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Abstract: Let C be a linear code of length n and dimension k over the finite field �q
m. The trace code ( )CTr is a

linear code of the same length n over the subfield �q. The obvious upper bound for the dimension of the trace
code over�q ismk . If equality holds, then we say that C has maximum trace dimension. The problem of finding
the true dimension of trace codes and their duals is relevant for the size of the public key of various code-based
cryptographic protocols. Let Ca denote the code obtained from C and a multiplier vector �( )∈a q

nm . In this
study, we give a lower bound for the probability that a random multiplier vector produces a code Ca of
maximum trace dimension. We give an interpretation of the bound for the class of algebraic geometry codes
in terms of the degree of the defining divisor. The bound explains the experimental fact that random alternant
codes have minimal dimension. Our bound holds whenever ( )≥ +n m k h , where ≥h 0 is the Singleton defect
of C . For the extremal case ( )= +n m h k , numerical experiments reveal a closed connection between the
probability of having maximum trace dimension and the probability that a random matrix has full rank.

Keywords: trace codes, subfield subcodes, dimension of trace codes, random alternant codes, weight enu-
merator, Singleton defect

MSC 2020: 14G50, 15A03

1 Introduction

1.1 Code-based post-quantum cryptosystems

Recent research has focused extensively on quantum computers that use quantum mechanical techniques to
solve difficult mathematical computational problems [1]. The existence of these potent devices poses a threat to
numerous widely used public-key cryptosystems [2]. McEliece [3] introduced the first code-based public-key
cryptosystem in 1978. One of the most pressing problems in cryptography today is to reduce the key size and
enhance the security level of the McEliece cryptosystem, which is a promising cryptographic scheme for the
post-quantum era [4]. Error-correcting codes used in code-based cryptographic protocols must be decoded
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with efficient algorithms. The family of algebraic geometry (AG) codes and their subcodes and subfield
subcodes constitute a rich class of such codes. These include the generalized Reed–Solomon, alternant, binary
Goppa, and BCH codes. For a survey on decoding AG codes, see the research by Høholdt et al. [5].

Couvreur et al. [6–8] provided polynomial-time attacks against the McEliece cryptosystem that employs AG
codes or their subcodes. In general, evaluation codes do not operate like random codes. This enables a wide
variety of attacks against the McEliece cryptosystem based on AG codes. The technique described by Couvreur
et al. [7,8] is inspired by the so-called filtration attacks that rely on computing the dimension of the Schur
product that makes AG codes distinguishable from random ones. This observation was used by Wieschebrink
[9] to provide an attack against the McEliece scheme based on subcodes of generalized Reed–Solomon codes
[10]. Numerous attacks have employed a combination of powerful techniques, such as the filtration method, an
error-correcting pair (ECP), or an error-correcting array (ECA), leading to a key recovery attack or a blind
reconstruction of a decoding algorithm [7,8,11]. These vulnerabilities are based on the operation of the Schur
product and a thorough examination of the dimensions of the Schur products for specific subcodes.

1.2 Key generation of code-based cryptosystems

The key generation process of the code-based scheme starts with a public code C0 and a decoding algorithm Δ0

which can efficiently correct a certain number of errors. Then, a random seed σ and a procedure Π are used to
construct a code C with a decoding algorithm Δ.

Roughly speaking, the code ( )=C C σΠ ,0 represents the public key, while the decoding algorithm
( )=Δ Δ σΠ ,0 represents the private key. The class of random alternant codes, where the starting code C0 is

the full support Reed–Solomon code of dimension k over the field of order qm, serves as an illustration. The
random seed consists of a pair of vectors of length n over �q

m: the multiplier ( )=a a a, …, n1 , ( )≠a 0i , and the
support ( )=x x x, …, n1 , ( ≠x xi j for ≠i j). The process Π has two main steps: first, compute the generalized
Reed–Solomon code ( )= x aC GRS ,k1 , then compute the subfield subcode �� ( ) = ∩⊥

x a C,k q

n

1 of the dual of C1.
Due to Delsarte’s theorem, the second step is equivalent to taking the dual of the trace code: � ( ) ( )= ⊥

x a C, Trk 1 .
(For more precise definitions and references, see Section 2).

While binary Goppa codes form a subclass of alternant codes, randomness for binary Goppa codes
operates distinctly. One starts with the full support Reed–Solomon code C0, where =q 2 and =k t2 . The
seed consists of the support x , and the monic irreducible polynomial ( )g X of degree t over �q

m. The multiplier
a is defined by ( )= ∕a g x1i i , and the result is the alternant code � ( )x a,k . In both cases, the scheme’s crypto-
graphic strength depends on taking the subfield subcode or, equivalently, taking the trace code. Existing
known mathematical techniques have yet failed to grasp the essence of these two operations. In particular,
it is difficult to determine the true dimension of subfield subcodes and trace codes in general.

