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Scattering of charged particles on two spatially separated time-periodic optical fields
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We consider a monoenergetic beam of moving charged particles interacting with two separated
oscillating electric fields. Time-periodic linear potential is assumed to model the light-particle in-
teraction using a non-relativistic, quantum mechanical description based on Gordon-Volkov states.
Applying Floquet theory, we calculate transmission probabilities as a function of the laser field
parameters. The transmission resonances in this Ramsey-like setup are interpreted as if they origi-
nated from a corresponding static double potential barrier with heights equal to the ponderomotive
potential resulting from the oscillating field. Due to the opening of new ”Floquet channels,” the
resonances are repeated at input energies when the corresponding frequency is shifted by an integer
multiple of the exciting frequency. These narrow resonances can be used as precise energy filters.
The fine structure of the transmission spectra is determined by the phase difference between the
two oscillating light fields, allowing for the optical control of the transmission.

I. INTRODUCTION

Optical control of quantum mechanical particles offers
a wide variety of promising applications, including ultra-
fast electronics [1–3], imaging [4, 5] or quantum compu-
tation [6, 7]. Among the first phenomena of describing
the coupling of free electrons to light was the Kapitza-
Dirac effect in the 1930s [8]. In this elastic process,
diffraction of electrons is observed in a standing light
wave which acts as an effective diffraction grating [9, 10].
Beams of electrons can also be manipulated by optical
fields [11–15], while the properties of oscillating plas-
monic near-fields can be probed by measuring electron
spectra from nanostructures [16, 17]. Recently, photon-
induced near-field electron microscopy revealed that the
initial kinetic energy distribution of short electron pulses
broadens through induced photon sidebands [5, 18].

For strong excitations, the highly inelastic photon-
induced processes that involve the absorption/emission
of one or a few photons can be appropriately described
by using classical, periodic fields. In this intensity regime,
Floquet theory is proved to be one of the most efficient
methods. Although in this case the exciting field that os-
cillates with a frequency of ω is not quantized, the corre-
sponding quasienergies are separated by integer multiples
of ~ω. This means that for an inelastic process, the mate-
rial response will contain frequency components that are
integer multiples of ω, and, e.g., in transport processes,
the transmitted energy spectrum will contain sidebands
around the input energy. These sidebands correspond
to Floquet channels with energy shifts n~ω, where n is
integer.

Interferometry induced by spatially separated electro-
magnetic fields is a very important tool for the control
of quantum mechanical particles, see e.g. [19]. Here, we
present a theoretical description of a Ramsey-like setup,
where, instead of being bound to nuclei, free charged par-
ticles interact with two separated periodic electric fields
in a non-relativistic framework. In more detail, similarly
to Ref. [12], we describe the scattering of a monoenergetic

particle wave on two localized optical fields. However,
the main focus is on the calculated transmission spectra
which are thoroughly investigated. Resonant tunneling
is observed which is also known in static scattering prob-
lems, see e.g., [20–22] in the context of nanostructures.
Let us recall that in the vicinity of metallic nanoparticles
the net electromagnetic field can become localized (e.g.,
in Ref. [23] a diameter of ∼ 10nm was reported for the
case of a nanoscale tip) and the space dependence of the
field can be neglected. Motivated by this, we use dipole
approximation, i.e, assume that the field has only time
dependence.
As a first approach, we create a static scattering model,

where we consider a rectangular potential barrier with
height of the ponderomotive potential Up. Its trans-
mission spectrum is a good approximation for the time-
dependent problem. We also investigate the induced pho-
ton sidebands and the space and time dependent proba-
bility current density.
Our paper is organized as follows: in Secs. II and

III we describe the theoretical framework with Gordon-
Volkov states and derive the wave equations using Flo-
quet theory. In Sec. IV we show that a static scattering
model can be thought as a good approximation for the
time-dependent model regarding the transmission spec-
tra. Transmission resonances are analyzed through in-
duced photon sidebands and through space and time de-
pendent probability current for various parameter ranges.
We close our paper by summarizing our findings and
drawing conclusions in Sec. V.

