemma 3. Without loss of generality we may assume ζ0 = 1 and
the bound (12).

In what follows we shall denote by γ∗
δ the image of |z| = 1−δ under the con-

formal map Ψ∗ (see Figure 1). Then γ∗
δ , 0 < δ ≤ 1/2, are all uniformly C1+α,

and the corresponding conformal maps Φγ∗

δ
(mapping the unbounded compo-

nent Ω(γ∗
δ ) of C \ γ∗

δ onto the exterior of the unit disk ∆) are uniformly C1+α

up to the boundary. Therefore, if gΩ(γ∗

δ
)(z,∞) denotes the Green’s function of

Ω(γ∗
δ ) with pole at infinity, then the functions gΩ(γ∗

δ
)(z,∞) are also uniformly

C1+α because gΩ(γ∗

δ
)(z,∞) = log |Φγ∗

δ
(z)|.

For a Jordan domain D bounded by a rectifiable C1+α-smooth Jordan curve
∂D let ω(z, ζ,D)ds∂D(ζ) be the harmonic measure of z ∈ D, where s∂D is
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the arc measure on ∂D (one can easily see that this harmonic measure is ab-
solutely continuous with respect to s∂D, hence it can be written in the form
ω(z, ζ,D)ds∂D(ζ) actually with a continuous ω(z, ζ,D)). This is a unit mea-
sure on ∂D.

We claim that

ω(z, ζ,Ω∗) ∼ d(z, γ)

|ζ − z|2 + d(z, γ)2
, z ∈ Ω∗, ζ ∈ γ, (13)

and uniformly in 0 ≤ δ ≤ 1/2

ω(z, ζ,Ω(γ∗
δ )) ∼

d(z, γ∗
δ )

|ζ − z|2 + d(z, γ∗
δ )

2
, z ∈ γ, ζ ∈ γ∗

δ , (14)

where d(z, γ) denotes the distance from z to γ, and ∼ means that the ratio of
the two sides lies in between two fixed constants. In fact, if Φ∗(ζ) = t then
ζ = Ψ∗(t) and dsγ(ζ) = |dζ| = |(Ψ∗)′(t)||dt|, hence, by the conformal invariance
of harmonic measure,

ω(z, ζ,Ω∗)dsγ(ζ) = ω(Φ∗(z), t,∆)|(Ψ∗)′(t)||dt|,

and here |(Ψ∗)′(t)| is uniformly bounded away from 0 and ∞ (recall that ∆ =
{|z| < 1} denotes the unit disk). Furthermore, |ζ − z| ∼ |Φ∗(ζ) − Φ∗(z)| =
|t−Φ∗(z)| and d(z, γ) ∼ d(Φ∗(z), ∂∆). Now the claim follows, since for the unit
circle ω(Φ∗(z), t,∆) is the Poisson kernel, and hence

ω(Φ∗(z), t,∆) =
1

2π

1− |Φ∗(z)|2
|t− Φ∗(z)|2 ∼ d(Φ∗(z), ∂∆)

|t− Φ∗(z)|2 + d(Φ∗(z), ∂∆)2
.

The proof of (14) is the same if we use the uniform C1+α-smoothness of γ∗
δ

and the associated mappings (recall that the harmonic measure in the exterior
of the unit disk is given again by the Poisson kernel).

We shall also use that (13) is true with Ω∗ replaced by Ω∗(γ∗
δ ) (this is the

inner domain enclosed by the curve γ∗
δ , and actually it is the image of |z| < 1−δ

under the mapping Ψ∗ of ∆ onto Ω∗), i.e. uniformly in 0 < δ ≤ 1/2

ω(z, ζ,Ω∗(γ∗
δ )) ∼

d(z, γ∗
δ )

|ζ − z|2 + d(z, γ∗
δ )

2
, z ∈ Ω∗(γ∗

δ ), ζ ∈ γ∗
δ . (15)