1.3 Random trace codes and their dimension

Subfield subcodes and trace codes are linked by duality. This study deals with the dimension problem of trace
codes. Let q be a prime power, and m k n, , and positive integers. We extend the trace map � �→Tr: q q

m to
vectors and matrices. For a linear subspace �≤C

q

n
m, we write ( ) { ( )∣ }= ∈x xC CTr Tr . For the linear code

�≤C
q

n
m of dimension k , we have the obvious upper bound ( ( )) ≤C mkdim Tr , and we say that C has maximum

trace dimension, if the equality holds. Assume that the �q-linear code ( )=C C σΠ ,0 is constructed using a
�q

m-linear code C0 and a random seed σ . Then, we may inquire about the probability

( ( ) )=C C σProb Π , has maximum trace dimension ,0

a value which depends solely on C0. This probability has already been estimated using numerical experimenta-
tion for binary Goppa codes of the classic McEliece scheme (see Sections 2.2.2 and 4.2 of [12]), and for random
alternant codes [13].
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The focus on this probability is mainly theoretical; however, bounds on the proportion of random alter-
nant codes with maximum trace dimension are beneficial in understanding the complexity of the algorithms
used in the key generation process of code-based cryptography, as well as the size of public keys.

In this study, we prove a lower bound for the probability of maximum trace dimension in the probability
model of random multipliers.

Theorem 1. Let C be an [ ]n k d, , q
m-code and let = + − −h n k d1 be its Singleton defect. Let PC denote the

proportion of multiplier vectors �( ) ( )= ∈a a a, …, *n q

n
1 m such that the linear code

{( )∣ }= ∈xC a x a x C, …,a n n1 1

has maximum trace dimension. Then,

( )

( )

( )
≥ −

−
−

− +

− +P
q

q q
1

1

1
.C

m h k

n m h k
(1)

In particular, if ( )≥ +n m k h , or equivalently ( )≥ − ∕ +d n m1 1 1, then >P 0C .

Our proof uses double counting methods that involve the weight distribution of the dual code ⊥C . We apply
recent results of studies by Meneghetti et al. [14] that relate the weight distribution to numerical properties of
the code that can be computed if the Singleton defect is small. For our purposes, the most important property is
the number of ×k v submatrices of rank r of the generator matrix.

Except for the case =q 2 and ( )= +n m h k , Theorem 1 implies ≥ ∕P 1 2C . This means that the Monte Carlo
method of generating a random code Ca of maximum trace dimension is very effective. For =q 2 and

( )= +n m h k , further research is necessary.
If <n mk , then clearly ( ( )) ( )≤ < =C n m C mkdim Tr dim , so C cannot be of maximum trace dimension for

anyC . Moreover, if C is an maximum distance separable (MDS) code of length −n h extended with zeros in the
last coordinates, then it is easy to see that ( ( )) ≤ −C n hdim Tr a . Thus, one might ask for the proportion of
multiplier vectors for which ( ( ))Cdim Tr a is close to the largest possible value n.

Theorem 2. Let C be an [ ]n k d, , q
m-code and let = + − −h n k d1 be its Singleton defect. Let ′PC denote the

proportion of multiplier vectors �( ) ( )= ∈a a a, …, *n q

n
1 m such that ( ( )) ≥ −C n mhdim Tr a . Then,

′ ≥
− − +

−

+ − −

+P
q q q q

q 1
.C

mh mh n mk mk

mh

1

1
(2)

In particular, if ( )≤ +n m k h , or equivalently ( )≤ − ∕ +d n m1 1 1, then ′ >P 0C .

If =h 0 (thus C is MDS) and ≤n mk , then the formula in the above theorem obtains simpler and more
similar to the one in Theorem 1:

( )
′ ≥ −

−
−

−

−P
q

q q
1

1

1
.C

n

mk n
(3)

1.4 Maximum trace dimension probabilities of AG codes

AG codes are linear error-correcting codes constructed from algebraic curves over finite fields, generalizing
the Reed–Solomon code concept. They are defined by evaluating functions or by using residues of differentials.
Their parameters can be derived fromwell-known theorems in AG. Our notation and terminology on algebraic
plane curves over finite fields, their function fields, divisors, and Riemann–Roch spaces are conventional (see,
for example, [15]).

Let � be a smooth algebraic curve over the finite field �q
m. Let P P P, ,…, n1 2 be pairwise distinct places of �,

and D is the divisor = +⋯+D P Pn1 . LetG be another divisor with support disjoint from D. The Riemann–Roch
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theorem enables us to estimate the dimension, the minimum distance and the Singleton defect of AG codes.
These, together with Theorem 1, imply a lower bound for the probability of maximum trace dimension of AG
codes.