II. MODEL

We consider a one dimensional non-relativistic scatter-
ing model, where a beam of monoenergetic free charged
particles is assumed to interact with two spatially sepa-
rated linearly polarized time-periodic electric fields, see
Fig. 1. The direction of the matter wave propagation is
chosen to be the x axis, which, for the sake of simplicity,
is divided into five regions. In region 1, the potential is
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FIG. 1: Schematic view of the setup we consider. In region 1,
we have an incident monoenergetic free particle wave propa-
gating towards the oscillating time-dependent potential local-
ized in a finite region with length L, inducing reflected and
transmitted waves in region 1 and 5, respectively. In the in-
teraction regions (2 and 4), superpositions of Gordon-Volkov
states [see Eq. (11)] are present.

zero, the Hamiltonian reads

H1 =
p2

2m
, (1)

where p = −i~ ∂/∂x is the canonical momentum op-
erator. We shall assume here an incident plane wave
with energy E0 and the corresponding momentum ~k0 =√
2mE0:

ψin(x, t) = eik0x−
i
~
E0t, (2)

which is a particular solution of the time-dependent
Schrödinger equation generated by H1. The charged
particles are assumed to interact with the laser field in
regions 2 and 4 inducing free reflected and transmitted
waves in regions 1 and 5, respectively, and both left and
right propagating waves in region 3. In more detail, us-
ing dipole approximation and length gauge, in region 2
we have

H2(x, t) =
p2

2m
+ exF (t), (3)

where the external electric field is assumed to have os-
cillating time dependence: F (t) = F0 cos (ωt). At the
boundary of regions 2 and 3 (x = L), F (t) becomes zero,
and, correspondingly, the gradient of the potential also
vanishes in region 3. Since the potential has to be con-
tinuous, we can write

H3(t) =
p2

2m
+ eLF (t) = H2(L, t). (4)

Note that the time dependence of the spatially con-
stant potential corresponds to an overall, time dependent
phase factor for any wave function, and we still have free
propagation in region 3. In region 4, where the second
interaction takes place, the potential of the laser field is
superimposed on the oscillation of H3:

H4(x, t) = H3(t) + ex̃F̃ (t), (5)

where x̃ = x − d − L, and the electric field has the
same amplitude and frequency as in region 2: F̃ (t) =
F0 cos (ωt+ ϕ0). As we shall see later, the phase differ-
ence ϕ0 (which is zero for the example shown in Fig. 1)
can be used to control the transmission probability. Fi-
nally, the Hamiltonian in region 5 describes free prop-
agation again, H5 is spatially constant but oscillates in
time, with its potential part being equal to that of H4

evaluated at the boundary of regions 4 and 5.

III. FLOQUET SOLUTIONS

Since we consider time-periodic Hamiltonians, it is
plausible to use Floquet theory [24–26]. That is, in all
regions, we are seeking solutions of the time dependent
Schrödinger equation in the form

ψj(x, t) = e−
iEjt

~ Φj(x, t), (6)

where Ej is the Floquet quasienergy of ”channel” j,
where the index j is an integer. The Floquet state
Φj(x, t) is a periodic function: Φj(x, t) = Φj(x, t + τ)
with a time period of τ = 2π/ω. Since the global Hamil-
tonian (that can be obtained by applying H1, . . . , H5 in
their respective domains, i.e., regions 1, . . . , 5) is periodic
in time, global Floquet-type solutions (that are defined
on the whole x axis) of the time dependent Schrödinger
equation exist. We can express Φj(x, t) as a Fourier series

Φj(x, t) =

∞
∑

n=−∞

χ(j)
n (x)e−inωt, (7)

where the expansion functions χ
(j)
n (x) do not depend on

time.
Particularly, even in region 1, where the potential is

zero, there exist solutions of the form of (6). We demon-
strate this by taking into account also the correspond-
ing boundary condition for x < 0. For that region, the
physical situation requires to have a superposition of the
incident right propagating free plane wave as given by
Eq. (2) plus the reflected waves. As one can easily see,
E0, the energy of the incoming wave, should be one of the
Floquet quasienergies Ej . Therefore, the wave function
can be written as

Ψ1(x, t) = ψin(x, t) +
∑

n

rne
−iknxe−iωnt, (8)
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where the wave numbers corresponding to different Flo-
quet quasienergies are defined as follows

kn =

√

2mEn

~2
, (9)

and En = E0 + n~ω, where n = (...,−2,−1, 0, 1, 2, ...).
The frequencies appearing in the time evolution are

ωn = En/~ = E0/~+ nω. (10)