Indeed, this is immediate from the proof of (13) just given.
Next, note that for z ∈ γ we have d(z, γ∗

δ ) ∼ δ and for θ ∈ γ∗
δ we have

d(θ, γ) ∼ δ. Now we claim that for ζ, z ∈ γ

∫

γ∗

δ

ω(θ, ζ,Ω∗)ω(z, θ,Ω(γ∗
δ ))dsγ∗

δ
(θ) ≤ C

δ

|ζ − z|2 + δ2
(16)
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with a constant C independent of ζ, z ∈ γ and 0 < δ ≤ 1/2. In fact, if θ ∈ γ∗
δ

and |θ − ζ| ≥ |ζ − z|/2, then (13) (with z replaced by θ) gives

ω(θ, ζ,Ω∗) ≤ C
δ

|ζ − z|2 + δ2

(note that d(θ, γ) ∼ δ). Hence the integral over that part of γ∗
δ which is of

distance ≥ |ζ − z|/2 from ζ has this bound. On the other hand, if |θ − ζ| ≤
|ζ − z|/2 then necessarily |θ− z| ≥ |ζ − z|/2, and then (14) (with ζ replaced by
θ) gives

ω(z, θ,Ω(γ∗
δ )) ≤ C

δ

|ζ − z|2 + δ2
.

Therefore, the integral over the rest of γ∗
δ is

≤ C
δ

|ζ − z|2 + δ2

∫

γ∗

δ

ω(θ, ζ,Ω∗)dsγ∗

δ
(θ). (17)

But ω(θ, ζ,Ω∗) is a harmonic function of θ in Ω∗ and on γ∗
δ the measure dsγ∗

δ
(θ)

is less than a constant times the harmonic measure

ω(Ψ∗(0), θ,Ω∗(γ∗
δ ))dsγ∗

δ
(θ)

(c.f. (15)), therefore the integral in (17) is at most Cω(Ψ∗(0), ζ,Ω∗), which is
bounded for ζ ∈ γ according to (13). With this the proof of (16) is complete.

After these we turn to the statement in the lemma. For z ∈ γ set in the
formulas above

δ =

{

1/n if |z − 1| ≤ 1/n
√

|z − 1|/n if |z − 1| ≥ 1/n.
(18)

Recall now the Szegő function D∗ from (10). For θ ∈ γ∗
δ we have from (13) with

some constant C1

|Pn(θ)D
∗(θ)|2 =

∣

∣

∣

∣

∫

γ

Pn(ζ)
2D∗(ζ)2ω(θ, ζ,Ω∗)dsγ(ζ)

∣

∣

∣

∣

≤ C1
1

δ

∫

γ

|Pn(ζ)|2|D∗(ζ)|2dsγ(ζ) ≤ C1
1

δ

1

n
≤ C1, (19)

where we used that |D∗(ζ)|2 = w(ζ) sγ-almost everywhere, and we also used
the bound (12) for the integral. Here the equality needs some explanation, since
the analytic (and hence harmonic) function (PnD

∗)2 is represented in Ω∗ by the
Poisson integral (relative to Ω∗, i.e. when the Poisson kernel is ω(θ, ζ,Ω∗)dsγ(ζ))
involving its nontangential limit (denoted again by (PnD

∗)2(θ)) on γ. However,
everything is conformal invariant, so the equality needs to be verified only when
γ is the unit circle, in which case the formula follows from the fact that (PnD

∗)2
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is in H1, and therefore it is represented in the unit disk as the Poisson integral
of it boundary values.

