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Scattering of charged particles on two spatially separated time-periodic optical fields
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We consider a monoenergetic beam of moving charged particles interacting with two separated oscillating
electric fields. Time-periodic linear potential is assumed to model the light-particle interaction using a
nonrelativistic, quantum mechanical description based on Gordon-Volkov states. Applying Floquet theory, we
calculate transmission probabilities as a function of the laser field parameters. The transmission resonances in
this Ramsey-like setup are interpreted as if they originated from a corresponding static double-potential barrier
with heights equal to the ponderomotive potential resulting from the oscillating field. Due to the opening of new
“Floquet channels,” the resonances are repeated at input energies when the corresponding frequency is shifted
by an integer multiple of the exciting frequency. These narrow resonances can be used as precise energy filters.
The fine structure of the transmission spectra is determined by the phase difference between the two oscillating
light fields, allowing for the optical control of the transmission.
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I. INTRODUCTION

Optical control of quantum mechanical particles offers a
wide variety of promising applications, including ultrafast
electronics [1–3], imaging [4,5], or quantum computation
[6,7]. Among the first phenomena of describing the coupling of
free electrons to light was the Kapitza-Dirac effect in the 1930s
[8]. In this elastic process, diffraction of electrons is observed
in a standing light wave which acts as an effective diffraction
grating [9,10]. Beams of electrons can also be manipulated
by optical fields [11–15], while the properties of oscillating
plasmonic near-fields can be probed by measuring electron
spectra from nanostructures [16,17]. Recently, photon-induced
near-field electron microscopy revealed that the initial kinetic
energy distribution of short electron pulses broadens through
induced photon sidebands [5,18].

For strong excitations, the highly inelastic photon-induced
processes that involve the absorption or emission of one or a
few photons can be appropriately described by using classical,
periodic fields. In this intensity regime, Floquet theory is
proved to be one of the most efficient methods. Although
in this case the exciting field that oscillates with a frequency
of ω is not quantized, the corresponding quasienergies are
separated by integer multiples of h̄ω. This means that for an
inelastic process, the material response will contain frequency
components that are integer multiples of ω, and, e.g., in
transport processes, the transmitted energy spectrum will
contain sidebands around the input energy. These sidebands
correspond to Floquet channels with energy shifts nh̄ω, where
n is integer.

Interferometry induced by spatially separated electromag-
netic fields is a very important tool for the control of quantum
mechanical particles (see, e.g., Ref. [19]). Here, we present a
theoretical description of a Ramsey-like setup, where, instead
of being bound to nuclei, free charged particles interact
with two separated periodic electric fields in a nonrelativis-
tic framework. In more detail, similarly to Ref. [12], we
describe the scattering of a monoenergetic particle wave
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on two localized optical fields. However, the main focus is
on the calculated transmission spectra which are thoroughly
investigated. Resonant tunneling is observed which is also
known in static scattering problems (see, e.g., Refs. [20–22])
in the context of nanostructures. Let us recall that in the vicinity
of metallic nanoparticles the net electromagnetic field can
become localized (e.g., in Ref. [23] a diameter of ∼10 nm
was reported for the case of a nanoscale tip) and the space
dependence of the field can be neglected. Motivated by this,
we use dipole approximation; i.e., we assume that the field has
only time dependence.

As a first approach, we create a static scattering model,
where we consider a rectangular potential barrier with the
height of the ponderomotive potential Up. Its transmission
spectrum is a good approximation for the time-dependent
problem. We also investigate the induced photon sidebands
and the space- and time-dependent probability current density.

Our paper is organized as follows. In Secs. II and III
we describe the theoretical framework with Gordon-Volkov
states and derive the wave equations using Floquet theory.
In Sec. IV we show that a static scattering model can be
thought as a good approximation for the time-dependent model
regarding the transmission spectra. Transmission resonances
are analyzed through induced photon sidebands and through
space- and time-dependent probability current for various
parameter ranges. We close our paper by summarizing our
findings and drawing conclusions in Sec. V.

