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Abstract
Regulation of antibiotic use in aquaculture calls for the emergence of more sustainable alternative treatments. Tea polyphe-
nols (GTE), particularly epigallocatechin gallate (EGCG), have various biological activities. However, tea polyphenols are 
susceptible to degradation. In this work, EGCG and GTE were encapsulated in zein nanoparticles (ZNP) stabilized with 
alginate (ALG) and chitosan (CS) to reduce the degradation effect. ALG-coated ZNP and ALG/CS-coated ZNP encapsu-
lating EGCG or GTE were obtained with a hydrodynamic size of less than 300 nm, an absolute ζ-potential value >30 mV, 
and an encapsulation efficiency greater than 75%. The antioxidant capacity of the encapsulated substances, although lower 
than that of the free ones, maintained high levels. On the other hand, the evaluation of antimicrobial activity showed greater 
efficiency in terms of growth inhibition for ALG/CS-ZNP formulations, with average overall values of around 60%, reaching 
an inhibition of more than 90% for Photobacterium damselae. These results support encapsulation as a good strategy for tea 
polyphenols, as it allows maintaining significant levels of antioxidant activity and increasing the potential for antimicrobial 
activity, in addition to increasing protection against sources of degradation.
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Introduction

Aquaculture reached in 2020 46% of the total fish pro-
duction industry. Since the1990s, aquaculture has grown 
300%, reaching a production of 87.5 million tons (FAO 
2022). However, this fast growth of the aquaculture indus-
try brought several challenges, such as the elimination of 

pathogens (Pérez-Sanchez et  al. 2018), feed utilization 
(Encarnação 2016), contamination (Hai et al. 2020), and 
sustainability (Boyd et al. 2020).

Infectious diseases in aquatic animals cause a loss of 
6 billion US dollars per year (Stentiford et al. 2017); this 
amounts to 50% of the aquaculture industry located in devel-
oping countries (Assefa and Abunna 2018). Diseases affect 
growth performance, increasing mortality and lowering 
the marketability of affected animals, which is exacerbated 
by saturated and stressful environments such as aquacul-
ture productions (Lafferty et al. 2015). Bacterial infections 
in aquatic animals are mainly caused by Gram-negative 
bacteria such as Aeromonas spp., Vibrio spp., and Pseu-
domonas spp. and Gram-positive bacteria Streptococcus 
spp. and Staphylococcus spp. (Preena et al. 2020). Infec-
tious diseases not only affect aquaculture production but 
increase the spread of pathogens to wild animals, causing 
an impact in the capture industry and the aquatic ecosystem 
(Diana 2009).

Antibiotics have been one of the main chemicals used 
in aquaculture to combat infectious diseases, although in 
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recent years their use has decreased due to the increase 
in antibiotic-resistant bacteria and the regulation of their 
use (Regulation (EU) 2019/6), thus limiting the number of 
antibiotics allowed and the cases where they can be applied 
(Lulijwa et al. 2020). New strategies to combat or prevent 
infections have emerged in recent years, such as vaccines 
(Mondal and Thomas 2022) and feed supplemented immu-
nostimulants (Wang, Sun, Liu, and Xue 2017), nanomateri-
als (Okeke et al. 2022).

Polyphenols are secondary metabolites produced as a 
response to stress by plants. More than 10,000 polyphenols 
can be found in nature and can be classified by their struc-
ture as flavonoids (catechins, quercetin, curcumin) and non-
flavonoids (gallic acid, cinnamic acid, resveratrol). Polyphe-
nols have a wide range of biological activities, and several 
studies showed their antibacterial, antioxidant, growth pro-
moter, anti-inflammatory, immunostimulant, and antihyper-
glycemic activities in aquatic animals (Ahmadi et al. 2022; 
Bouarab-Chibane et  al.  2019; Imperatore et  al.  2023; 
Taguri et al. 2006; Tinh et al. 2021; Yang et al. 2021; Yuan 
et al. 2021).

Tea polyphenols are mainly composed of flavonoids, 
where catechins represent to 80-90% of total flavonoids 
in tea leaves (Camellia sinensis). Epigallocatechin gallate 
(EGCG) is the main catechin in tea leaves, representing 
50-80% of total catechins and the most biologically active 
compound among other polyphenols found in tea (Kim 
et al. 2014; Singh et al. 2011; Yan et al. 2020). Inclusion 
of tea catechins in aquaculture showed positive results in 
growth performance, antibacterial, immunostimulant, anti-
viral, and antioxidant activities, among others (Ji et al. 2018; 
Li et al. 2022; Qian et al. 2021; Thawonsuwan et al. 2010; 
Wang, Sun, and Zhu  2017; Zhang et  al.  2020; Zhang 
et al. 2021). However, tea polyphenols have disadvantages, 
as they exhibit low stability in biological media; they are 
easily degraded by physiologically relevant temperature, 
oxygen concentration, and metal ion content at alkaline and 
neutral pH as well (Jin et al. 2022a; Krupkova et al. 2016; 
Xu et al. 2019). Therefore, oral administration of tea poly-
phenols leads to low absorption and a short half-life (Dang 
et al. 2013). To overcome these disadvantages, nanoencapsu-
lation has become a strategy to deliver these labile molecules 
(Dang et al. 2015; Di Santo et al. 2021; Rambaran 2020).