Theorem 3. Let ( )=C C D G,L be a functional AG code of length ( )=n Ddeg over the finite field �q
m, >m 1. If

( ) ≤ ∕ −G n mdeg 1, then

( )

( ( ) )

( ( ) )
≥ −

−
−

− +

− +P
q

q q
1

1

1
.C

m G

n m G

deg 1

deg 1
(4)

1.5 Rank properties of random matrices in other probabilistic models

The rank properties of random matrices over finite fields have been extensively studied as a problem in
combinatorial graph theory and other contexts, including coding theory and code-based post-quantum cryp-
tography. For the probabilistic paradigm, there are a variety of alternatives [16–20]. One possibility is to choose
each entry of the matrix independently and uniformly at random from the field. This can be extended to non-
uniform distributions, which may or may not depend on the matrix entry’s position. Studholme and Blake [20]
studied windowed random matrices,where the nonzero elements of each column are restricted to fall within a
window of lengthw, beginning at a randomly chosen row. Salmond et al. [18] proved that the probability that a
random matrix has full rank cannot increase if we fix any number of additional elements to be identi-
cally zero.

Let A be an ×n n matrix over the finite field �q, whose entries are chosen uniformly at random. As → ∞n ,
the probability that A has rank n converges very fast to the value

( ) ∏⎜ ⎟= ⎛
⎝
− ⎞

⎠=

∞

S q
q

1
1

.

i

i

1

(5)

( )S q , which is independent of n, is also called the q-Pochhamer symbol ( )∕ ∕ ∞q q1 ; 1 , [21]. For =q 2, a good
estimate for ( )S 2 is 0.2888. Let V be an �q-space of dimension n, and take n nonzero vectors uniformly at

random from { }⧹V 0 . The probability that the vectors are linearly independent also converges to ( )S q very fast
if → ∞n .

We performed numerical experiments for Reed–Solomon codes ( )= xC RSk over �q
m, where k m, are

positive integers, =q 2 or =q 3, and x x,…, km1 are random distinct elements of �q
m. Therefore, C has a length

=n km, and Singleton defect =h 0. We observed that the probability that C has maximum trace dimension is
near to the value ( )S q .

1.6 Outline of the article

Notation and classical prerequisites on linear codes are given in Section 2. Section 3 collects basic properties
and examples of codes which have maximum trace dimension. In Section 4, we deal with the dimension
problem of random alternant codes. Sections 5 and 6 contain detailed proofs of the main theorems. The basic
concepts of AG codes are also presented in Section 6.

2 Prerequisites from coding theory

Let q be a prime power and let m n k, , be positive integers such that ≤ ≤mk n qm. Let x x,…, n1 be distinct
elements of �q

m. The Reed–Solomon code ( )xRSk is defined by the generator matrix
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=

⎡

⎣

⎢
⎢
⎢

⋯
⋯

⋮ ⋮ ⋮
⋯

⎤

⎦

⎥
⎥
⎥− − −

G

x x x

x x x

1 1 1

.
n

k k

n

k

1 2

1

1

2

1 1

(6)

The vector x is called the support of the Reed–Solomon code. ( )xRSk has dimension k and minimum distance
= − +d n k 1. It is an MDS code with Singleton defect =h 0. Let a a,…, n1 be nonzero elements of �q

m. The
generalized Reed–Solomon code ( )x aGRS ,k has generator matrix

′ =

⎡

⎣

⎢
⎢
⎢

⋯
⋯

⋮ ⋮ ⋮
⋯

⎤

⎦

⎥
⎥
⎥− − −

G

a a a

a x a x a x

a x a x a x

.

n

n n

k k
n n

k

1 2

1 1 2 2

1 1

1
2 2

1 1

Clearly, ( )x aGRS ,k and ( )xRSk have same parameters. In particular, generalized Reed–Solomon codes are
MDS. If =n qm, then �{ } =x x, …, n q1

m and the codes are said to have full support. The dual code of ( )x aGRS ,k is
again a generalized Reed–Solomon code ( )− x bGRS ,n k , with the same support x . The Berlekamp–Massey
algorithm provides an efficient decoding algorithm for Reed–Solomon codes, which can correct up to
⌊ ⌋ = ⌊ ⌋− −d n k1

2 2
errors. If the multiplier vector is given, then this algorithm can also be used to decode general-

ized Reed–Solomon codes.
Let C be a linear code of length n, dimension k , and minimum distance d, defined over the finite field �q

m.
The subfield subcode or restricted code of C is

��∣ = ∩C C .q

n

q

We extend the trace map � �→Tr: q q
m to vectors and matrices entry-wise. We define the trace code of the linear

�≤C
q

n
m by

( ) { ( )∣ }= ∈x xC CTr Tr .