Let now h be the solution of the Dirichlet problem in Ω(γ∗
δ ) (the outer do-

main of γ∗
δ ) with boundary data log |D∗(θ)| on γ∗

δ , and gΩ(γ∗

δ
)(z,∞) the Green’s

function of Ω(γ∗
δ ) with pole at infinity. The function

u(z) = log |Pn(z)|+ h(z)− ngΩ(γ∗

δ
)(z,∞)

is subharmonic in Ω(γ∗
δ ), is harmonic around ∞ and, as we have seen in (19),

is ≤ logC
1/2
1 on the boundary ∂Ω(γ∗

δ ) = γ∗
δ , so it is ≤ logC

1/2
1 everywhere in

Ω(γ∗
δ ). Thus,

|Pn(z)| ≤ C
1/2
1 exp

(

−h(z) + ngΩ(γ∗

δ
)(z,∞)

)

, z ∈ γ. (20)

What we have said about the uniform C1+α property of the Green’s functions
gΩ(γ∗

δ
)(z,∞) implies that

ngΩ(γ∗

δ
)(z,∞) ≤ Cnδ ≤

{

C if |z − 1| ≤ 1/n

C
√

n|z − 1| otherwise
(21)

by the choice of δ in (18). For h we have the representation

h(z) =

∫

γ∗

δ

(

log |D∗(θ)|
)

ω(z, θ,Ω(γ∗
δ ))dsγ∗

δ
(θ),

and here

log |D∗(θ)| =
∫

γ

1

2

(

logw(ζ)
)

ω(θ, ζ,Ω∗)dsγ(ζ)

(this latter one follows from the definition of D∗ if we apply the conformal map
Φ∗ of Ω∗ onto the unit disk). Substitute this into the previous formula, switch
the order of integration and use (16) to conclude

|h(z)| ≤ C

∫

γ

| logw(ζ)| δ

|ζ − z|2 + δ2
dsγ(ζ).

Now let first |z − 1| ≥ 1/n. By the Lebesgue-point property of log |w(ζ)| at
ζ = 1

∫

|ζ−1|≤2|z−1|

| logw(ζ)| δ

|ζ − z|2 + δ2
dsγ(ζ)

≤ 1

δ

∫

|ζ−1|≤2|z−1|

| logw(ζ)|dsγ(ζ) ≤ C
|z − 1|

δ

9



with a constant C that may depend on the value w(1), but is independent of
z ∈ γ. Similarly, for every k = 1, 2, . . .

∫

2k|z−1|≤|ζ−1|≤2k+1|z−1|

| logw(ζ)| δ

|ζ − z|2 + δ2
dsγ(ζ)

≤ δ

(2k|z − 1|/2)2
∫

|ζ−1|≤2k+1|z−1|

| logw(ζ)|dsγ(ζ)

≤ δ

(2k|z − 1|/2)2C2k+1|z − 1| ≤ C
δ

2k|z − 1| .

Adding these together for all k we obtain (cf. also the choice of δ in (18))

|h(z)| ≤ C

( |z − 1|
δ

+
δ

|z − 1|

)

≤ C
√

n|z − 1|. (22)

When |z − 1| ≤ 1/n we get similarly
∫

|ζ−1|≤2/n

| logw(ζ)| δ

|ζ − z|2 + δ2
dsγ(ζ)

≤ 1

δ

∫

|ζ−1|≤2/n

| logw(ζ)|dsγ(ζ) ≤
1

δ
C(2/n) ≤ C,

and for every k = 1, 2, . . .
∫

2k/n≤|ζ−1|≤2k+1/n

| logw(ζ)| δ

|ζ − z|2 + δ2
dsγ(ζ)

≤ 1/n

(2k/2n)2

∫

|ζ−1|≤2k+1/n

| logw(ζ)|dsγ(ζ) ≤ C
1

2k
,

which yield |h(z)| ≤ C.
Now this, (22), (21) and (20) prove the lemma.