We note here, that below a certain integer n, the wave
number kn will be purely imaginary, which describes
evanescent waves, with decaying amplitude as x→ −∞.
The Floquet quasienergies (or frequencies) with different
integers n serve as a plane wave basis set of the wave
functions. In the following, we will construct the solu-
tions of all the other regions using this basis set.
The fundamental solutions of the time-dependent

Schrödinger equation with the Hamiltonian given by
Eq. (3) are the well-known Gordon-Volkov states [27, 28]
in the length gauge:

ψV
q,ϕ0

(x, t) = e−i[α sin 2(ωt+ϕ0)−β(q) cos (ωt+ϕ0)]

× e−iγx sin (ωt+ϕ0)ei(qx−
E(q)
~

t). (11)

Here, we have used similar notations as in Ref. [29]:

E(q) = ~
2q2

2m
+ Up, Up =

e2F 2
0

4mω2
, (12)

and

α = − Up

2~ω
, β(q) = −eqF0

mω2
, γ =

eF0

~ω
. (13)

The ponderomotive potential Up is the classical cycle-
averaged energy of the free charged particle in a sinu-
soidal oscillating electric field. According to (12), the
wave number q is related to E(q) through the dispersion
relation

q =

√

2m(E − Up)

~2
. (14)

and each E(q) is doubly degenerate due to the two pos-
sible propagation directions.
In region 2, the wave function for a given energy reads

ψ2(x, t) = aψV
q,0(x, t) + bψV

−q,0(x, t). (15)

More generally, we can write

Ψ2(x, t) =
∑

n

[

anψ
V
qn,0(x, t) + bnψ

V
−qn,0(x, t)

]

, (16)

where an and bn denote the coefficients of right (or de-
caying) and left propagating (or rising) wave modes, re-
spectively. In order to achieve the Fourier series form (7),
we use the Jacobi-Anger identities

eix sin θ =

∞
∑

s=−∞

Js(x)e
isθ , (17)

eix cos θ =

∞
∑

s=−∞

isJs(x)e
isθ , (18)

where Js denotes the Bessel function of the first kind [30].
As a result, the wave function in region 2 reads

Ψ2(x, t) =
∑

n,p,s

Js(α)i
2s−n+p{apJ2s−n+p[β(qp)]e

iqpx+

+ bpJ2s−n+p[β(−qp)]e−iqpx}e−iγx sin (ωt)e−inωt. (19)

We note that the factor exp [−iγx sin (ωt)] can also be
expanded using the Jacobi-Anger formulas leading to one
more summation index in Eq. (19). However, since in the
fitting equations (see the Appendix) this factor is always
1 or canceled out, we omit the expansion for the sake of
brevity.
After the first interaction region, the particle is in re-

gion 3, outside the influence of the laser-field. It prop-
agates further in this intermediate zone with an altered
energy due to the effect of the electric field in region 2.
This corresponds to a time-periodic oscillating rectangu-
lar potential (see e.g. [31, 32]). Since the commutator
[H3(t), H3(t

′)] = 0, the solution of the time-dependent
Schrödinger equation with the Hamiltonian (4) can be
constructed by direct time-domain integration. Consid-
ering the double degeneracy of the wave numbers, as well
as the desirable Floquet form, the total wave function in
region 3 reads

Ψ3(x, t) =
∑

n

(une
iknx + vne

−iknx)

× e−iγL sinωte−inωt. (20)

Describing the second interaction of the particle wave
with the electric field (in region 4) is very similar to the
first one in region 2. We obtain

Ψ4(x, t) =
∑

n

[

cnψ
V
qn,ϕ0

(x, t) + dnψ
V
−qn,ϕ0

(x, t)
]

× e−iγL sinωte−inωt, (21)

where cn and dn correspond to right and left propagating
modes, respectively. Using the Jacobi-Anger identities
again, we can transform the wave function into Floquet
form

Ψ4(x, t) =
∑

n,p,s

Js(α)i
2s−n+p{cpJ2s−n+p[β(qp)]e

iqpx+

+ dpJ2s−n+p[β(−qp)]e−iqpx}e−iγx sin (ωt+ϕ0)

× e−iγL sin (ωt)e−i(n−p)ϕ0e−inωt. (22)

Finally, the wave function in region 5 consists of free
modes with two additional oscillating phase factors:

Ψ5(x, t) =
∑

n

tne
iknxe−iγL sin (ωt+ϕ0)

× e−iγL sin (ωt)e−inωt. (23)



4

These are the transmitted waves which are propagating
right, see Fig. 1.