Nanotechnology has different applications in aquacul-
ture, such as the delivery of nutraceutical molecules and 
vaccines, water purification, pathogen detection, antimi-
crobial and antiviral activity, and preservation of products 
(Fajardo et al. 2022; Shah and Mraz 2020). Biopolymer 
nanocarriers have gained relevance for the delivery of 
active compounds due to their low toxicity and biodeg-
radability (Faridi Esfanjani and Jafari 2016). Zein is a 
hydrophobic protein found in corn; its low water solu-
bility allows the formation of colloidal nanoparticles in 

water (Pascoli et al. 2018) and has been widely used for 
the encapsulation of hydrophilic and hydrophobic active 
compounds (Jin et al. 2022b; Nunes et al. 2020; Zhang 
et al. 2014; Zheng et al. 2022). However, dispersions of 
zein nanoparticles exhibit low colloidal stability, a ten-
dency toward aggregation, and precipitation at pH 5–7 
(Yuan et al. 2022). Coating zein nanoparticles with biopol-
ymers improves their stability and the presence of differ-
ent functional groups facilitates the interaction between 
nanoparticles and bioactive molecules, thus increasing 
encapsulation (Yuan et al. 2022). Among the biopolymers 
with the ability to improve the stability of zein nanopar-
ticles, two polymers that occur naturally in the marine 
environment stand out: alginate and chitosan (Carrasco-
Sandoval et al. 2021; Jiang et al. 2021; Khan et al. 2019; 
Loureiro et al. 2022; Pauluk et al. 2019; Wu et al. 2023). 
These polymers are low in toxicity, biodegradable, and 
biocompatible (Abdel-Ghany and Salem 2020; Lee and 
Mooney, 2012). Alginate and chitosan have been used 
separately or together for the elaboration of encapsulation 
matrices for the delivery of bioactive substances in aqua-
culture (Masoomi Dezfooli et al. 2019), growth promot-
ers and immunostimulants (Abdel-Ghany and Salem 2020; 
Neamat-Allah et al. 2019; van Doan et al. 2016; Yudiati 
et al. 2019).

In this study, we have carried out the encapsulation of 
green tea extract and EGCG in zein nanoparticles stabilized 
by a layer-by-layer technique with alginate and chitosan. 
These nanomaterials were characterized and evaluated for 
their potential to develop activities of interest in aquaculture, 
such as antioxidant capacity compared to free compounds in 
solution, and antimicrobial activity against Gram-negative 
and Gram-positive pathogens of importance in aquaculture.

Materials and methods

Compounds and reactants

Corn zein, low-viscosity sodium alginate, and 1,1-diphenyl-
2-picrylhydrazyl free radical (DPPH·) were obtained from 
Tokyo Chemical Industries (Tokyo, Japan). Chitosan of 
low molecular weight (135 kDa) was obtained from Sigma-
Aldrich (St. Louis, MO, USA). Epigallocatechin gallate 98% 
(EGCG) was purchased from Biosynth (Staad, Switzerland). 
Green tea extract (GTE) with a content of 44% EGCG was 
obtained from Herbadirekt (Wetzlar, Germany). Potassium 
persulfate 99% and 2,2′-azino-bis-(3-ethylbenzthiazoline-
6-sulfonic acid) diammonium salt 98% (ABTS·) were pur-
chased from Glentham Life Science (Corsham, UK). Glacial 
acetic acid, absolute ethanol, methanol, and culture medium 
were obtained from Labbox (Barcelona, Spain).
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Nanoparticle synthesis

Zein nanoparticle (ZNP) preparation has been carried out 
using the antisolvent precipitation method (Fig. 1) based on 
previous studies with some modifications (Jin et al. 2022b; 
Khan et al. 2019). Briefly, ZNPs were prepared by adding 4 
mL of ethanolic (80:20) zein solution (20 mg/mL) into 16 mL 
of distilled water and stirred magnetically for 30 min. Ethanol 
was removed by rotatory evaporator at 35 °C for 20 min and 
the loss of volume was compensated with distilled water.

The coating process was carried out by applying the 
layer-by-layer method based on electrostatic deposition. 
The ZNP dispersion was added to an alginate solution of 
the same volume prepared at different concentrations (0.2, 
0.3, 0.4, and 0.5 mg/mL) and stirred magnetically for 30 
min. Alginate (ALG)-coated zein nanoparticles (ALG-ZNP) 
were mixed with the same volume of a chitosan (CS) acetic 
acid solution (1%) at different concentrations (0.2, 0.3, and 
0.4 mg/mL) and stirred magnetically for 30 min therefore 
obtaining alginate/chitosan-coated ZNPs (ALG/CS-ZNP). 
Polyphenol loading was carried out by adding EGCG or 
GTE (2 mg/mL) to the starting ethanolic solution of zein, 
leading to ALG-ZNP-E and ALG/CS-ZNP-E or ALG-ZNP-
T and ALG/CS-ZNP-T particles, respectively, depending on 
whether the synthesis was concluded after the ALG coating 
step or the formation of the CS shell.