We shall also use

Lemma 4 Let K be a compact subset of the plane, Ω the unbounded component

of its complement, and Z ∈ ∂Ω a point on the outer boundary of K. Assume

that there is a disk in Ω that contains Z on its boundary. Then for every β < 1
there are constants cβ , Cβ > 0 and for every n = 1, 2, . . . polynomials Pn of

degree at most n such that Pn(Z) = 1, |Pn(z)| ≤ 1 for z ∈ K and

|Pn(z)| ≤ Cβe
−cβ(n|z−Z|)β , z ∈ K. (23)

10



We mention that this lemma is optimal in the sense that β = 1 is not possible
in it.

The polynomials Pn allow good localization, for they decrease fast on K as
we move away from Z.

A similar statement was proved in [30, Theorem 4.1], but there (n|z − Z|)β
was replaced by n|z − Z|γ with some γ > 1. Nevertheless, we shall follow the
argument in [30, Theorem 4.1].

Proof of Lemma 4. First we prove the claim for the closed unit disk, thus
let first K = ∆. Without loss of generality we may assume Z = 1. It was
proved in [8] that for every β < 1 there are constants dβ , Dβ > 0 and for
every n = 1, 2, . . . polynomials Rn of degree at most n such that Rn(0) = 1,
|Rn(x)| ≤ 1 for x ∈ [−1, 1] and

|Rn(x)| ≤ Dβe
−dβ(n|x|)

β

, x ∈ [−1, 1]. (24)

By replacing Rn(x) with (Rn(x) + Rn(−x))/2 if necessary, we may assume
that Rn is even. Then Rn(sin(t/2)) is a trigonometric polynomial of degree
at most n/2, hence ei[n/2]tRn(sin(t/2)) coincides with some P ∗

n(e
it), where P ∗

n

is an algebraic polynomial of degree at most n. It is clear that P ∗
n(1) = 1,

|P ∗
n(e

it)| ≤ 1, and for t ∈ [−π, π] (see (24))

|P ∗
n(e

it)| ≤ Dβe
−dβ(n| sin(t/2)|)

β ≤ Dβe
−dβ(n|t|)

β/πβ

, (25)

where we used that | sin(t/2)| ≥ |t|/π for t ∈ [−π, π]. We claim that this is
enough to prove the statement for the unit disk, i.e. P ∗

n also satisfies (23) with
Z = 1. By the maximum principle we certainly have |P ∗

n(z)| ≤ 1 in the closed
unit disk ∆.

Let
Jz = {eit t ∈ [−π,−|1− z|] ∪ [|1− z|, π]}

be the arc of the unit circle consisting of points with arc length distance ≥ |1−z|
from the point 1. Let ω̃(z; J,∆) denote the harmonic measure of J ⊂ ∂∆ at z
with respect to the unit disk ∆. It is clear (use that

ω̃(z; Jz,∆) =
1

2π

∫

J

1− |z|2
|ζ − z|2 d|ζ|

or apply a conformal map onto the upper half plane and note that on the upper
half plane the harmonic measure is nothing else (see [18, Table 4.1] or [2]) than
1/π-times the angle the set is seen from the point z) that there is a constant
γ > 0 such that ω̃(z; Jz,∆) ≥ γ for all z ∈ ∆. Since on Jz we have by (25) the
estimate

|P ∗
n(e

it)| ≤ Dβe
−dβ(n|1−z|)β/πβ
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while |P ∗
n(z)| ≤ 1 everywhere in the closed unit disk, it follows from a comparison

of the subharmonic function log |P ∗
n(w)| with the harmonic function

ω̃(w; Jz,∆)
(

logDβ − dβ(n|1− z|)β/πβ
)

that
|P ∗

n(w)| ≤ Dγ
βe

−γdβ(n|1−w|)β/πβ

, (26)

as was claimed.