II. MODEL

We consider a one-dimensional nonrelativistic scattering
model, where a beam of monoenergetic free charged particles
is assumed to interact with two spatially separated linearly po-
larized time-periodic electric fields (see Fig. 1). The direction
of the matter wave propagation is chosen to be the x axis,
which, for the sake of simplicity, is divided into five regions.
In region 1, the potential is zero, the Hamiltonian reads

H1 = p2

2m
, (1)

where p = −ih̄ ∂/∂x is the canonical momentum operator.
We assume here an incident plane wave with energy E0 and
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FIG. 1. Schematic view of the setup we consider. In region 1,
we have an incident monoenergetic free particle wave propagating
towards the oscillating time-dependent potential localized in a finite
region with length L, inducing reflected and transmitted waves
in regions 1 and 5, respectively. In the interaction regions (2
and 4), superpositions of Gordon-Volkov states [see Eq. (11)] are
present.

the corresponding momentum h̄k0 = √
2mE0:

ψin(x,t) = eik0x− i
h̄
E0t , (2)

which is a particular solution of the time-dependent
Schrödinger equation generated by H1. The charged particles
are assumed to interact with the laser field in regions 2 and
4, inducing free reflected and transmitted waves in regions 1
and 5, respectively, and both left and right propagating waves
in region 3. In more detail, using dipole approximation and
length gauge, in region 2 we have

H2(x,t) = p2

2m
+ exF (t), (3)

where the external electric field is assumed to have oscillating
time dependence: F (t) = F0 cos (ωt). At the boundary of
regions 2 and 3 (x = L), F (t) becomes zero, and, correspond-
ingly, the gradient of the potential also vanishes in region 3.
Since the potential has to be continuous, we can write

H3(t) = p2

2m
+ eLF (t) = H2(L,t). (4)

Note that the time dependence of the spatially constant
potential corresponds to an overall, time-dependent phase
factor for any wave function, and we still have free propagation
in region 3. In region 4, where the second interaction takes
place, the potential of the laser field is superimposed on the
oscillation of H3:

H4(x,t) = H3(t) + ex̃F̃ (t), (5)

where x̃ = x − d − L, and the electric field has the same am-
plitude and frequency as in region 2: F̃ (t) = F0 cos (ωt + ϕ0).
As we shall see later, the phase difference ϕ0 (which is zero
for the example shown in Fig. 1) can be used to control the

transmission probability. Finally, the Hamiltonian in region 5
describes free propagation again; H5 is spatially constant but
oscillates in time, with its potential part being equal to that of
H4 evaluated at the boundary of regions 4 and 5.

III. FLOQUET SOLUTIONS

Since we consider time-periodic Hamiltonians, it is plau-
sible to use Floquet theory [24–26]. That is, in all regions,
we are seeking solutions of the time-dependent Schrödinger
equation in the form

ψj (x,t) = e− iEj t

h̄ �j (x,t), (6)

where Ej is the Floquet quasienergy of “channel” j , where
the index j is an integer. The Floquet state �j (x,t) is a
periodic function: �j (x,t) = �j (x,t + τ ), with a time period
of τ = 2π/ω. Since the global Hamiltonian (which can be
obtained by applying H1, . . . ,H5 in their respective domains,
i.e., regions 1, . . . ,5) is periodic in time, global Floquet-type
solutions (that are defined on the whole x axis) of the
time-dependent Schrödinger equation exist. We can express
�j (x,t) as a Fourier series,

�j (x,t) =
∞∑

n=−∞
χ (j )

n (x)e−inωt , (7)

where the expansion functions χ
(j )
n (x) do not depend on time.

Particularly, even in region 1, where the potential is zero,
there exist solutions of the form of Eq. (6). We demonstrate
this by taking into account also the corresponding boundary
condition for x < 0. For that region, the physical situation
requires one to have a superposition of the incident right
propagating free plane wave as given by Eq. (2) plus the
reflected waves. As one can easily see, E0, the energy of the
incoming wave, should be one of the Floquet quasienergies
Ej . Therefore, the wave function can be written as


1(x,t) = ψin(x,t) +
∑

n

rne
−iknxe−iωnt , (8)

where the wave numbers corresponding to different Floquet
quasienergies are defined as follows,

kn =
√

2mEn

h̄2 , (9)

and En = E0 + nh̄ω, where n = (. . . ,−2,−1,0,1,2, . . .). The
frequencies appearing in the time evolution are

ωn = En/h̄ = E0/h̄ + nω. (10)

We note here, that below a certain integer n, the wave number
kn will be purely imaginary, which describes evanescent
waves, with decaying amplitude as x → −∞. The Floquet
quasienergies (or frequencies) with different integers n serve as
a plane-wave basis set of the wave functions. In the following,
we construct the solutions of all the other regions using this
basis set.