Characterization of nanoparticles

Encapsulation efficiency

Encapsulation efficiency (EE) was obtained based on the 
method described by Pantoja-Vale et al. (2022). The nano-
particle dispersions were centrifuged at 18,000 g for 20 min 
at 4 °C (Orto Alresa Biocen 22r, Spain). The polyphenol 

content of the supernatant was quantified with spectropho-
tometer (Power Wavex, USA) at 274 nm for both EGCG 
and green tea extract by applying their calibration curves, 
y=12.013x + 0.1275, R2=0.9989 and y=9.246x+0.0903, 
R2=0.9999 respectively. The encapsulation efficiency was 
calculated using the following equation:

where CSup is the concentration of EGCG or GTE in the super-
natant and CR is the theoretical concentration of EGCG or GTE.

Hydrodynamic size, polydispersity index, and ζ‑potential

Average hydrodynamic diameter, polydispersity index (PDI), 
and ζ-potential of nanoparticles were evaluated using a Zeta-
sizer-Nano ZS instrument (Malvern Instruments, Malvern, 
UK). Nanoparticle dispersions were diluted (1:10) prior to 
analysis and measured in a disposable folded capillary zeta 
cell (Malvern Instruments, Malvern, UK).

Scanning electron microscopy (SEM)

SEM images were obtained with a HITACHI S-3500N 
instrument with an acceleration voltage of 3 kV. The sam-
ples were coated with gold prior to measurement.

X‑ray diffraction (XRD)

Nanoparticle dispersions were lyophilized with a Telstar 
Lyoquest-55 instrument for 48 h at −50 °C. XRD measure-
ments between 5 and 80 (2θ°) were performed with a D8 
Advance Diffractometer (Bruker, Germany) at a current of 
50 kV and 50 mA.

(1)EE% =

(

1 −
CSup

CR

)

∗ 100

Fig. 1   Experimental procedure for zein nanoparticle synthesis and coating with alginate and chitosan
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Fourier transform infrared (FTIR) spectroscopy

FTIR measurements were performed with a Bruker Vertex 70 
instrument (32 scans, 4 cm−1 resolution) with the KBr pellet 
technique and compressed to tablets. The transmittance of the 
4000–400 cm−1 wavenumber region was recorded.

Antibacterial assay

The lyophiles of Vibrio anguillarum (CECT 522), Vibrio 
alginolyticus (CECT 436), Photobacterium damselae (CECT 
5122), Pseudomonas anguilliseptica (CECT 899), and Strep-
tococcus iniae (CECT 7363) were obtained from the Span-
ish Type Culture Collection of the University of Valencia 
(Valencia, Spain). Lyophiles were recovered and maintained 
following the instruction provided by CECT. The inocula of 
all bacteria were grown in TSB 1% NaCl at 37 °C for S. iniae, 
30 °C for V. anguillarum and V. alginolyticus, and 25 °C for 
P. anguilliseptica and P. damselae. The concentration of each 
inoculum was adjusted to 0.5 OD at 600 nm. The assay was 
prepared by adding 0.5 mL of standardized inoculum and 0.5 
mL of freshly prepared nanoparticle dispersion into 4 mL of 
TSB 1% NaCl in a test tube. Oxytetracycline (10 μg/mL) was 
used as a positive control. Free EGCG and GTE (1 mg/mL) 
were also tested. Blank tubes were prepared adding 0.5 mL of 
nanoparticle dispersions into 4.5 mL of culture medium. Three 
tubes were prepared for each sample.

After 48 h of incubation in a thermostatized agitated water 
bath, sample absorbance was recorded at 600 nm. The calcu-
lation of inhibitory rate (IR%) was conducted following the 
next equation:

where AS is the absorbance of the inoculum with nanopar-
ticle dispersion or active compound, ABS is the absorbance 
of its respective blank, I is the absorbance of the inoculum, 
and IB is the absorbance of the culture medium.

(2)IR (%) =

(

I − I
B

)

−
(

A
S
− A

BS

)

(

I − I
B

) ∗ 100

Antioxidant activity

To examine the antioxidant activity of prepared nanoparti-
cles, DPPH and ABTS tests have been carried out follow-
ing the methods described by Xiao et al. (2020). The data 
obtained from this assay, as well as those corresponding to 
the antimicrobial activity, can be consulted in the repository 
of the University of Almeria, through the link http://​hdl.​
handle.​net/​10835/​14882.

Statistical analyses

The analysis was performed in triplicate using the ANOVA 
one-way test; the results are expressed as mean ± SE. Subse-
quently, a means comparison (Tukey’s HSD test) was carried 
out; the significance level was established as P<0.05. All 
calculations were performed using IBM SPSS Statistics 28 
software (2022).

Results and discussion

Characterization of nanoparticles

Particle size, polydispersity index, and ζ‑potential

Nanoparticle dispersions have been characterized by their 
hydrodynamic size, polydispersity index, and ζ-potential. 
Table 1 shows the effects on ZNP when they were coated 
with alginate at different concentrations. ZNP with no coat-
ing were smaller than ALG-ZNP at any concentration of 
alginate used.

The hydrodynamic size of ALG-ZNP increased as the 
concentration of ALG in solution increased. Similar results 
were obtained for alginate/zein nanoparticles by Carrasco-
Sandoval et al. (2021). A possible explanation is that the 
size increased as more layers of ALG were deposited on the 
surface of the nanoparticle (Jiang et al. 2021). PDI shows a 
trend similar to that shown for particle size, that is, increased 
ALG concentration increased PDI, which means a reduction 
in homogeneity of the dispersion (Raval et al. 2019).