We constructed wave functions with purely exponen-
tial time dependences using Floquet theory. For practical
reasons, we use local space coordinates, i.e., the origin is
redefined in each region [e.g., see the introduction of x̃
in Eq. (5)]. The origins of the first and the second re-
gions coincide, which is the zero of the global coordinate
system (see Fig. 1). Therefore, the continuity boundary
conditions for the wave functions and for their derivatives
read

Ψ1(0, t) = Ψ2(0, t), Ψ2(L, t) = Ψ3(0, t),

Ψ3(d, t) = Ψ4(0, t), Ψ4(L, t) = Ψ5(0, t).
(24)

∂xΨ1(0, t) = ∂xΨ2(0, t), ∂xΨ2(L, t) = ∂xΨ3(0, t),

∂xΨ3(d, t) = ∂xΨ4(0, t), ∂xΨ4(L, t) = ∂xΨ5(0, t).
(25)

See the Appendix for the actual fitting equations. Con-
sidering these boundary conditions for each Floquet
channel, we obtain an infinite system of linear equations
for the unknown coefficients. However, since the Bessel
functions (appearing in the expressions of the wave func-
tions) decrease as a function of their index, it is sufficient
to take only a finite number of frequencies into account.
In the next section, we present the results based on this
model.

IV. RESULTS AND DISCUSSION

We investigate time-averaged transmission spectra for
different field parameters using the previously introduced
Floquet theory. As we shall see, the main features of the
transmission probability as a function of the energy of the
incoming particles can be understood using an appropri-
ate static model. More details can be seen by exploring
the role of the different scattering channels. Beside the
time-averaged quantities, we also study the dynamics of
the wave-packets generated by the interaction of the par-
ticle wave with the optical fields.

A. Cycle-averaged transmission probability

The usual probability current density in one dimension
is defined as

j(x, t) =
~

m
Im

[

Ψ∗(x, t)
∂Ψ(x, t)

∂x

]

. (26)

Time-dependent transmission (reflection) probabilities
are given by the ratio of the transmitted (reflected) cur-
rent to the incoming one. By using Eqs. (2) and (23),
one can realize that the time dependence of the proba-
bility currents contain factors exp[−i(n−m)ωt], i.e., the
transmission probability is a periodic function of time.

As we noted before, integer indexes n, that correspond
to imaginary wave numbers kn, mean evanescent modes.
It can be readily seen from Eq. (26), that these waves do
not carry probability currents, neither do they make any
contributions to the transmission probability. The cycle-
averaged current components of reflection and transmis-
sion (normalized to the incoming current) are given by

jRn =
kn
k0

|rn|2, jTn =
kn
k0

|tn|2, (27)

where wave numbers kn are defined in Eq. (9). Thus, the
cycle-averaged reflection and transmission probabilities
read

〈R〉 =
∞
∑

n=n0

jRn , 〈T 〉 =
∞
∑

n=n0

jTn , (28)

where n0 is the lowest Floquet index, for which the wave
number kn is real.
The total probability must be conserved, which is for-

mulated in one dimension as

∂ρ(x, t)

∂t
+
∂j(x, t)

∂x
= 0, (29)

where we define the probability density as ρ = Ψ∗Ψ.
Accordingly,

〈R〉+ 〈T 〉 = 1 (30)

should always hold for any system parameters [32, 33].
This condition also serves as an accuracy indicator of
our calculations. The infinite system of equations has to
be truncated in accordance with an acceptable arbitrary
limit of error. For the results to be presented in the
following, |1−〈T 〉−〈R〉 | ≤ 10−6 is chosen. This condition
can always be met by increasing the number of modes
(Floquet channels) that are taken into account. For the
parameters we used, the highest order Floquet index was
around 25.
In Fig. 2, the cycle-averaged transmission probability