The fundamental solutions of the time-dependent
Schrödinger equation with the Hamiltonian given by Eq. (3)
are the well-known Gordon-Volkov states [27,28] in the length
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gauge:

ψV
q,ϕ0

(x,t) = e−i[α sin 2(ωt+ϕ0)−β(q) cos (ωt+ϕ0)]

× e−iγ x sin (ωt+ϕ0)ei(qx− E(q)
h̄

t). (11)

Here, we have used notations similar to those used in Ref. [29]:

E(q) = h̄2q2

2m
+ Up, Up = e2F 2

0

4mω2
, (12)

and

α = − Up

2h̄ω
, β(q) = −eqF0

mω2
, γ = eF0

h̄ω
. (13)

The ponderomotive potential Up is the classical cycle-
averaged energy of the free charged particle in a sinusoidal
oscillating electric field. According to Eq. (12), the wave
number q is related to E(q) through the dispersion relation

q =
√

2m(E − Up)

h̄2 , (14)

and each E(q) is doubly degenerate due to the two possible
propagation directions.

In region 2, the wave function for a given energy reads

ψ2(x,t) = aψV
q,0(x,t) + bψV

−q,0(x,t). (15)

More generally, we can write


2(x,t) =
∑

n

[
anψ

V
qn,0(x,t) + bnψ

V
−qn,0(x,t)

]
, (16)

where an and bn denote the coefficients of right (or decaying)
and left propagating (or rising) wave modes, respectively. In
order to achieve the Fourier series form (7), we use the Jacobi-
Anger identities

eix sin θ =
∞∑

s=−∞
Js(x)eisθ , (17)

eix cos θ =
∞∑

s=−∞
isJs(x)eisθ , (18)

where Js denotes the Bessel function of the first kind [30]. As
a result, the wave function in region 2 reads


2(x,t) =
∑
n,p,s

Js(α)i2s−n+p{apJ2s−n+p[β(qp)]eiqpx

+ bpJ2s−n+p[β(−qp)]e−iqpx}e−iγ x sin (ωt)e−inωt .

(19)

We note that the factor exp [−iγ x sin (ωt)] can also be
expanded using the Jacobi-Anger formulas leading to one
more summation index in Eq. (19). However, since in the
fitting equations (see the Appendix) this factor is always 1 or
canceled out, we omit the expansion for the sake of brevity.

After the first interaction region, the particle is in region 3,
outside the influence of the laser field. It propagates further
in this intermediate zone with an altered energy due to the
effect of the electric field in region 2. This corresponds to
a time-periodic oscillating rectangular potential (see, e.g.,
Refs. [31,32]). Since the commutator [H3(t),H3(t ′)] = 0, the

solution of the time-dependent Schrödinger equation with the
Hamiltonian (4) can be constructed by direct time-domain
integration. Considering the double degeneracy of the wave
numbers, as well as the desirable Floquet form, the total wave
function in region 3 reads


3(x,t) =
∑

n

(une
iknx + vne

−iknx)

× e−iγL sin ωte−inωt . (20)

Describing the second interaction of the particle wave with
the electric field (in region 4) is very similar to the first one in
region 2. We obtain


4(x,t) =
∑

n

[
cnψ

V
qn,ϕ0

(x,t) + dnψ
V
−qn,ϕ0

(x,t)
]

× e−iγL sin ωte−inωt , (21)

where cn and dn correspond to right and left propagating
modes, respectively. Using the Jacobi-Anger identities again,
we can transform the wave function into Floquet form:


4(x,t) =
∑
n,p,s

Js(α)i2s−n+p{cpJ2s−n+p[β(qp)]eiqpx

+ dpJ2s−n+p[β(−qp)]e−iqpx}e−iγ x sin (ωt+ϕ0)

× e−iγL sin (ωt)e−i(n−p)ϕ0e−inωt . (22)

Finally, the wave function in region 5 consists of free modes
with two additional oscillating phase factors:


5(x,t) =
∑

n

tne
iknxe−iγL sin (ωt+ϕ0)

× e−iγL sin (ωt)e−inωt . (23)

These are the transmitted waves which are propagating right
(see Fig. 1).