Table 1   Size, polydispersity 
index, and ζ-potential of zein 
nanoparticles coated with 
different alginate concentrations 
(ALG-ZNP).

Means (± SE) of three individual measurements. The same letter within a row is not significantly different 
from each other (P < 0.05)
PDI polydispersity index, ZP ζ-potential

ALG (mg/mL) Hydrodynamic size (nm) PDI ZP (mV)

0 113.90 ± 1.37a 0.161 ± 0.003 +20.63 ± 0.86a

0.2 138.80 ± 1.47bc 0.172 ± 0.013a −11.27 ± 0.40b

0.3 142.06 ± 1.22cd 0.182 ± 0.014ab −33.63 ± 0.83c

0.4 145.97 ± 1.95b 0.195 ± 0.004a −42.57 ± 0.83d

0.5 152.80 ± 3.05d 0.234 ± 0.004bc −53.90 ± 0.44e

http://hdl.handle.net/10835/14882
http://hdl.handle.net/10835/14882
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The ζ-potential of ZNP changed from positive to nega-
tive when negatively charged ALG was introduced into the 
system, thus stabilizing the dispersion of ZNP by increas-
ing its absolute charge value at higher concentrations. After 
the addition of 0.2 mg/mL ALG, the measured ζ-potential 
was −11.27 mV and precipitation was observed after some 
minutes of stirring. This may be due to the neutralization of 
the highly positive charge of zein and the negative charge of 
alginate, resulting in a low stability dispersion at this con-
centration (Khan et al. 2019). After evaluating these results, 
the ALG concentration of 0.3 mg/mL was selected as it gave 
a smaller particle size and PDI, while ζ-potential absolute 
potential value was >30 mV, which indicates that the disper-
sion was electrostatically stable (Samimi et al. 2019).

Table  2 shows the hydrodynamic size, PDI, and 
ζ-potential of ALG-ZNP coated with chitosan at different 
concentrations. The size was higher for the ALG/CS-ZNP 
dispersions than for the ALG-ZNP.

No significant differences were observed for PDI and 
ζ-potential between 0.2 and 0.3 mg/mL chitosan solution. 
When the concentration of the chitosan solution reached 0.4 
mg/mL, the PDI and ζ-potential increased significantly due to 
the excess of chitosan in the dispersion. Due to these results, 
the formulation used for the encapsulation of EGCG and 
GTE was 0.3 mg/mL for the alginate and chitosan solutions.

Regarding the encapsulation efficiency of EGCG and 
GTE of ZNP, levels of 45% and 58% were achieved, respec-
tively (data not shown).

After coating with ALG, an increase could be observed 
(Table 3), reaching 75% and 80% of encapsulation, respec-
tively. Upon the addition of chitosan to the system, encap-
sulation increased to 82% and 85%, respectively.

These results are similar to those obtained by other stud-
ies (Jin et al. 2022b; Liang et al. 2021) based on the encapsu-
lation of EGCG in ZNP, although with different stabilization 
compounds. The DLS analysis (Table 3) of EGCG and GTE 
encapsulated in ZNP coated with ALG and CS displayed 
higher PDI values for all formulations, although the hydro-
dynamic size increased for ALG/CS-ZNP-E and ALG/CS-
ZNP-T compared to blank nanoparticles. The ζ-potential did 
not vary substantially and, therefore, it can be concluded 
that the addition of EGCG or GTE did not alter the colloidal 
properties of the particles.

Scanning electron microscopy (SEM)

Figure 2 shows SEM pictures of the three nanoparticle struc-
tures prepared throughout our experiments.

The image of ZNP (Fig. 2a) displays spherical struc-
tures with smooth surfaces, although a small adhesion of 
the particles can be observed. This may be due to the film-
forming capacity of zein during solvent evaporation (Jiang 
et al. 2021). The particles had an average size of 30 nm, 
which is significantly smaller than the size observed in the 
DLS measurements. The difference may be mainly due to 
the dehydration and consequent shrinkage of the particles. 
In addition, particles within aggregates can be visually 
distinguished, whereas DLS measurements cannot distin-
guish between well-dispersed single particles and compact 
aggregates. The ALG-ZNP image (Fig. 2b) also displayed 
spherically shaped particles, but the size was larger than 
that of ZNP. The mean particle size was 92 nm, although 
bigger particles were also visible. The addition of CS layer 
to nanoparticles did not change the size observed by SEM 
regarding ALG-ZNP (Fig. 2). However, increased adhe-
sion can be observed between particles, as well as a layer in 
which the particles are embedded. These results are similar 
to those obtained in studies analyzing the same materials 
(Khan et al. 2019; Khan et al. 2021; Pauluk et al. 2019). 
Lin et al. (2020) obtained similar results for carboxymethyl 

Table 2   Hydrodynamic size, polydispersity index (PDI), and 
ζ-potential (ZP) of zein/alginate nanoparticles coated with different 
concentrations of chitosan (ALG/CS-ZNP)

Means (± SE) of three individual measurements. The same letter 
within a row is not significantly different from each other (P < 0.05)
PDI polydispersity index, ZP ζ-potential

CS (mg/mL) Hydrodynamic size 
(nm)