〈T 〉 is plotted as a function of E0, which denotes the
energy of the incoming particle. The parameters corre-
spond to localized optical fields (L ≈ 10nm, d ≈ 20nm)
that can be realized experimentally [23]. As we can see,
in this case the transmission spectrum is complex, there
are numerous maxima and minima. The most important
parameter here is the ratio of the de Broglie wavelength
λdB = 2π/k0 of the incoming particle and the separation
of the interaction regions, d. When, e.g., d = n(λdB/2),
with a large integer n, increasing E0 by a few percent of
its initial value can result in a similar ratio of d and λdB,
with n replaced by n+1. Since the length of d corresponds
again to an integer multiple of λdB/2, the interference
pattern will be approximately the same. Therefore, for
d ≫ λdB, whenever we see e.g., a peak in the transmis-
sion spectrum, it will be repeated multiple times within a
short energy interval. This is the case for the parameter
range shown in Fig. 2. In order to simplify the interpre-
tation, in the following we consider the regime where d is
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FIG. 2: Cycle-averaged transmission probability 〈T 〉 as a
function of the energy of the incoming particle E0. Param-
eters in atomic units are F0 = 0.00488, L = 200, d = 400,
ϕ0 = π and ω = 0.057322 corresponding to a wavelength of
800nm.

not too large in comparison to λdB , which leads to a less
complex interference pattern, the understanding of which
can be straightforwardly transferred to different param-
eter regimes as well. Let us note that by increasing d,
it is not only the number of the peaks in the transmis-
sion spectra that is seen to increase, but the widths of
the individual peaks also change. Larger separation of
the interaction regions results in narrower peaks, which
is general for Ramsey-like setups, and allows e.g., precise
energy filtering. Besides these quantitative differences,
according to our results, the physical picture that ex-
plains the interference pattern for d ≥ λdB is still valid
for d≫ λdB, and all the results, including the ϕ0 depen-
dence of the transmission, hold also in this case.

FIG. 3: Cycle-averaged transmission probability 〈T 〉 (red
solid line) and transmission probability for the correspond-
ing static double barrier (blue dashed line, see the main text
for more details) as a function of the energy of the incom-
ing particle E0 in atomic units. Parameters are F0 = 0.1,
L = 10, d = 30, ω = 0.2 and ϕ0 = π. For low energies,
the cycle-averaged transmission probability has peaks at the
same input energies where transmission resonances occur in
the static double barrier model.

Fig. 3 shows the cycle-averaged transmission probabil-

ity 〈T 〉 as a function of the energy of the incoming par-
ticle. (This is denoted by red solid line, while the mean-
ing of the dashed blue line will be explained in the next
subsection.) Increasing this energy means that the trans-
mission probability approaches unity as expected. How-
ever, before the saturation happens, a system of trans-
mission peaks and dips are observed at particular values
of E0. The details of the transmission spectrum will be
explained in successive steps in the next subsections.

B. Scattering resonances

As we can see, in regions 2 and 4 of Fig. 1 (where
the oscillating field is localized) the wave numbers de-
fined by Eq. (14) are exactly the same as in the case of a
static rectangular potential barrier with a height of the
ponderomotive potential Up defined in Eq. (12), where
Up ≥ 0 holds for any charged particle. Along this line,
as a first approximation, we can replace the two oscillat-
ing linear potentials with a static, symmetric rectangular
double-barrier system [34, 35]. The first consequence of
this model is a correct prediction for the overall E0 de-
pendence of the time averaged transmission probability:
when E0 ≪ Up, 〈T 〉 is close to zero, while for input ener-
gies considerably above Up, it is not far from unity. (See
the dashed blue line in Fig. 3.) Clearly, the transition
between 〈T 〉 = 0 and 1 takes place around Up.
Additional aspects of the transmission spectra can also

be understood using the static model described above.
By determining the transmission probability of an incom-
ing particle of energy E0 for two rectangular barriers of
height Up as a static scattering process, we obtain mul-
tiple sharp resonances at certain energies, as shown in
Fig. 3 by the blue dashed line.
Transmission resonances are generally related to the

presence of bound states, quasi-bound states or other lo-
calized solutions. In order to understand the transmis-
sion spectra shown in Fig. 3, it is instructive to find the
eigenstates and eigenenergies of the static double barrier
system. To this end, we consider a discretized version
of the model, where the time-independent Schrödinger
equation is solved with two spatially separated poten-
tial barriers of height Up. Periodic boundary condition
is used: the Hamiltonian matrix is constructed in such
a way that the rightmost grid point is connected to the
leftmost one.
Fig. 4 shows the probability densities calculated for

three such eigenstates which are found to be localized
between the two potential barriers that are indicated by
black dashed lines in the figure. These states correspond
to the same energies, where the transmission spectrum
(in Fig. 3) has pronounced peaks. In other words, the
reason for the transmission resonances observed for the
static potential barriers is the existence of these localized
states.
Returning to Fig. 3, now it is clearly seen, that the

previously introduced scattering problem with oscillat-
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FIG. 4: Probability densities of the first three localized states
in the double barrier system. Localized states with increas-
ing eigenenergies are denoted by blue, red, and green lines,
respectively. As a reference, the potential barriers are drawn
by black dashed lines.