We constructed wave functions with purely exponential
time dependencies using Floquet theory. For practical reasons,
we use local space coordinates; i.e., the origin is redefined
in each region [e.g., see the introduction of x̃ in Eq. (5)]. The
origins of the first and the second regions coincide, which is the
zero of the global coordinate system (see Fig. 1). Therefore,
the continuity boundary conditions for the wave functions and
for their derivatives read as follows:


1(0,t) = 
2(0,t), 
2(L,t) = 
3(0,t),


3(d,t) = 
4(0,t), 
4(L,t) = 
5(0,t),
(24)

∂x
1(0,t) = ∂x
2(0,t), ∂x
2(L,t) = ∂x
3(0,t),

∂x
3(d,t) = ∂x
4(0,t), ∂x
4(L,t) = ∂x
5(0,t).
(25)

See the Appendix for the actual fitting equations. Considering
these boundary conditions for each Floquet channel, we
obtain an infinite system of linear equations for the unknown
coefficients. However, since the Bessel functions (appearing in
the expressions of the wave functions) decrease as a function
of their index, it is sufficient to take only a finite number of
frequencies into account. In the next section, we present the
results based on this model.
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IV. RESULTS AND DISCUSSION

We investigate time-averaged transmission spectra for
different field parameters using the previously introduced
Floquet theory. As we shall see, the main features of the
transmission probability as a function of the energy of the
incoming particles can be understood using an appropriate
static model. More details can be seen by exploring the role
of the different scattering channels. Besides the time-averaged
quantities, we also study the dynamics of the wave packets
generated by the interaction of the particle wave with the
optical fields.

A. Cycle-averaged transmission probability

The usual probability current density in one dimension is
defined as

j (x,t) = h̄

m
Im

[

∗(x,t)

∂
(x,t)

∂x

]
. (26)

Time-dependent transmission (reflection) probabilities are
given by the ratio of the transmitted (reflected) current to the
incoming one. By using Eqs. (2) and (23), one can realize
that the time dependence of the probability currents contain
factors exp[−i(n − m)ωt]; i.e., the transmission probability is
a periodic function of time.

As we noted before, integer indexes n, which correspond to
imaginary wave numbers kn, mean evanescent modes. It can
be readily seen from Eq. (26), that these waves do not carry
probability currents, neither do they make any contributions
to the transmission probability. The cycle-averaged current
components of reflection and transmission (normalized to the
incoming current) are given by

jR
n = kn

k0
|rn|2, jT

n = kn

k0
|tn|2, (27)

where wave numbers kn are defined in Eq. (9). Thus, the cycle-
averaged reflection and transmission probabilities read

〈R〉 =
∞∑

n=n0

jR
n , 〈T 〉 =

∞∑
n=n0

jT
n , (28)

where n0 is the lowest Floquet index, for which the wave
number kn is real.

The total probability must be conserved, which is formu-
lated in one dimension as

∂ρ(x,t)

∂t
+ ∂j (x,t)

∂x
= 0, (29)

where we define the probability density as ρ = 
∗
. Accord-
ingly,

〈R〉 + 〈T 〉 = 1 (30)

should always hold for any system parameters [32,33].
This condition also serves as an accuracy indicator of our
calculations. The infinite system of equations has to be
truncated in accordance with an acceptable arbitrary limit
of error. For the results to be presented in the following,
|1 − 〈T 〉 − 〈R〉| � 10−6 is chosen. This condition can always
be met by increasing the number of modes (Floquet channels)
that are taken into account. For the parameters we used, the
highest-order Floquet index was around 25.