Clearly, ( )CTr is an �q-linear code of length n. Let x x,…, k1 be a basis of C , and let β β,…,
m1
be a basis of �q

m over
�q. Then, the vectors ( )xβTr

i j , ( ≤ ≤i m1 , ≤ ≤j k1 ) span the trace code ( )CTr . This implies the obvious upper
bound ( ( )) ≤C kmdim Tr for the dimension of the trace code. We say that C has maximum trace dimension, if

� �( ( )) ( )=C m Cdim Tr dim .
q q

m

According to Delsarte’s theorem [22],

�( ( )) ( )∣=⊥ ⊥C CTr ,
q

which shows that subfield subcodes and trace codes are basically dual objects. This yields the obvious lower
bound

�( ∣ ) ( )≥ − −C n m n kdim
q

for the dimension of the subfield subcode. The minimum distance of �∣C
q
is at least the minimum distance of C .

Moreover, subfield subcodes inherit the decoding algorithms of their parent code.
An alternant code is defined as the subfield subcode of a generalized Reed–Solomon code

�� ( ) ( ( ) )∣= ⊥
x a x aGRS, , ,k k q

or equivalently, as the dual code of the trace code of a generalized Reed–Solomon code

� ( ) ( ( ))= ⊥
x a x aGRS, Tr , .k k

The integer k is referred to as the degree of the alternant code, andm as its extension degree. The vector x is the
support, and the vector a is themultiplier of the alternant code. In the sequel, even without explicitly saying it,
we assume that the entries of the support vector are distinct, and the entries of the multiplier vector are
different from zero.
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The obvious lower bound for the dimension of the alternant code is

�( ( )) ≥ −x a n mkdim , .k

Given the support and the multiplier, the Berlekamp–Massey algorithm can correct up to ⎢⎣ ⎥⎦
k

2
errors for the

alternant code � ( )x a,k .
Recall that the Schur product of the vectors ( ) ( )= =a a b ba b, …, , , …,n n1 1 is defined by

( )⋆ = a b a ba b , …, .n n1 1

3 The maximum trace dimension property

In this section, we prove a collection of properties of codes having the maximum trace dimension. At the end of
the section, we present a class of examples which shows that Theorem 1 is close to being sharp asymptotically.

In the sequel, C denotes an �q
m-linear code of length n, dimension k , and minimum distance d.

Definition 4. Define the support of C as

( ) { { }∣ }= ∈ ∃ ∈ ≠xC i n C xsupp 1, 2, …, : 0 .i (7)

For an integer i, define

( ) ∣ ( )∣

( )

=
≤
=

d C Dmin supp .i
D C

D idim

(8)

Note that ( ) =d C d1 is the minimum distance. Clearly, ( ) ( )=C Csupp supp a and ( ) ( )=d C d Cai i for each
multiplier vector a. Furthermore, ( ) ∣ ( )∣≤C Cdim supp .

The proofs of the following lemmas are straightforward consequences of the definitions.

Lemma 5. The following are equivalent:
(i) The code C has maximum trace dimension.
(ii) All �q

m-linear subspaces of C have maximum trace dimension.

(iii) For all { }∈ ⧹x 0C , ( ) ≠x 0Tr .
(iv) { }∩ = 0C K , where K is the kernel of the trace map � �→Tr:

q

n
q

n
m .

Lemma 6. Assume that for some multiplier vectora,Ca has maximum trace dimension. Then, we have ( ) ≥d C imi

for all ≤ ≤i k1 .

Proof. If ≤D C , ( ) =D idim such that ∣ ( )∣ <D imsupp , then

( ( )) ( ) ( )⊆ =D D Dsupp Tr supp suppa a

and

( ( )) ∣ ( ( ))∣ ∣ ( ( ))∣ ( ) ( )≤ = < = =D D D im m D m Ddim Tr supp Tr supp Tr dim dim .a a a

Therefore, Da and Ca have no maximum trace dimension. □

We conjecture that the converse of Lemma 6 holds as well.
As the following examples show, the proportion of multiplier vectors producing a maximum trace dimen-

sion code is related to the probability of a random matrix to have full rank. Let A be an ×n n matrix whose
entries are chosen from �q uniformly at random. The probability for A to have maximum rank n is

( ) ∏⎜ ⎟= ⎛
⎝
− ⎞

⎠=
S n q

q
, 1

1
.

i

n

i1

1

(9)
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As → ∞n , ( )S n q,1 converges very fast to the value

( ) ∏⎜ ⎟= ⎛
⎝
− ⎞

⎠=

∞

S q
q

1
1

.

i

i

1

(10)

Let V be an �q-space of dimension n, and take n nonzero vectors uniformly at random from { }⧹V 0 . The
probability for the vectors to be linearly independent is

( ) ∏ ∏⎜ ⎟⎜ ⎟=
−
−

= ⎛
⎝
− ⎞

⎠
⎛
⎝
+

−
⎞
⎠=

−

=
S n q

q q

q q q
,

1
1

1
1

1

1
.

j

n n j

n

i

n

i n

n

2

0

1

1

(11)

As the last factor converges to 1 very fast, ( ) ( )→S n q S q,2 very fast (Figures 1 and 2). In fact, if >n 20, then ( )S q

is a good practical approximation for ( )S n q,1 and ( )S n q,2 .