After these we complete the proof for arbitrary sets. Since it is assumed that
there is a disk in Ω that contains Z on its boundary, it is easy to construct a
simply connected domain G with C2 boundary containing K \ Z in its interior
such that Z ∈ ∂G. Choose a lemniscate (a level set of a polynomial) σ such
that σ is a Jordan curve, its interior contains G \ Z and Z ∈ σ. The existence
of σ immediately follows from [14, Theorem 1.1]. Let TN be a polynomial for
which σ = {z||TN (z)| = 1}, and without loss of generality we may assume that
TN (Z) = 1. In the rest of the proof this TN (and hence N) is fixed, and it
is also true that T ′

N (Z) 6= 0 since σ is a Jordan curve. We claim that if P ∗
n

are the polynomials from (23) for the closed unit disk (i.e. P ∗
n is actually the

polynomials from (26)), then Pn(z) = P ∗
[n/N ](TN (z)) satisfy (23) with some

constants Cβ , cβ . In fact, if z ∈ K is in a small neighborhood of Z then TN (z)
is in a small neighborhood of 1, and |z − Z| ∼ |TN (z)− 1|, so (23) follows from
(26) (applied with w = TN (z)), for, say, |z − Z| ≤ δ. On the other hand, if
z ∈ K and |z−Z| ≥ δ, then |TN (z)−1| ≥ δ1 for some δ1 (note that K \{Z} lies
strictly inside σ, so for z ∈ K, |z−Z| ≥ δ the value TN (z) cannot be close even
to the boundary of the unit circle). Hence (23) follows again from (26) applied
with w = TN (z).

3 Proof of Theorem 1

Assume, as in the theorem, that the system of curves Γ is C2 and µ is a finite
measure on Γ such that logw ∈ L1(sΓ), where w is the Radon-Nikodym deriva-
tive of µ with respect to the arc length measure sΓ on Γ. We need to prove the
theorem on each component of Γ, so let γ be one of the components of Γ.

Let dµ(x) = w(x)ds(x) + dµsing(x) be, as before, the decomposition of µ
into its absolutely continuous and singular part with respect to the arc measure
s = sΓ on Γ. The Lebesgue-point property of µ at a point ζ0, say at ζ0 = 1,
means that for every ε > 0 there is a ρ > 0 such that if 0 ≤ τ ≤ ρ then

∫

|ζ−1|≤τ

|w(ζ)− w(1)|ds(ζ) ≤ ετ (27)

µsing({ζ |ζ − 1| ≤ τ}) ≤ ετ . (28)

12



Since the derivative of µsing with respect to sΓ is 0 sΓ-almost everywhere (see [19,
Theorem 7.13]), standard proof shows that sΓ-almost every point is a Lebesgue-
point for µ. So the theorem follows if we can prove (1) at every z which is a
Lebesgue-point for both µ and logw.

Let 1 ∈ γ be a Lebesgue-point for µ. We define the measure ν as dν(ζ) =
w(1)dsγ(ζ) on γ and dν = dµ on other components of Γ, and we shall compare
the values λn(1, µ) and λn(1, ν) of the Christoffel functions associated with µ
and ν, respectively. The theorem will follow, since the measure ν has continuous
Radon-Nikodym derivative (≡ w(1)) with respect to sΓ on γ and on other com-
ponents of Γ this Radon-Nikodym derivative w is positive sΓ-almost everywhere
(recall that we have assumed logw ∈ L1(sΓ)), and hence, by [30, Theorem 1.1],
for it we have (36) below.

Denote the derivative dωΓ/dsΓ by σΓ (to be more precise, let

σΓ(z) = lim
sΓ(J)→0

ωΓ(J)

sΓ(J)

where the limit, which is taken for subarcs J of Γ containing z, exists). Since
Γ is assumed to be C2, this σΓ, which is the density of the equilibrium measure
of Γ with respect to arc length, is easily seen to be continuous.

Since dµ/dωΓ = (dµ/dsΓ)(dsΓ/dωΓ) = w/σΓ, we need to prove that under
the assumption that the point 1 is a Lebesgue-point for both µ and logw we
have

lim sup
n→∞

nλn(1, µ) ≤
w(1)

σΓ(1)
, (29)

and

lim inf
n→∞

nλn(1, µ) ≥
w(1)

σΓ(1)
. (30)

Proof of (29). This part of the proof uses only the Lebesgue-point property
for µ.