FIG. 2. Cycle-averaged transmission probability 〈T 〉 as a func-
tion of the energy of the incoming particle E0. Parameters in
atomic units are F0 = 0.004 88, L = 200, d = 400, ϕ0 = π , and
ω = 0.057 322, corresponding to a wavelength of 800 nm.

In Fig. 2, the cycle-averaged transmission probability 〈T 〉
is plotted as a function of E0, which denotes the energy
of the incoming particle. The parameters correspond to
localized optical fields (L ≈ 10 nm, d ≈ 20 nm) that can
be realized experimentally [23]. As we can see, in this case
the transmission spectrum is complex; there are numerous
maxima and minima. The most important parameter here
is the ratio of the de Broglie wavelength, λdB = 2π/k0, of
the incoming particle and the separation of the interaction
regions, d. When, e.g., d = n(λdB/2), with a large integer n,

increasing E0 by a few percent of its initial value can result
in a similar ratio of d and λdB, with n replaced by n + 1.

Since the length of d corresponds again to an integer multiple
of λdB/2, the interference pattern will be approximately the
same. Therefore, for d � λdB, whenever we see, e.g., a peak
in the transmission spectrum, it will be repeated multiple times
within a short energy interval. This is the case for the parameter
range shown in Fig. 2. In order to simplify the interpretation, in
the following we consider the regime where d is not too large in
comparison to λdB, which leads to a less complex interference
pattern, the understanding of which can be straightforwardly
transferred to different parameter regimes as well. Let us note
that by increasing d, it is not only the number of the peaks
in the transmission spectra that is seen to increase, but the
widths of the individual peaks also change. Larger separation
of the interaction regions results in narrower peaks, which is
general for Ramsey-like setups, and allows, e.g., precise energy
filtering. Besides these quantitative differences, according to
our results, the physical picture that explains the interference
pattern for d � λdB is still valid for d � λdB, and all the results,
including the ϕ0 dependence of the transmission, hold also in
this case.

Figure 3 shows the cycle-averaged transmission probability
〈T 〉 as a function of the energy of the incoming particle. (This is
denoted by the red solid line, while the meaning of the dashed
blue line is explained in the next subsection.) Increasing this
energy means that the transmission probability approaches
unity as expected. However, before the saturation happens, a
system of transmission peaks and dips is observed at particular

063419-4



SCATTERING OF CHARGED PARTICLES ON TWO . . . PHYSICAL REVIEW A 96, 063419 (2017)

FIG. 3. Cycle-averaged transmission probability 〈T 〉 (red solid
line) and transmission probability for the corresponding static double
barrier (blue dashed line, see the main text for more details) as a
function of the energy of the incoming particle E0 in atomic units.
Parameters are F0 = 0.1, L = 10, d = 30, ω = 0.2, and ϕ0 = π . For
low energies, the cycle-averaged transmission probability has peaks
at the same input energies where transmission resonances occur in
the static double-barrier model.

values of E0. The details of the transmission spectrum are
explained in successive steps in the next subsections.

B. Scattering resonances

As we can see, in regions 2 and 4 of Fig. 1 (where the
oscillating field is localized) the wave numbers defined by
Eq. (14) are exactly the same as in the case of a static rect-
angular potential barrier with a height of the ponderomotive
potential Up defined in Eq. (12), where Up � 0 holds for any
charged particle. Along this line, as a first approximation, we
can replace the two oscillating linear potentials with a static,
symmetric rectangular double-barrier system [34,35]. The first
consequence of this model is a correct prediction for the overall
E0 dependence of the time-averaged transmission probability:
when E0 � Up, 〈T 〉 is close to zero, while for input energies
considerably above Up, it is not far from unity. (See the dashed
blue line in Fig. 3.) Clearly, the transition between 〈T 〉 = 0 and
1 takes place around Up.

Additional aspects of the transmission spectra can also
be understood using the static model described above. By
determining the transmission probability of an incoming
particle of energy E0 for two rectangular barriers of height
Up as a static scattering process, we obtain multiple sharp
resonances at certain energies, as shown in Fig. 3 by the blue
dashed line.