PDI ZP (mV)

0.2 212.60 ± 4.71b 0.196 ± 0.005a 42.10 ± 2.16a

0.3 199.60 ± 2.55a 0.198 ± 0.011a 40.27 ± 1.39a

0.4 271.83 ± 1.07c 0.303 ± 0.024b 52.10 ± 1.18b

Table 3   Hydrodynamic 
size, polydispersity index 
(PDI), ζ-potential (ZP), and 
encapsulation efficiency (EE) of 
different formulations

Means (± SE) of three individual measurements. The same letter within a row is not significantly different 
from each other (P < 0.05)
PDI polydispersity index, ZP ζ-potential, EE encapsulation efficiency

Formulation Hydrodynamic size (nm) PDI ZP (mV) EE %

ALG-ZNP-E 143.73 ± 0.68a 0.245 ± 0.005b −31.47 ± 0.12a 75.24 ± 0.97a

ALG-ZNP-T 144.03 ± 0.18a 0.202 ± 0.002a −30.73 ± 0.49a 80.13 ± 1.13b

ALG/CS-ZNP-E 238.90 ± 0.65b 0.297 ± 0.001d 42.93 ± 0.28b 82.04 ± 1.15b

ALG/CS-ZNP-T 266.47 ± 0.66c 0.270 ± 0.007c 41.97 ± 0.38b 85.14 ± 0.49c
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chitosan-coated zein nanoparticles. The film-like structure 
could improve the dispersibility of the nanoparticles after 
the drying process and the release rate of the encapsulated 
compound.

X‑ray diffraction (XRD) analyses

The X-ray diffractogram of the starting materials and nan-
oparticle powders can be observed in Fig. 3, where zein 
shows two wide characteristic absorption peaks at 9.5° 
and 20° related to the α-helix structure within zein (Jiang 
et al. 2021). The sodium alginate diffractogram showed two 
broad peaks at 13.4° and 21.8°, while chitosan showed two 
peaks at 10° and 20°. This showed that both polysaccharides 
had semicrystalline characteristics, which is consistent with 
previous studies (Bhagyaraj et al. 2020; Ju et al. 2020; Sund-
arrajan et al. 2012). EGCG has characteristic sharp peaks at 
15.5°, 17°, 20.5°, 21.4°, 24.4°, and 25.8° and several small 
sharp peaks up to 50°. This demonstrated the crystalline 
properties of EGCG (Fang et al. 2019; Xie et al. 2021; Zhao 
et al. 2022a). The green tea extract showed a broad peak 
from 10 to 35°, and some sharp peaks can be observed at 
6°, 19°, and 24.3°.

The X-ray diffractograms of ALG/CS-ZNP-E and ALG/
CS-ZNP-T did not show the characteristic sharp peaks pre-
sent in EGCG or green tea extract, indicating that the encap-
sulated compounds did not exist in crystalline form and that 
EGCG and green tea extract may be encapsulated within 
the nanoparticles (Gao et al. 2021; Jin et al. 2022a). It can 
also be seen that the characteristic peaks of the polymers 
decreased in intensity, probably due to interactions between 

the polymers themselves and the encapsulated compounds 
(Jin et al. 2022b; Khan et al. 2019). Supplementary data 
(Figure S1) show the physical mixture of both ALG/CS-
ZNP-E and ALG/CS-ZNP-T. In the physical mixture con-
taining EGCG, some of the sharp peaks denoted crystalline 
polyphenol can be seen with a decrease in intensity as a 
result of its low concentration within the mixture. For GTE, 
the physical mixture, the 6° peak can be slightly observed 
in the diffractogram. As these crystalline peaks are present 
only in the mixtures but not in the nanostructures, it can be 
concluded that encapsulation was successful.

Fourier transform infrared (FTIR) analyses

Figure 4 displays the FTIR spectrum of pure EGCG and 
GTE. The EGCG spectra show characteristic peaks at 3474 
and 3347 cm−1 (O-H stretching), 1689 cm−1 (C=O stretch-
ing), 1612, 1533, and 1446 cm−1 (C=C, aromatic stretching), 
1341 cm−1 (O-H bending), 1215 cm−1 (C-O stretching) and 
1144 cm−1 (C-O stretching from tetrahydropyran ring), 1092 
and 1008 cm−1 (aromatic ring stretching) (Billes et al. 2007; 
Robb et al. 2007; Wang et al. 2019). The GTE spectra were 
similar to those of EGCG, with slight shifts on some peaks 
as a result of the presence of other components in lower 
concentration, indicating that a high concentration of EGCG 
was found in this commercial extract.

Figure 5 shows FTIR spectra of ALG-ZNP, ALG-ZNP-
E, and ALG-ZNP-T. All nanoparticle formulations had two 
characteristic peaks of zein at 1653 and 1536 cm1, from 
amide I (C=O stretching) and amide II (N-H bending), 
respectively (Jin et al. 2022a). ALG-ZNP-E and ALG-ZNP-T 

Fig. 2   Scanning electron micro-
scope images of ZNP (a), ALG-
ZNP (b), and ALG/CS-ZNP
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Fig. 3   X-ray diffractograms of starting materials and nanoparticle powders

Fig. 4   FTIR spectrograms of 
(A) EGCG and (B) GTE
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displayed a peak around 1144 cm−1 derived from the C-O 
stretching of tetrahydropyran ring. The rest of the EGCG or 
GTE peaks did not appear, while in the physical mixture of 
EGCG and GTE with the components of the nanoparticle 
matrix (Figure S2), polyphenol peaks could be observed. 
This information suggests that compounds could be found 
encapsulated in the hydrophobic core of nanoparticles (Khan 
et al. 2019). Figure S3 displays the FTIR spectra of ALG/
CS-ZNP, ALG/CS-ZNP-E, and ALG/CS-ZNP-T; no sig-
nificant changes resulting from the addition of the chitosan 
coating were observed in the infrared spectrum.