It was proven in [30, Theorem 1.1] that there are polynomials Qn of degree
at most n such that Qn(1) = 1, |Qn(z)| ≤ 1 for all z ∈ Γ and

lim
n→∞

n

∫

|Qn|2dν =
w(1)

σΓ(1)
. (31)

With β = 2/3 and some δ > 0 consider the polynomials Pδn of degree δn from
Lemma 4 for the point Z = 1 and for the set Γ, and set Rn(z) = Qn(z)Pδn(z).
This is a polynomial of degree at most n(1 + δ) with Rn(1) = 1, |Rn(ζ)| ≤
|Qn(ζ)| ≤ 1 (ζ ∈ Γ), and this will be our test polynomial to get an upper bound
for λn(1+δ)(1, µ).

We estimate the integral of |Rn|2 against µ first on γ, using the Lebesgue-
point properties (27)–(28). Since

|Rn(ζ)| ≤ C0 exp
(

−c0(nδ|ζ − 1|)2/3
)
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with some c0, C0, it follows for 2k/nδ < ρ/2, k = 1, 2, . . . (see (27)) that (the
next three integrals are taken on γ)

∫

2k/nδ≤|ζ−1|≤2k+1/nδ

|Rn(ζ)|2|w(ζ)− w(1)|ds(ζ) ≤ C0ε
2k+1

nδ
exp

(

−c02
2k/3

)

,

and also
∫

|ζ−1|≤2/nδ

|Rn(ζ)|2|w(ζ)− w(1)|ds(ζ) ≤ ε
2

nδ
.

On the other hand, for the integral over |ζ − 1| ≥ ρ/2, we just write
∫

ρ/2≤|ζ−1|

|Rn(ζ)|2|w(ζ)− w(1)|ds(ζ) ≤ C exp
(

−c0(nδρ/2)
2/3

)

.

Summing these up we obtain
∫

γ

|Rn|2wds−
∫

γ

|Rn|2dν ≤ C
ε

δn
+ o(1/n).

Similar reasoning based on (28) rather than (27) gives
∫

γ

|Rn|2dµsing ≤ C
ε

δn
+ o(1/n).

On other components of Γ the measures µ and ν coincide, therefore
∫

|Rn|2dµ ≤
∫

|Rn|2dν + C2
ε

δn
+ o(1/n)

follows. Hence, in view of |Rn(ζ)| ≤ |Qn(ζ)|, we obtain from (31)

lim sup
n→∞

n(1 + δ)λn(1+δ)(1, µ) ≤ lim sup
n→∞

n(1 + δ)

∫

|Rn|2dµ

≤ lim sup
n→∞

n(1 + δ)

∫

|Qn|2dν + C2
ε

δ
(1 + δ)

≤ (1 + δ)
w(1)

σΓ(1)
+ C2

ε

δ
(1 + δ)

with some fixed constant C2. Now the monotonicity of λn in n implies that
then for the whole sequence of natural numbers

lim sup
n→∞

nλn(1, µ) ≤ (1 + δ)
w(1)

σΓ(1)
+ C2

ε

δ
(1 + δ).

On letting ε → 0 and then δ → 0 we obtain

lim sup
n→∞

nλn(1, µ) ≤
w(1)

σΓ(1)
,
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what was needed to be proven.

Proof of (30). Let dµ(x) = w(x)ds(x) + dµsing(x) be as before, and recall
that the assumption of Theorem 1 is that logw ∈ L1(sΓ). Assume now, as
in the beginning of the proof, that 1 ∈ γ is a Lebesgue-point for both µ (see
(27)–(28)) and logw, and select ρ so that (27)–(28) is true for all τ ≤ ρ.