Transmission resonances are generally related to the pres-
ence of bound states, quasibound states, or other localized
solutions. In order to understand the transmission spectra
shown in Fig. 3, it is instructive to find the eigenstates and
eigenenergies of the static double-barrier system. To this
end, we consider a discretized version of the model, where
the time-independent Schrödinger equation is solved with
two spatially separated potential barriers of height Up. A
periodic boundary condition is used: the Hamiltonian matrix

FIG. 4. Probability densities of the first three localized states in
the double-barrier system. Localized states with increasing eigenen-
ergies are denoted by blue, red, and green lines, respectively. As a
reference, the potential barriers are drawn by black dashed lines.

is constructed in such a way that the rightmost grid point is
connected to the leftmost one.

Figure 4 shows the probability densities calculated for three
such eigenstates which are found to be localized between the
two potential barriers that are indicated by black dashed lines in
the figure. These states correspond to the same energies, where
the transmission spectrum (in Fig. 3) has pronounced peaks.
In other words, the reason for the transmission resonances
observed for the static potential barriers is the existence of
these localized states.

Returning to Fig. 3, now it is clearly seen that the previously
introduced scattering problem with oscillating potential also
has transmission resonances around these particular energies.
That is, the static model can be viewed as a first approximation
for low energies (below E0 = h̄ω). However, as it is clear by
comparing the red and the blue curves in Fig. 3, for higher
energies, the oscillation of the potential results in a structured
transmission spectrum that cannot be explained by the static
model. The physical processes determining this part of the
spectra is examined in the following subsection.

C. Shifted, “multiphoton” resonances

As a next step, we investigate the scattering process by
varying the parameters so that the pondoromotive energy Up

defined by Eq. (12) is kept constant. In this way the static
model introduced in the previous subsection is unchanged (by
definition), and we can explore effects beyond this approx-
imation. (In other words, we are to explain the difference
between the two curves in Fig. 3.) Figure 5 shows that for
different electric-field amplitudes and angular frequencies of
oscillation, the locations of the resonances (below E0 = h̄ω)
stay approximately the same. In more detail, the parameters in
this figure correspond to only two static scattering resonance
energies (at E0 = 0.019 26 and 0.0643 a.u.), which are denoted
by gray dashed lines as references. As we can see, the static
barriers indeed mean good approximation for the expected
resonance energies when E0 < h̄ω.

For larger input energies, however, there are even more
peaks and dips in the transmission probability for the oscil-
lating case. In Fig. 5, circles and triangles correspond to the
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FIG. 5. Cycle-averaged transmission probabilities 〈T 〉 as a func-
tion of the incoming particle’s energy E0 in atomic units. Parameters:
L = 10, d = 10, and ϕ0 = π . The open circles and triangles corre-
spond to the first and second scattering resonances, respectively.

static scattering resonance energies shifted by nh̄ω. These
resonances can be explained by noticing that, after losing
an integer multiple of the energy quanta h̄ω, the energy
of the scattered particle coincides with the energy of one
of the previously shown localized states. In this sense, the
open circles and triangles correspond to the first and second
scattering resonance energies, respectively. Note that this
explains the energy value at which these resonances appear, but
the behavior of the transmission probabilities at these energies
(e.g., whether we experience a peak or a dip) needs a more
detailed description (see the next subsection).

As an additional interesting feature, Fig. 6 shows the
transmission probability as well as the contributions of every
single Floquet channel to it at different energies. Although the
transmission probability is almost unity at the three specified
energies, they correspond to entirely different probability
current distributions as is shown by the insets of Fig. 6. The
blue dot in the insets marks the probability current of the
central Floquet channel (n = 0).

FIG. 6. Cycle-averaged transmission probability 〈T 〉 as a
function of incoming particle’s energy E0 in atomic units. Parameters:
F0 = 0.1, L = 10, d = 10, ω = 0.3, and ϕ0 = π . All the insets show
the individual current contributions jT

n of the Floquet channels to the
transmission probability for different values of E0.