Antioxidant activity

As mentioned above, catechins have a great number of bio-
logical activities that are beneficial to aquatic organisms. 
Most of these beneficial biological activities stem from their 
high antioxidant power. Catechins can exhibit antioxidant 
power directly, by scavenging free radicals, or indirectly, 
through the activation of antioxidant enzymes, EGCG being 
the one with the highest antioxidant power (Bernatoniene 
and Kopustinskiene 2018). However, its absorption is lim-
ited in vivo due to its labile nature (Kim et al. 2014), for 
which we propose its encapsulated use.

Free radicals are molecular species with an unpaired elec-
tron in their outer atomic orbital. These molecules, due to 
their high instability, can react with different cellular com-
ponents (DNA, lipids, and proteins) causing cell damage that 
may lead to organ failure (Lobo et al. 2010). Therefore, it is 
important to test the free radical scavenging potential of nano-
particles and encapsulated compounds. The antioxidant power 
in vitro of encapsulated EGCG and GTE has been investigated 
and compared to that of free substances. Figure 6 shows the 
SC50 of the DPPH and ABTS assays of the different synthe-
sized nanoparticles compared to the free substances.

Similar trends can be observed for the two tested assays. In 
general, the minimum concentration to scavenge 50% of free 
radicals (SC50) is higher when the compounds were encapsu-
lated. This increase in SC50 and, therefore, a decrease in anti-
oxidant power could be due to the fact that when substances 
are encapsulated, they can form hydrogen bonds in addition to 
other types of interactions with the encapsulation matrix (Li 
et al. 2009). These interactions reduce the antioxidant capacity 
of polyphenols (Gulcin 2020).

The SC50 of EGCG was lower than that of GTE. EGCG 
accounts for 45% of the composition of GTE, while the rest 
are mainly other catechins that have less antioxidant power. 
DPPH showed an SC50 for EGCG and GTE of 8.92 and 
32.79 μg/mL, respectively. After zein encapsulation and 
subsequent alginate coating, the SC50 of ALG-ZNP-E and 

Fig. 5   FTIR spectrograms of 
ALG-ZNP blank nanoparticles 
and ALG-ZNP-E and ALG-
ZNP-T nanoparticles
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ALG-ZNP-T increased to 39.54 and 64.43 μg/mL. Chitosan 
coating caused a decrease in SC50 for ALG/CS-ZNP-E 
(33.58 μg/mL) with respect to ALG-ZNP-E, although it did 
not show significant differences. For ALG/CS-ZNP-T, the 
coating did not significantly affect SC50 (63.59 μg/mL).

In the ABTS radical assay for EGCG and GTE, SC50 
increased compared to the DPPH assay, 34.42 and 53.56 μg/
mL respectively. However, the response profile obtained was 
similar to that described previously. Thus, SC50 increased 
for the encapsulated compounds compared to the free sub-
stances. ALG-ZNP-E and ALG-ZNP-T needed 49.23 and 
77.86 μg/mL to scavenge 50% of the ABTS radicals. The 
addition of chitosan did not cause a worsening of the anti-
oxidant power of the nanoparticles. ALG/CS-ZNP-E and 
ALG/CS-ZNP-T showed an SC50 of 48.87 and 79.54 μg/
mL. According to Osman et al. (2006), the oxidation process 
experienced by polyphenolic compounds takes place at dif-
ferent positions depending on the method used, which could 
explain the differences observed in the results obtained for 
each of the protocols applied. Additionally, this could imply 
that the interactions between the nanoparticle constituents 
and the active substances they encapsulate occur at specific 
positions. The decrease in the availability of these specific 
positions would therefore affect the antioxidant activity 
assay differently depending on the substrate used.

These results show that the antioxidant power of catechins 
present in nanoparticles is diminished by encapsulation. 
However, considering that encapsulation confers protection 
to active materials against hostile conditions they would face 
in their use in the aquaculture sector, such as those inherent 
in digestive processes, the antioxidant power still retained by 
nanoparticles can be considered adequate (Khan et al. 2019; 
Liang et al. 2021; Pauluk et al. 2019).

Antimicrobial activity assay

Figure 7a shows the results obtained in relation to the anti-
microbial activity shown by the different active ingredients 
tested and the different formats in which they were tested.