Lemma 7. Let C be the m-fold repetition code over �q
m. The probability that Ca has maximum trace dimension for

a random multiplier vector a is ( )S m q,2 . In practice, if ≥m 20, then ( )S q is a good approximation for this
probability.

Let Ci be linear [ ]n k,i i q
m-codes, =i 1, 2. Their sum +C C1 2 is a linear [ ]+ +n n k k, q1 2 1 2

m-code whose code-
words are ( )x x,1 2 with ∈x Ci i. The minimum distance of the sum is ( ) ( ( ) ( ))+ =d C C d C d Cmin ,1 2 1 2 .

Lemma 8. Let ′C C, be �q
m-linear codes, and = + ′D C C their sum. Then, = ′P P PD C C , where PC is as defined in

Theorem 1.

Let C be the k -fold sum of the m-fold repetition code. Clearly, C has length =n mk , dimension k , and
minimum distance =d m. The last two lemmas imply that the proportion PC of multiplier vectors with
maximum trace dimension is approximately ( )≈P S qC

k , which tends to zero if → ∞k . In particular, we cannot
expect PC to be close to 1 just because k andm are large. However, >P 0C , so there is a multiplier a such that Ca

has the maximum trace dimension. On the other hand, ( ) =d C imi for all ≤ ≤i k1 , showing that Lemma 6 is
sharp.

Clearly, if <n mk , then =P 0C . In Theorem 1, we see that ( )≥ +n m h k implies >P 0C . The question
whether PC is zero or not is open for the interval [ ( ) ]+ −mk m h k, 1 . The following class of examples has
Singleton defect ( )≈h klog

q
, hence the interval is small. Still, the condition =n mk is not enough to ensure

>P 0C . In other words, Theorem 1 is close to being sharp asymptotically.

Proposition 9. For all prime power q and integers >m 2, ≤ ≤ ∕k q m2 m , there exists an �q
m-linear code

( )′ = ′C C q m k, , of length =n mk , dimension k, and Singleton bound =h m, such that =′P 0C .

Figure 1: =q 2.
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Proof. Let ( )′ = − −n m k 1 1 and let x x,…, n1 be distinct elements of �q
m such that ≠′+x x,…, 0n n1 . Let

( )′ = ′C C q m k, , be the code with generator matrix

′ =

⎡

⎣

⎢
⎢
⎢
⎢

⋯ ⋯
⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮
⋯ ⋯
⋯ ⋯

⎤

⎦

⎥
⎥
⎥
⎥

′

− −
′
−

− −
′
−

′+
− −

G

x x x

x x x

x x x x x

1 1 1 0 0

0 0

0 0

.

n

k k

n

k

k k

n

k

n

k

n

k

1 2

1

2

2

2 2

1

1

2

1 1

1

1 1

Let ′D be the subcode generated by the first −k 1 rows. As − ≤ ′k n1 , we have ( )′ = −D kdim 1. Moreover, ′D

has support { }′n1, 2, …, , hence ∣ ( )∣ ( ) ( )′ = ′ = − − < ′D n m k m Dsupp 1 1 dim . Lemma 6 implies that =′P 0C .
Now we compute the minimum distance of ′C . Take any linear combination c of the rows of ′G . Write
( )′ = ′c c c c, , …, n1 2 and ( )′ = ′x x x x, , …, n1 2 . If the last row has zero coefficient, then the last +m 1 coordinates are

0 and ( )′ ∈ ′−c xRSk 1 . So

( ) ( ) ( )( )≥ ′ − − + = − −c n k m kwt 1 1 1 1 ,

and equality occurs for some c. If the last row has nonzero coefficient, then the last +m 1 coordinates of c are
nonzero and ( )′ ∈ ′c xRSk . So

( ) ( )( )≥ ′ − + + + > − −c n k m m kwt 1 1 1 1 .

Thus, the minimal distance of ( )′C m k, is indeed ( )( )= − −d m k1 1 and =h m. □

4 The dimension of random alternant codes

In numerical experiments, one observes that the dimension of random alternant codes typically attains the
obvious lower bound [13]. In this short section, we derive a proof for this observation from Theorem 1. We
show that if the length of the random alternant code exceeds mk , then the dimension is −n mk with high
probability. In particular, this is the case for most random alternant codes of full support.