FIG. 7. Transmission probabilities as a function of the phase
difference ϕ0 for different lengths d of region 3. System parameters:
E0 = 0.025, λdB = 28.0993, F0 = 0.1, L = 10, and ω = 0.2.

When the incoming energy E0 reaches h̄ω, the scatter-
ing channel n = −1 opens and can also contribute to the
transmission probability. The same happens after every single
additional energy quantum h̄ω: a previously evanescent wave
mode transforms into a propagating one. This phenomenon
is due to the emission of “photons,” where the particle can
transmit energy to its environment. Therefore, the probability
currents jT

n can be also called the “multiphoton” components
of transmission.

D. Phase dependence of the transmission

So far, Figs. 3, 5, and 6 show transmission spectra when
the two localized electric fields have a phase difference ϕ0

of π , which corresponds to a symmetric oscillating trapezoid
potential. In the following, we inspect the phase difference
dependence of the scattering process.

Figure 7 shows the transmission probability as a function
of ϕ0 for different separation distances (denoted by d) of
the optical fields. The quasiperiodicity of the time-averaged
transmission probability as a function of d (with a period of
λdB/2) clearly shows the fact that we have already mentioned
earlier: for two values of d for which 2d1/λdB and 2d2/λdB

differ by only an integer, the interference pattern is very similar,
leading to similar transmission probabilities. According to
our calculation, when all other parameters are fixed, 〈T 〉 can
change 50% as a function of ϕ0, and this behavior is observable
also for experimentally relevant parameter ranges.

In order to understand the detailed role of the phase differ-
ence in the scattering process, we analyze the space and time
dependence of the probability current density. Generally, due
to the population of various Floquet channels, the solution will
obviously not be monoenergetic, propagating wave packets
emerge. As a physical picture, we may consider that the wave
packets generated in region 2 approach the second optical
field, where, depending on the relative phase difference ϕ0,
the slope of the potential experienced by the wave packets will
be different. In other words, the wave packets entering region
4 will either experience an “attractive” potential that forces
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FIG. 8. Density plot of j (x,t) as a function of time and coordinate
x. For parameters E0 = 0.06, F0 = 0.1, L = 10, d = 10, and ω =
0.2, panels (a) and (b) correspond to the maximal and minimal
transmission probabilities, respectively. Numerically, 〈T 〉 = 0.8941
at ϕ0 = 3.3772 in panel (a), and 〈T 〉 = 0.392 at ϕ0 = 0.7226 in panel
(b). Horizontal dashed lines indicate the boundaries of the different
regions, and vertical ones correspond to the zeros of the classical
force exerted on the charged particle. The sign of this force is also
shown in the various space-time regions.

them to move towards region 5 (and consequently increase
the transmission probability) or a “repulsive” one leading
to reflection. As a consequence, focusing on transmission
resonances, we can observe that transmission peaks can
transform into dips and vice versa as we sweep through ϕ0.
Clearly, this is only a first approach (since, e.g., oppositely
moving wave packets in region 3 can interfere), but it can
capture the essential mechanism beyond the ϕ0 dependence
of 〈T 〉.

As an illustration, Figs. 8(a) and 8(b) show density plots
of j (x,t) for two different ϕ0 values (all other parameters are
the same, see the caption). Figures 8(a) and 8(b) correspond
to the maximum and minimum of 〈T 〉, respectively. In both
cases, the ripples in region 1 are related to the interference
of the incoming and reflected waves. Two optical cycles are
shown, and the ± signs in the interaction regions show the
sign of the classical force that corresponds to the oscillating
potential. As we can see, when the transmission probability
is minimal, the most pronounced wave packet reaches region

4 in a time interval when the oscillating potential repels it.
On the other hand, as is shown by Fig. 8(a), the maximum
of 〈T 〉 corresponds to the case when the wave packet in
the second interaction region is pushed towards region 5.
Note that for higher input energies and stronger optical fields
more structured wave packets are generated in the outermost
region. Additionally, when E0 � Up (or E0 � Up), 〈T 〉 is
very close to unity (or zero) and consequently cannot have
strong ϕ0 dependence. Therefore, in order to control the
transmission by changing ϕ0, the parameters of the electric
fields must correspond to a ponderomotive potential close to
the characteristic kinetic energy E0 of the particle beam.