ing potential also has transmission resonances around
these particular energies. That is, the static model can
be viewed as a first approximation for low energies (be-
low E0 = ~ω). However, as it is clear by comparing the
red and blue curves in Fig. 3, for higher energies, the
oscillation of the potential results in a structured trans-
mission spectrum that cannot be explained by the static
model. The physical processes determining this part of
the spectra will be examined in the following subsection.

C. Shifted, ”multiphoton” resonances

FIG. 5: Cycle-averaged transmission probabilities 〈T 〉 as a
function of the incoming particle’s energy E0 in atomic units.
Parameters: L = 10, d = 10, and ϕ0 = π. The pale circles
and triangles correspond to the first and second scattering
resonances, respectively.

As a next step, we investigate the scattering process
by varying the parameters so that the pondoromotive
energy Up defined by (12) is kept constant. In this way
the static model introduced in the previous subsection
is unchanged (by definition), and we can explore effects

beyond this approximation. (In other words, we are to
explain the difference between the two curves in Fig. 3.)
Fig. 5 shows that for different electric field amplitudes
and angular frequencies of oscillation, the locations of
the resonances (below E0 = ~ω) stay approximately the
same. In more details, the parameters in this figure cor-
respond to only two static scattering resonance energies
(at E0 = 0.01926 and 0.0643 a.u.), which are denoted
by gray dashed lines as references. As we can see, the
static barriers indeed mean good approximation for the
expected resonance energies when E0 < ~ω.
For larger input energies, however, there are even more

peaks and dips in the transmission probability for the os-
cillating case. In Fig. 5, circles and triangles correspond
to the static scattering resonance energies shifted by n~ω.
These resonances can be explained by noticing, that af-
ter losing an integer multiple of the energy quanta ~ω,
the energy of the scattered particle coincides with the
energy of one of the previously shown localized states.
In this sense, the pale circles and triangles correspond
to the first and second scattering resonance energies, re-
spectively. Note that this explains the energy value at
which these resonances appear, but the behavior of the
transmission probabilities at these energies (e.g., whether
we experience a peak or a dip) needs a more detailed de-
scription, see the next subsection.

FIG. 6: Cycle-averaged transmission probability 〈T 〉 as a
function of incoming particle’s energy E0 in atomic units. Pa-
rameters: F0 = 0.1, L = 10, d = 10, ω = 0.3 and ϕ0 = π. All
the insets show the individual current contributions jTn of the
Floquet channels to the transmission probability for different
values of E0.

As an additional interesting feature, Fig. 6 shows the
transmission probability as well as the contributions of
every single Floquet channel to it at different energies.
Although the transmission probability is almost unity in
the three specified energies, they correspond to entirely
different probability current distributions as it is shown
by the insets of Fig. 6. The blue dot in the insets marks
the probability current of the central Floquet channel
(n = 0).
When the incoming energy E0 reaches ~ω, the scat-

tering channel n = −1 opens and can also contribute
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to the transmission probability. The same happens after
every single additional energy quantum ~ω: a previously
evanescent wave mode transforms into a propagating one.
This phenomenon is due to the emission of ”photons”,
where the particle can transmit energy to its environ-
ment. Therefore, the probability currents jTn can be also
called the ”multiphoton” components of transmission.

D. Phase dependence of the transmission

So far, Figs. 3, 5 and 6 show transmission spectra when
the two localized electric fields have a phase difference ϕ0

of π, which corresponds to a symmetric oscillating trape-
zoid potential. In the following, we inspect the phase
difference dependence of the scattering process.

FIG. 7: Transmission probabilities as a function of the phase
difference ϕ0 for different lengths d of region 3. System pa-
rameters: E0 = 0.025, λdB = 28.0993, F0 = 0.1, L = 10,
ω = 0.2.