Definition 10. Given the field of definition �q, the degree k , and the extension degree m, the random alternant
code is a code � ( )x a,k , where the support x and the multiplier a are chosen uniformly at random.

Proposition 11. Let q be a prime power and m n k, , be positive integers such that ≤ ≤mk n qm. The random
alternant code of length n, degree k, extension degree m over �q has dimension −n mk with probability at least

( )
−

−
−

−

−
q

q q
1

1

1
.

mk

n mk

Proof. The dual of the alternant code is ( ( ))x aGRSTr ,k . Since ( )x aGRS ,k is MDS of dimension k , Theorem 3
implies the proposition. □

Figure 2: =q 3.
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5 Proof of Theorems 1 and 2

In this section, we use the notation of Theorem 1. We describe the average cardinality of ( )⊥CTr a , �( )∈a *
q

n
m ,

with the help of the weight distribution of the dual code ⊥C . Let us introduce the following notation:

Definition 12. Let �→Cwt : denote the Hamming weight and

∣{ ∣ ( ) }∣= ∈ =⊥
cB C c wwtw (12)

for ≤ ≤w n0 the weight distribution of C . Then, let

( ) ∑ ⎜ ⎟= ⎛
⎝

−
−

⎞
⎠=

λ C B
q

q

1

1
.

w

n

w m

w

0

(13)

For ≤ ≤ ≤r v n0 , let

( ) ∣{ }∣= ×N v r k v G r, submatrices of with rank ,G (14)

where �∈ ×
G

q

k n
m is a generator matrix of C .

Proposition 13. We have the following average form:

�
�

( )
∣( ) ∣

( )

( ( ))∑=
∈

−λ C q
1

*
.

aq

n

n Cdim Tr

*

a

m

q
m

n

(15)

Proof. For �( )∈a *
q

n
m , we write ( )=− −

≤ ≤a aj j n
1 1

1 . We double-count the set

� �{( )∣ ( ) }= ⋆ ∈ ∈ ∈− ⊥
a c a c a cH C, , * , .q

n

q

n1
m (16)

For any fixed a, ( ) ∈a c H, if and only if �( )⋆ ∈ ∩− ⊥ −a c C
a q

n1
1 . By Delsarte’s theorem [22, Theorem 2], we have

� �( ) ( ) ( ( ))∩ = ∩ =⊥ ⊥ ⊥−C C CTr .
a a aq

n

q

n
1 (17)

Hence, �∣( ) ∣ ( ( ))∩ =⊥ −−C q
a q

n n Cdim Tr a1 . This proves

�

∣ ∣
( )

( ( ))∑=
∈

−H q .

a

n Cdim Tr

*

a

q
m

n
(18)

Let us now fix ∈ ⊥
c C . For each j , we have

� �
�

�
{ ∣ }∈ ∈ =

⎧
⎨
⎩

=

≠
−

a a c

c

c c
*

* , if 0;

*, if 0.
j q j j q

q j

j q j

1
m

m

(19)

Thus,

� �∣{ ( ) ∣ }∣ ( ) ( )( ) ( )∈ ⋆ ∈ = − −− −
a a c q q* 1 1 ,c c

q

n
q

n m n1 wt wt
m (20)

summing over all ∈ ⊥
c C , we obtain ∣ ∣ ( ) ( )= −H q λ C1m n . □

As ( ( )) ≤C kmdim Tr a , each summand on the right-hand side of (15) is at least −qn km. This gives a lower
bound

( ) ≥ −λ C q .n km (21)

The upper bounds of ( )λ C can be used to find lower bounds on the proportion PC of multiplier vectors which
produce maximum trace dimension codes and on the proportion ′PC of multiplier vectors which produce trace
codes with dimension at least −n mh.

Maximum trace dimension  9



Proposition 14.
(1) Assume ( ) ≤ +−λ C q En km , where E is nonnegative. Then,

( )
≥ −

− −P
E

q q
1

1
.C n km

(22)

(2) Assume ( ) ≤ − ′+λ C q Emh 1 . Then,

′ ≥
′
−+P

E

q 1
.C mh 1

(23)

Proof. If Ca does not have maximum trace dimension, then the corresponding summand in (15) is at
least − +qn km 1. Therefore, ( ) ( )+ − ≤− − +P q P q λ C1C

n km
C

n km 1 . The first claim follows from a straightforward
computation.

In a similar manner, if ( ( )) < −C n mhdim Tr a , then the corresponding summand in (15) is at least +qmh 1;
otherwise, it is at least 1. Therefore, ( ) ( )′ + − ′ ≤+P P q λ C1C C

mh 1 , hence the second claim. □

Proposition 15.