Assume to the contrary that there is an α < 1 and an infinite sequence
N ⊆ N such that for every n ∈ N there are polynomials Qn of degree at most
n with the properties Qn(1) = 1

∫

|Qn|2dµ ≤ α
w(1)

σΓ(1)

1

n
. (32)

In particular,
∫

γ

|Qn|2wds ≤ α
w(1)

σΓ(1)

1

n
, (33)

and then Lemma 3 gives

|Qn(ζ)| ≤ M exp(M
√

n|ζ − 1|), ζ ∈ γ, (34)

with some constant M (recall that 1 is a Lebesgue-point for logw, so Lemma 3
is applicable).

With β = 2/3 and some δ > 0 consider again the polynomials Pδn of degree
δn from Lemma 4 for the point Z = 1 and for the set Γ, and set Rn(z) =
Qn(z)Pδn(z). This is a polynomial of degree at most n(1 + δ) with Rn(1) = 1,
|Rn(ζ)| ≤ |Qn(ζ)| (ζ ∈ Γ), and this will be our test polynomial to get an upper
bound for λn(1+δ)(1, ν), n ∈ N . Since

|Pn(ζ)| ≤ C0 exp
(

−c0(nδ|ζ − 1|)2/3
)

, ζ ∈ Γ,

it immediately follows that

|Rn(ζ)| ≤ MC0 exp
(

M
√

n|ζ − 1| − c0(nδ|ζ − 1|)2/3
)

, ζ ∈ γ,

and hence

|Rn(ζ)| ≤ Mδ exp
(

−(c0/2)(nδ|ζ − 1|)2/3
)

, ζ ∈ γ (35)

with an Mδ depending on δ. In particular, |Rn(ζ)| ≤ Mδ for all ζ ∈ γ.
It follows from (27) and (35) for 2k/nδ < ρ/2, k = 1, 2, . . . that (the next

three integrals being taken on γ)

∫

2k/nδ≤|ζ−1|≤2k+1/nδ

|Rn(ζ)|2|w(ζ)− w(1)|ds(ζ) ≤ M2
δ ε

2k+1

nδ
exp

(

−c0
2
22k/3

)

,
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and also
∫

|ζ−1|≤2/nδ

|Rn(ζ)|2|w(ζ)− w(1)|ds(ζ) ≤ M2
δ ε

2

nδ
.

For the integral over |z − 1| ≥ ρ/2, we write

∫

ρ/2≤|ζ−1|

|Rn(ζ)|2|w(ζ)− w(1)|ds(ζ) ≤ CM2
δ exp

(

−c0
2
(nδρ/2)2/3

)

.

Summing these up we obtain

∫

γ

|Rn|2dν −
∫

γ

|Rn|2wds ≤ CM2
δ

ε

δn
+ o(1/n).

These yield again (as ν = µ on other components of Γ)

∫

|Rn|2dν ≤
∫

|Rn|2dµ+ CM2
δ

ε

δn
+ o(1/n).

Hence, in view of |Rn(ζ)| ≤ |Qn(ζ)|, it follows from (32)

lim sup
n∈N

n(1 + δ)λn(1+δ)(1, ν) ≤ lim sup
n∈N

n(1 + δ)

∫

|Rn|2dν

≤ lim sup
n∈N

n(1 + δ)

∫

|Rn|2dµ+ CM2
δ

ε

δ
(1 + δ)

≤ (1 + δ)α
w(1)

σΓ(1)
+ CM2

δ

ε

δ
(1 + δ)

with some fixed constant C. But for (1+δ)α < 1 (and we can make this happen
by selecting a small δ) and small ε this contradicts the fact that

lim
m→∞

mλm(1, ν) =
w(1)

σΓ(1)
, (36)

which was proved in [30, Theorem 1.1] (note again that ν has continuous (ac-
tually constant) density with respect to sγ on γ, so [30, Theorem 1.1] can be
applied). This contradiction proves the lower estimate in (30) and the proof is
complete.
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