Fig. 7 shows the transmission probability as a func-
tion of ϕ0 for different separation distances (denoted by
d) of the optical fields. The quasiperiodicity of the time-
averaged transmission probability as a function of d (with
a period of λdB/2) clearly shows the fact that we have
already mentioned earlier: for two values of d for which
2d1/λdB and 2d2/λdB differs by only an integer, the in-
terference pattern is very similar, leading to similar trans-
mission probabilities. According to our calculation, when
all other parameters are fixed, 〈T 〉 can change 50% as a
function of ϕ0, and this behavior is observable also for
experimentally relevant parameter ranges.
In order to understand the detailed role of the phase

difference in the scattering process, we analyze the space
and time dependence of the probability current density.
Generally, due to the population of various Floquet chan-
nels, the solution will obviously not be monoenergetic,
propagating wavepackets emerge. As a physical picture,
we may consider that the wave-packets generated in re-

gion 2 approach the second optical field, where, depend-
ing on the relative phase difference ϕ0, the slope of the
potential experienced by the wave-packets will be differ-
ent. In other words, the wave packets entering region
4 will either experience an ”attractive” potential that
forces them to move towards region 5 (and consequently
increase the transmission probability), or a ”repulsive”
one leading to reflection. As a consequence, focusing on
transmission resonances, we can observe that transmis-
sion peaks can transform into dips and vice versa as we
sweep through ϕ0. Clearly, this is only a first approach
(since, e.g., oppositely moving wave-packets in region 3
can interfere), but it can capture the essential mechanism
beyond the ϕ0 dependence of 〈T 〉.

FIG. 8: Density plot of j(x, t) as a function of time and co-
ordinate x. For parameters E0 = 0.06, F0 = 0.1, L = 10,
d = 10, and ω = 0.2, panels (a) and (b) correspond to the
maximal and minimal transmission probabilities, respectively.
Numerically: 〈T 〉 = 0.8941 at ϕ0 = 3.3772 for panel (a), and
〈T 〉 = 0.392 at ϕ0 = 0.7226 in panel (b). Horizontal dashed
lines indicate the boundaries of the different regions, vertical
ones correspond to the zeros of the classical force exerted on
the charged particle. The sign of this force is also shown in
the various space-time regions.

As an illustration, Fig. 8 (a) and (b) show density plots
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of j(x, t) for two different ϕ0 values (all other parame-
ters are the same, see the caption). Subfigures (a) and
(b) correspond to the maximum and minimum of 〈T 〉,
respectively. In both cases, the ripples in region 1 are
related to the interference of the incoming and reflected
waves. Two optical cycles are shown, and the ± signs in
the interaction regions show the sign of the classical force
that corresponds to the oscillating potential. As we can
see, when the transmission probability is minimal, the
most pronounced wave packet reaches region 4 in a time
interval when the oscillating potential repels it. On the
other hand, as it is shown by Fig. 8 (a), the maximum
of 〈T 〉 corresponds to the case when the wave packet in
the second interaction region is pushed towards region
5. Note that for higher input energies and stronger op-
tical fields more structured wave-packets are generated
in the outermost region. Additionally, when E0 ≫ Up

(or E0 ≪ Up) 〈T 〉 is very close to unity (or zero) and
consequently cannot have strong ϕ0 dependence. There-
fore, in order to control the transmission by changing
ϕ0, the parameters of the electric fields must correspond
to a ponderomotive potential close to the characteristic
kinetic energy, E0, of the particle beam.
As a possible application, let us emphasize that the

time-averaged transmission probability can strongly de-
pend on the phase difference ϕ0 also at the transmission
resonances. For large enough separation of the inter-
action regions, these resonance peaks are narrow, and
consequently, for a realistic, non-monoenergetic particle
beam, they can serve as narrow band energy filters. More
interestingly, the properties of these energy filters can be
controlled by changing only ϕ0, without modifying any
other parameters of the experimental setup.

V. SUMMARY AND CONCLUSIONS

We presented a non-relativistic time-periodic scatter-
ing problem where a charged particle, e.g., an electron
was assumed to be scattered on two spatially localized
time-periodic optical fields. Considering dipole approx-
imation and using Floquet theory, the cycle-averaged
transmission probabilities were calculated with differ-
ent system parameters. Results showed a very sophisti-
cated spectrum, which was explained in successive steps.
First, we recognized that a double potential barrier sys-
tem (with barrier heights being equal to the pondero-
motive potentials) serves as a fair approximation for low
energies. We determined the energies of the scattering
resonances in the static model, and identified them in
the spectrum of the time-dependent model. We also ex-
plained the additional resonances occurring at higher en-
ergies through the behavior of the probability currents
belonging to the Floquet channels. Finally, we explained
the phase difference dependence of the transmission prob-
ability by inspecting the temporal behavior of the gener-
ated wave-packets.
The results presented here point out how optical fields