( ) ( ) ( )∑ ∑⎜ ⎟ ⎜ ⎟= ⎛
⎝

−
−

⎞
⎠

⎛
⎝

−
−

⎞
⎠= =

−λ C
q q

q

q

q q
N v r q

1

1
, ,

m

m

n

v

n

m

v

r

v

G
m v r

0 0

(24)

where ( )N v r,G is as defined in (14).

Proof. Applying Proposition 3 of [14] for ⊥C over �q
m, we obtain

( ) ( )∑ ∑⎛
⎝
−
−

⎞
⎠ =

= =

−n s

v s
B N v r q, .

s

v

s

r

v

G
m v r

0 0

(25)

Multiplying with xv and summing over ≤ ≤v n0 , we obtain

( ) ( )∑ ∑ ∑ ∑⎛
⎝
−
−

⎞
⎠ =

= = = =

−x
n s

v s
B x N v r q, .

v

n

v

s

v

s

v

n

v

r

v

G
m v r

0 0 0 0

(26)

Changing the order of the summation and using the binomial theorem, the left hand side is

( )∑ ∑ ∑⎛
⎝
−
−

⎞
⎠ = +

= =

−

=

−B x
n s

v s
x B x x1 .

s

n

s
s

v s

n

v s

s

n

s
s n s

0 0

(27)

Let us put = −
−x

q

q q

1

m , thus + = −
−x1

q

q q

1m

m . Then, by the definition,

( )
( ) ( )

( )
( )∑ ∑⎜ ⎟=

− −
−

= ⎛
⎝

−
−

⎞
⎠

+
=

−

=

−λ C B
q q

q

q q

q
B x x

1 1

1 1
1 .

s

n

s

s m n s

m n

m

m

n

s

n

s
s n s

0 0

(28)

By (26), we have

( ) ( ) ( )∑ ∑⎜ ⎟= ⎛
⎝

−
−

⎞
⎠ = =

−λ C
q q

q
x N v r q

1
, ,

m

m

n

v

n

v

r

v

G
m v r

0 0

(29)

hence the proposition. □

Proof of Theorems 1 and 2. Applying Lemma 4 in [14] for ⊥C , all ( )× +k k h submatrix of G has rank k . It
follows that the rank of all ×k v submatrix equals k if ≥ +v k h and is at least −v h if < +v k h.

By using this observation, we can bound the inner sum on the right hand side of the previous proposition:
– For ≥ +v k h, we have ( ) =N v r, 0G for <r k and
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( ) ( ) ( )∑ = ⎛⎝
⎞
⎠

=

− −N v r q
n

v
q, ,

r

v

G
m v r m v k

0

(30)

– for < +v k h, we have ( ) =N v r, 0G for < −r v h and

( ) ( )∑ ≤ ⎛⎝
⎞
⎠

=

−N v r q
n

v
q, .

r

v

G
m v r mh

0

(31)

In view of (30), (31), and = −
−x

q

q q

1

m , we obtain

( )

( ) ( )

( ) ( )

(( ) ( )( ) )

( )

( )

( )

( )

∑ ∑

∑ ∑

∑

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

≤ ⎛
⎝

−
−

⎞
⎠
⎛
⎝

⎛
⎝
⎞
⎠ + ⎛

⎝
⎞
⎠

⎞
⎠

= ⎛
⎝

−
−

⎞
⎠
⎛
⎝

⎛
⎝
⎞
⎠ + ⎛

⎝
⎞
⎠ −

⎞
⎠

≤ ⎛
⎝

−
−

⎞
⎠
⎛
⎝

+ + − ⎛
⎝
⎞
⎠
⎞
⎠

≤ ⎛
⎝

−
−

⎞
⎠

+ + − +

=

+ −

= +

−

= =

+ −
+

+

=

+

+

λ C
q q

q

n

v
x q

n

v
x q

q

q q

q

n

v
xq

n

v
x q q

q

q q

q
xq q

n

v
x

q

q q

q
xq q x

1

1

1

1

1
1 1

1

1
1 1 1 .

m

m

n

v

k h

v mh

v k h

n

v m v k

mk

m

m

n

v

n

m v

v

k h

v m h k mv

mk

m

m

n

m n m h k

v

k h

v

mk

m

m

n

m n m h k n

0

1

0 0

1

0

As + = −
−x1

q

q q

1m

m and + = ⋅ −
−xq q1 m

q

q q

1m

m , we obtain

( ) ( )≤ + −− −λ C q q q .n mk mh mk (32)

Set = − −E q qmh mk and

( )′ = − + −+ − −E q q q q .mh n mk mh mk1

By using Proposition 14, we obtain the lower bounds on PC and ′PC as in the statements. If ( )≤ +n m k h , then
( )′ ≥ − + >−E q q q2 0mh mk , thus ′ >P 0C . □

6 Proof of Theorem 3

AG codes are linear error-correcting codes constructed from algebraic curves over finite fields, generalizing
the Reed–Solomon code concept. They are defined by evaluating functions or by using residues of differentials.
Their parameters can be derived from well-known AG theorems. Our notation and terminology on algebraic
plane curves over finite fields, their function fields, divisors, and Riemann–Roch spaces are conventional (see,
for example, [15]).