Considering the results from a global perspective and 
with the type of material tested as a unifying criterion, the 
antimicrobial activity exhibited by the nanoparticles with 
the presence of chitosan stood out, the only ones that, with 
inhibition levels between 56 and 60%, were close to the val-
ues reached by the antibiotic (85%), established as a positive 
control. The rest of the formats tested did not exceed 40% 
inhibition in any case, although the nanoparticles with algi-
nate and encapsulated product, both EGCG and tea extract, 
did not generate significant differences, for the most part, 
with the chitosan formats mentioned above. The lowest 
inhibitory capacity was observed for alginate nanoparticles 
without active product, as well as for the active products 
themselves in free format, with percentages ranging from 
16 to 21%. Encapsulation of materials with antimicrobial 
activity in mixed alginate-chitosan nanoparticles has been 
shown to be a suitable practice to increase the efficiency of 
such materials (Yoncheva et al. 2021; Zimet et al. 2018). 
However, and based on the results obtained in the present 
study, with the majority absence of significant differences 
between the inhibitory capacity of empty nanoparticles and 
that of nanoparticles with active materials, as reported in 
other works (Zaidan and Kadhum 2020), it is worth asking 
whether the activity of such materials is actually increased. 
In the case of alginate nanoparticles, such an effect seems to 
be present, especially in the case of EGCG, the only case in 
which there was a significant increase in the percentage of 
growth inhibition, both with respect to empty nanocapsules 

Fig. 6   Antioxidant assays 
(DPPH and ABTS) tested on 
nanoparticles and free EGCG 
and GTE. Different letters refer-
ring to the same antioxidant 
compound indicate the exist-
ence of significant differences in 
activity shown by the different 
types of nanoparticles tested 
(P<0.05)
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and free EGCG. In contrast, in the case of nanoparticles 
with the additional presence of chitosan, although the inhibi-
tory capacity was higher in those that included EGCG, the 
increase was not sufficiently intense to generate a statisti-
cal difference. In this case, it would be attributable, there-
fore, mostly to the components of the nanoparticles and, 
in particular, to the chitosan. Friedman et al. (2013) also 
observed significant inhibitory activity of empty nanoparti-
cles, attributed to the affectation of the lipid fraction of the 
cytoplasmic membrane. Furthermore, and similar to what 
was described in the present work, chitosan was shown to 
be mainly responsible for the potential to reduce microbial 
growth. It follows, under these conditions, that not all amino 
groups present in chitosan, which confer the polymer with a 
positive charge, are counteracted by the negative charge of 
carboxylic acids associated with alginate, leaving the poten-
tial to interact with the cell cytoplasmic membrane through 
their negative charges (Al-Gethami and Al-Qasmi 2021). 
However, it is not advisable to generalize these conclusions, 
since the results associated with each of the components 
can vary depending on the microorganism used in the assay 
(Asadpoor et al. 2021; Paiva Filho et al. 2020).

The difference in response offered by different microor-
ganisms can be seen in Fig. 7b. This figure shows Vibrio 
anguillarum as the species least overall sensitive to the 

action of the different formats tested, with an average per-
centage of growth inhibition slightly higher than 18%, while 
Photobacterium damselae was the most affected (56.12%), 
although with little difference with respect to Pseudomonas 
anguilliseptica (51.89%). Between the two extremes were 
Streptococcus iniae and Vibrio alginolyticus, statistically 
related to the two previous groups. The existence of differ-
ent responses to the same compound is common not only 
between different species (Ignasimuthu et al. 2019) but also 
between strains of the same species (Siriphap et al. 2022). 
The mechanisms through which EGCG and other green 
tea polyphenols act are diverse (Reygaert 2018), as are the 
pathogenic strategies adopted by different strains and the 
specific composition of their cell structures; therefore, varied 
responses are expected in assays of this nature. Generally 
speaking, Gram-positive species are considered to be more 
sensitive to polyphenols (Zhang et al. 2014). With regard 
to EGCG, and in nanoparticle format, a higher resistance 
of Gram-negative bacteria is postulated as a consequence 
of the existence of the outer membrane and lipopolysac-
charide, which limits the potential of nanoparticles to bind 
to the peptidoglycan layer (Zhao et al. 2022b). The sensi-
tivity exhibited by certain Gram-negative species would be 
more related to the production of oxidative damage (Cui 
et al. 2012). In the case of V. alginolyticus, the ability of 

Fig. 7   Antimicrobial activity associated with the different formats 
of active substances and nanoparticles tested. a Overall activity as 
a function of the type of substance. b Global activity as a function 
of the target microorganism. c Individualized activity for each of the 
bacteria tested. In all cases, the mean values and the correspond-
ing standard error are shown. The letters associated with each value 
reflect the homogeneity groups generated by the Tukey HSD test, 

with global character in cases A and B, and associated with bacte-
rial species in case C. ALG-ZNP: alginate NP; ALG-ZNP-E: alginate 
NP with EGCG; ALG-ZNP-T: alginate NP with green tea extract; 
GTE: green tea extract; ALG/CS-ZNP: alginate/chitosan NP; ALG/
CS-ZNP-E: alginate/chitosan NP with EGCG; ALG/CS-ZNP-T: algi-
nate/chitosan NP with green tea extract; GR-B: growth control; ANT: 
antibiotic
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phenolic compounds to reduce their biofilm formation 
capacity has been demonstrated, among other factors, by 
affecting the biosynthetic potential of polysaccharides, in 
addition to altering the permeability of the cytoplasmic 
membrane (Liu et al. 2021). In the case of P. damselae, 
bacteria that generally register higher levels of sensitiv-
ity to polyphenolic compounds than other fish pathogens 
(Bulfon et al. 2014), as observed in the present study, the 
possible impairment of biofilm-forming capacity as well as 
motility potential has also been postulated (Bautista-Rosales 
et al. 2022). In the case of V. anguillarum, the species for 
which the lowest degree of inhibition was recorded, com-
pounds of a different nature, such as antimicrobial peptides 
or polyunsaturated fatty acids, appear to be more effective 
in their control (Citarasu 2012).