As a possible application, let us emphasize that the time-
averaged transmission probability can strongly depend on
the phase difference ϕ0 also at the transmission resonances.
For large enough separation of the interaction regions, these
resonance peaks are narrow, and, consequently, for a realistic,
nonmonoenergetic particle beam, they can serve as narrow
band energy filters. More interestingly, the properties of these
energy filters can be controlled by changing only ϕ0, without
modifying any other parameters of the experimental setup.

V. SUMMARY AND CONCLUSIONS

We presented a nonrelativistic time-periodic scattering
problem where a charged particle, e.g., an electron, was as-
sumed to be scattered on two spatially localized time-periodic
optical fields. Considering dipole approximation and using
Floquet theory, the cycle-averaged transmission probabilities
were calculated with different system parameters. Results
showed a very sophisticated spectrum, which was explained
in successive steps. First, we recognized that a double-
potential-barrier system (with barrier heights being equal to
the ponderomotive potentials) serves as a fair approximation
for low energies. We determined the energies of the scattering
resonances in the static model and identified them in the
spectrum of the time-dependent model. We also explained
the additional resonances occurring at higher energies through
the behavior of the probability currents belonging to the
Floquet channels. Finally, we explained the phase difference
dependence of the transmission probability by inspecting the
temporal behavior of the generated wave packets.

The results presented here point out how optical fields can
control moving charged particles. Specifically, we determined
the parameter range in which the mere phase difference of
the optical fields can control the transmission probability.
Although we used the context of a beam propagating in
free space, understanding the basic phenomena that govern
interferometric processes induced by separated fields is crucial
also from the viewpoint of ultrafast, light-induced electronics,
i.e., when the charged particles move in a solid. Although our
model focuses on the most important, qualitative aspects of the
interaction, it can provide an adequate first approach to more
complex systems as well. With acceptable increase of numeri-
cal costs, our method can also treat two-dimensional problems
or bichromatic excitation. As an important generalization, the
spatial dependence of the exciting fields can also be taken into
account.

063419-7



SZABÓ, BENEDICT, AND FÖLDI PHYSICAL REVIEW A 96, 063419 (2017)

ACKNOWLEDGMENTS

Partial support by the ELI-ALPS project is acknowledged.
The ELI-ALPS project (Grant No. GINOP-2.3.6-15-2015-
00001) is supported by the European Union and cofinanced

by the European Regional Development Fund. The work
was also supported by the European Social Fund and the
Széchenyi 2020 program under Contract No. EFOP-3.6.2-16-
2017-00005.

APPENDIX

As an example, the equation describing the continuity of the wave function at the boundary of the first and second region, for
the nth Floquet channel, reads

δn0 + rn =
∑
p,s

Js(α)i2s−n+p{apJ2s−n+p[β(qp)] + bpJ2s−n+p[β(−qp)]}, (A1)

where the factor exp[−iγ x sin (ωt)] equals unity at x = 0. The fitting equation originating from the continuity of the derivatives
is a bit more complex. The wave function 
2(x,t) has two coordinate-dependent factors. The derivatives read as follows:

∂

∂x
{e−iγ x sin (ωt)e±iqpx} = e−iγ x sin (ωt)e±iqpx[−iγ sin (ωt) ± iqp].

(A2)

At the boundary x = 0, the derivative is

−γ

2
(eiωt − e−iωt ) ± iqp. (A3)

Therefore, after shifting the summation indices, the fitting equation for the derivatives reads

ik0δn0 + rn(−ikn) =
∑
p,s

Js(α)i2s−n+p+1

{
apJ2s−n+p[β(qp)]

(
qp + γ (2s − n + p)

β(qp)

)

+ bpJ2s−n+p[β(−qp)]

(
−qp + γ (2s − n + p)

β(−qp)

)}
. (A4)

When fitting at the boundary of regions 2 and 3, exp (−iγL sin ωt) cancels out. This factor and exp [−iγL sin (ωt + ϕ0)] in
regions 4 and 5 are also found to be trivial in the corresponding equations.
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