Let � be an algebraic curve, that is, an affine or projective variety of dimension one, which is absolutely
irreducible and non-singular and whose defining equations are (homogeneous) polynomials with coefficients
in �q. Let �( )=g g be the genus of �. � �( )q denotes the function field of �. A divisor D of � is a formal sum
= +⋯+D n P n Pk k1 1 , where �∈n n,…, k1 and P P,…, k1 are places of � �( )q . If ≥n n,…, 0k1 , then ≽D 0. If D E,

are two divisors and − ≽D E 0, then ≽D E . In the case of a nonzero function f of the function field � �( )q , and
a place P , ( )v fP stands for the order of f at P . If ( ) >v f 0P , then P is a zero of f , while if ( ) <v f 0P , then P is a
pole of f with multiplicity ( )−v fP . The principal divisor of a nonzero function f is ( ) ( )= ∑f v f PDiv P P .

For a divisor D, the associated Riemann–Roch spaceL( )D is the vector space

L � �( ) { ( ) { }∣ ( ) } { }= ∈ ⧹ ≽ − ∪D f f D0 Div 0 .q

The dimension ℓ( )D ofL( )D is given by the Riemann–Roch Theorem [15, Theorem 1.1.15]:

ℓ( ) ℓ( )= − + − +D W D D gdeg 1,

Maximum trace dimension  11



whereW is a canonical divisor. We denote the set of differentials on � byΩ. The differential space of the divisor
D is

( ) { ∣ ( ) } { }= ∈ ≽ ∪D dh dh AΩ Ω Div 0 .

In the following, P P P, ,…, n1 2 are pairwise distinct places on �, and D is the divisor = +⋯+D P Pn1 . Let G be
another divisor with support disjoint from D. We define two types of AG codes, the functional and the
differential codes, respectively:

L( ) {( ( ) ( ))∣ ( )}

( ) {( ( ) ( ))∣ ( )}

= ∈
= ∈ −

C D G f P f P f G

C D G ω ω ω G D

, , …, ,

, res , …,res Ω .

L n

P P

1

Ω n1

These codes are dual to each other, and ( ) ( )= + −C D G C D K D G, ,LΩ for a well-chosen canonical divisor K . The
Riemann–Roch theorem enables us to estimate the dimension and the minimum distance of AG codes:

( ( ))

( ) ( )

( ) ( )

( ) ( )

⎪

⎪

⎧
⎨
⎩

≥ − + ≤ ≤ −
= − + − ≤ ≤
≤ − + ≤ ≤ + −

C D G

G g G g

G g g G n

G g n G n g

dim ,

deg 1 0 deg 2 2,

deg 1 2 2 deg ,

deg 1 deg 2 2.

L

The minimum distance of a functional code is at least its designed minimum distance

( )= −δ n Gdeg .L

Proof of Theorem 3. Let k be the dimension, and h be the Singleton defect of the AG code ( )=C C D G,L . Then
( )+ = + − ≤ + − = +h k n d n δ G1 1 deg 1L . As the right hand side of (1) is monotone decreasing in +h k , the

formula (4) follows. □

7 Conclusion

We gave a lower bound for the probability that the dimension of the trace code of a linear code with a random
multiplier vector attains the obvious upper bound. This is exactly the type of question that requires solid
mathematical understanding for McEliece-type cryptographic protocols. Our formula only uses the size of the
underlying field, the degree of the field extension, and the three main parameters of the code: length, dimen-
sion, and minimum distance. The result provided a concise formula for the probability that an AG code has
maximum trace dimension. We also proved by mathematical means that full support random alternant codes
have dimension −n mk with high probability. These pieces of information are useful to understand better the
complexity of Monte Carlo algorithms in the key generation process of code-based cryptosystems. This pro-
vides insights into the practicality and performance of the cryptosystem in real-world applications, in parti-
cular in resource limited devices like sensor nodes or smart cards.

Our approach works for the probabilistic model of random multiplier vectors. Random Goppa codes have
a different probability paradigm. Therefore, our results do not solve the dimension problem for random
Goppa codes. This needs further research, but we are optimistic that our method can be extended.
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