can control moving charged particles. Specifically, we de-
termined the parameter range in which the mere phase
difference of the optical fields can control the transmis-
sion probability. Although we used the context of a beam
propagating in free space, understanding the basic phe-
nomena that govern interferometric processes induced by
separated fields is crucial also from the viewpoint of ultra-
fast, light-induced electronics, i.e., when the charged par-
ticles move in a solid. Although our model focuses on the
most important, qualitative aspects of the interaction, it
can provide an adequate first approach to more complex
systems as well. With acceptable increase of numerical
costs, our method can also treat two dimensional prob-
lems or bichromatic excitation. As an important general-
ization, the spatial dependence of the exciting fields can
also be taken into account.
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Appendix

As an example, the equation describing the continuity
of the wave function at the boundary of the first and
second region, for the nth Floquet channel reads

δn0 + rn =
∑

p,s

Js(α)i
2s−n+p{apJ2s−n+p[β(qp)]+

+ bpJ2s−n+p[β(−qp)]}, (31)

where the factor exp[−iγx sin (ωt)] equals unity at x = 0.
The fitting equation originating from the continuity of
the derivatives is a bit more complex. The wave func-
tion Ψ2(x, t) has two coordinate-dependent factors. The
derivatives read as follows:

∂

∂x

{

e−iγx sin (ωt)e±iqpx
}

= e−iγx sin (ωt)

× e±iqpx [−iγ sin (ωt)± iqp] . (32)

At the boundary x = 0, the derivative is

− γ

2

(

eiωt − e−iωt
)

± iqp. (33)
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Therefore, after shifting the summation indices, the fit-
ting equations for the derivatives read

ik0δn0 + rn(−ikn) =
∑

p,s

Js(α)i
2s−n+p+1×

×
{

apJ2s−n+p[β(qp)]

(

qp +
γ(2s− n+ p)

β(qp)

)

+

+bpJ2s−n+p[β(−qp)]
(

−qp +
γ(2s− n+ p)

β(−qp)

)}

. (34)

When fitting at the boundary of regions 2 and
3, exp (−iγL sinωt) cancels out. This factor and
exp [−iγL sin (ωt+ ϕ0)] in region 4 and 5 are also found
to be trivial in the corresponding equations.
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P. Földi, Phys. Rev. B 88, 075438 (2013), URL
http://dx.doi.org/10.1103/PhysRevB.88.075438.

http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1038/nphoton.2014.28
http://dx.doi.org/10.1038/ncomms13948
http://dx.doi.org/10.1016/j.ultramic.2016.12.005
http://dx.doi.org/10.1038/nature08662
http://dx.doi.org/10.1038/nphys1863
http://dx.doi.org/10.1080/00018732.2010.505452
http://dx.doi.org/10.1017/S0305004100011105
http://dx.doi.org/10.1103/PhysRevLett.56.827
http://dx.doi.org/10.1038/35093065
http://dx.doi.org/10.1021/nl100613s
http://dx.doi.org/10.1038/nphys3844
http://dx.doi.org/10.1038/nature14463
http://dx.doi.org/10.1038/ncomms14342
http://dx.doi.org/10.1103/PhysRevLett.111.134803
http://dx.doi.org/10.1021/nl304365e
http://dx.doi.org/10.1021/acs.nanolett.6b04893
http://dx.doi.org/10.1088/1367-2630/12/12/123028
http://dx.doi.org/10.1103/RevModPhys.85.1083
http://dx.doi.org/10.1002/andp.201200162
http://dx.doi.org/10.1016/j.spmi.2016.08.018
http://dx.doi.org/10.1063/1.342766
http://dx.doi.org/10.1038/nature10196
http://dx.doi.org/10.1103/PhysRev.138.B979
http://doi.org/10.1016/j.physrep.2004.11.002
http://dx.doi.org/10.1088/0953-4075/31/9/025
http://dx.doi.org/10.1103/PhysRevB.60.15732
http://dx.doi.org/10.1103/PhysRevB.88.075438


10

[33] E. Saczuk and J. Z. Kamiński, physica status so-
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