Figure 7c shows the individual response of each microor-
ganism for each of the formats tested. The levels of growth 
inhibition obtained in each case confirm what was previously 
mentioned with respect to the variability detected according 
to the microorganism studied. Thus, S. iniae and P. damselae 
showed differentially significant sensitivity between nano-
capsules with and without chitosan incorporation. In both 
cases, the levels of growth inhibition experienced by both 
bacteria were clearly higher for the former, and the Gram-
positive species even showed a higher degree of cell devel-
opment in the medium with nanocapsules without chitosan 
than in the control free of antimicrobial compounds. The 
greater efficacy of nanoparticles with chitosan in this case 
may be due to the interactions between the positive charges 
provided by this polymer and the negative charges of the 
teichoic acids present in the Gram-positive cell wall (Kaur 
et al. 2020), thus favoring the altering potential on the cyto-
plasmic membrane and, therefore, its antimicrobial capacity 
(Raafat et al. 2008). Regarding P. damselae, and although 
most studies point to a lower sensitivity of Gram-negative 
species to chitosan (Li and Zhuang 2020), this polymer has 
also shown interesting levels of inhibitory activity in rela-
tion to certain bacteria of this group. In the most sensitive 
species, it is postulated that its greater degree of affectation 
could be related to a higher hydrophilic character, which 
would favor the access of the compound to the cellular inte-
rior in greater proportion (Chang et al. 2004). On the con-
trary, V. alginolyticus and V. anguillarum were affected to a 
greater extent by nanoparticles consisting only of alginate, 
especially those carrying EGCG. In this case, the inhibi-
tion levels achieved led to significant differences with all of 
the chitosan nanoparticles in the case of the first bacterium, 
while in the case of the second, the significance was limited 
to the chitosan nanocapsules with green tea extract. The 
last of the tested species, P. anguilliseptica, showed a less 
defined pattern, with inhibition values close for all formats, 
which means that few of them differed significantly from 
each other. As previously discussed, chitosan nanoparticles 

seem to show lower efficiency on Gram-negative species, 
although the results reflected in the existing literature are 
somewhat contradictory (Chandrasekaran et al. 2020). The 
great variability that exists in terms of the conditions under 
which the studies are carried out, especially with regard to 
the presence of additional materials in the nanoparticles, 
makes it difficult to obtain homogeneous results and there-
fore unique conclusions. However, and depending on the 
mechanisms of action mostly recognized for chitosan (inter-
action with different negatively charged structures present in 
cell envelopes), the specific molecular architecture associ-
ated with each species can determine and condition differ-
ent degrees of sensitivity to chitosan nanoparticles (Duan 
et al. 2019). Regarding the active substances tested, EGCG 
and green tea extract, a similar pattern was observed for 
all bacteria, so no statistically significant levels of inhibi-
tion were found between nanocapsules of the same type that 
carry different antimicrobial substances. This last result is 
quite positive from an economic perspective, given the great 
difference in cost between a natural extract and a pure com-
pound from this extract and the importance that this factor 
reaches in industrial processes.

These nanoparticles especially ZNP coated by ALG and 
CS can be a suitable delivery system for tea polyphenols and 
other biologically active substances. Other studies found that 
a similar encapsulation format to those used in this experi-
ment improves the bioaccessibility of encapsulated com-
pounds (Carrasco-Sandoval et al. 2021; Khan et al. 2019) 
and increases the stability of the encapsulated substances 
and photostability during storage (Luis et al. 2020; Zhang 
et al. 2023). This protection is highly relevant for the inclu-
sion of these formulations in aquaculture feeds due to the 
different storage conditions that the feed may face.

Conclusions

The encapsulation of EGCG and GTE in ZNP was per-
formed by an antisolvent method, stabilizing the ZNP 
obtained by a layer-by-layer method with alginate and chi-
tosan. The obtained nanoparticles had a spherical shape, 
with a maximum size of 260 nm and an encapsulation effi-
ciency of GTE and EGCG greater than 75% in all cases. The 
results found that these formulations were able to maintain 
a large part of their antioxidant activity with respect to free 
substances. In relation to antimicrobial activity, the growth 
inhibition potential showed a dependence on the pathogenic 
species under study. The presence of chitosan coating on 
the nanoparticles increased the percentage of growth inhibi-
tion, reaching approximately 60% inhibition on average for 
all pathogenic species, and even for P. damselae, the pres-
ence of chitosan coating produced levels of growth inhibi-
tion close to the antibiotic, used as a positive control. These 
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results open new paths for the use of these nanoparticles in 
the control of diseases and/or possible synergy with the anti-
biotic, thus reducing the amount needed. In addition, encap-
sulation protects the substance against degradation and can 
be stored as an isolated product or as part of the formulation 
in aquaculture diets. Further studies are needed to examine 
the release of substances in the digestive process, as well as 
their stability in dispersion or as dry material.
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