
Is Refactoring Always a Good Egg? Exploring the Interconnection
Between Bugs and Refactorings

Amirreza Bagheri

University of Szeged
Hungary

bagheri@inf.u-szeged.hu

Péter Hegedűs
University of Szeged

Hungary
hpeter@inf.u-szeged.hu

ABSTRACT
Bug fixing and code refactoring are two distinct maintenance actions with
different goals. While bug fixing is a corrective change that eliminates a
defect from the program, refactoring targets improving the internal quality
(i.e., maintainability) of a software system without changing its
functionality. Best practices and common intuition suggest that these code
actions should not be mixed in a single code change. Furthermore, as
refactoring aims for improving quality without functional changes, we
would expect that refactoring code changes will not be sources of bugs.
Nonetheless, empirical studies show that none of the above hypotheses are
necessarily true in practice. In this paper, we empirically investigate the
interconnection between bug-related and refactoring code changes using the
SmartSHARK dataset. Our goal is to explore how often bug fixes and
refactorings co-occur in a single commit (tangled changes) and whether
refactoring changes themselves might induce bugs into the system. We
found that it is not uncommon to have tangled commits of bug fixes and
refactorings; 21% of bug-fixing commits include at least one type of
refactoring on average. What is even more shocking is that 54% of bug-
inducing commits also contain code refactoring changes. For instance, 10%
(652 occurrences) of the Change Variable Type refactorings in the dataset
appear in bug-inducing commits that make up 7.9% of the total inducing
commits.

KEYWORDS
Bug inducing commits, refactoring, tangled code changes, empirical
analysis

ACM Reference format:
Amirreza Bagheri and Péter Hegedűs. 2022. Is Refactoring Always a Good
Egg? Exploring the Interconnection Between Bugs and Refactorings. In
Proceedings of MSR’22: Proceedings of the 19th International Conference
on Mining Software Repositories (MSR 2022). ACM, New York, NY, USA,
5 pages.

1 INTRODUCTION
Fixing software defects and improving code structure with refactoring are
two of the most common software maintenance actions. They are inherently
different in nature. A bug fix is a corrective code modification that fixes a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

MSR '22, May 23–24, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9303-4/22/05…$15.00
https://doi.org/10.1145/3524842.3528034

flaw in the program. Developers correct the undesirable behavior by
altering the code, database, or configuration, among other things. The
method they use to fix the bug will be determined by the type of bug.
Refactoring [6] on the other hand, is a code modification targeting the
improvement of the internal software quality without changing its
functional behavior. Since these typical software development activities are
very different in their nature, researchers have extensively studied them
separately.

Having high-quality and large-scale libraries of validated bugs and their
concise patches collected from real-world applications are crucial for
studying them. On the one hand, real bugs/patches are required for a
thorough examination of a variety of automatic or semi-automatic methods
for detecting problematic software programs, to finding incorrect
statements [7], [8] and fixing incorrect applications [9], [10]. These
methods are expected to function in real-world situations. As a result, before
such approaches can be widely used in the field, they must be evaluated
with a significant number of real bugs/patches from real-world applications
[11]. Real bugs and fixes, on the other hand, may provide inspiration for
finding, locating, and repairing software flaws. Researchers could, for
example, establish which types of statements are more error-prone by
evaluating genuine defects, and then try to repair those statements first
during autonomous program repair [12]. The common repair patterns
learned from human-written patches are another good example. Using such
patterns improved the performance of automatic program repair greatly.
[13]. Finally, statistics and learning-based methods to autonomous software
repair [14] and bug identification [15] also rely on many real bugs/patches.

The research community has spent a lot of time looking into software
refactoring as well. Observational studies investigated why and how
developers perform refactoring [16], [17], [18], [19], [20] what refactorings
are connected to application performance indicators [21], [22], [23], [24],
developers' productivity [25], and how refactoring relates to other
development tasks[26] .

Since refactorings are quality improving actions that do not alter
functionality and bug fixes are targeted changes to correct functional flaws,
one would expect that these activities are independent of each other.
Nonetheless, despite the intuition, some researchers started to study the
relationship between bugs and refactoring activities. Interestingly,
according to some researchers [27], developers are typically apprehensive
about refactoring efforts since they may introduce defects. Several studies
have investigated the relationship between refactoring [28] and bugs,
analyzing software repositories to see how much refactoring activities
introduce bugs [29]. Weibgerber and Diehl [30] investigated the
relationship between refactoring actions and the number of bug reports
opened in the following days and found no significant link.

In this work, we leverage the wealth of bug related and refactoring activity
data recorded in the SmartSHARK [1] dataset to empirically investigate the
interconnection between bugs and refactorings. Aligned with previous
works, we found that it is not uncommon to have tangled commits of bug
fixes and refactorings; 21% of bug-fixing commits include at least one type
of refactoring on average. What is even more shocking is that 54% of bug-

mailto:permissions@acm.org
https://doi.org/10.1145/3524842.3528034

MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA Bagheri and Hegedűs

inducing commits also contain code refactoring changes. We also identified
the refactoring types that appear most frequently in bug inducing commits.

2 STUDY DESIGN
To explore the interconnections between bugs and refactorings, we
designed a study based on the SmartSHARK [1] dataset of Java software
repositories [2], which contains data for 96 projects, in particular the
refactoring and bug-fixing activities, manually validated links between
commits and bug issues, as well as the type of issues [4], and manually
validated line labels that mark which changes contributed to a bug fix [5].
SmartSHARK is not just a dataset but a platform for replicable and
reproducible software repository mining, a dataset that combines detailed
information from the version control system with issue tracking data,
GitHub pull request data, and Travis CI data. All the data in this database
also has links to the various sources of information. We addressed the
following research questions with the help of SmartSHARK:
RQ1. How common it is that a bug-fixing commit contains refactoring
changes as well?
Our hypothesis is that bug-fixes should be independent changes not
including any other types of code modifications. However, previous studies
[27], [28] suggest that in practice, commits often contain tangled code
changes. Therefore, we investigate how common it is that developers
perform refactoring actions tangled together with bug-fixes.
RQ2. Do refactoring operations appear in code modifications inducing
bugs?
We investigate if refactoring activities may lead to introducing bugs in the
system (i.e., we can detect a bug fixing activity on the refactored code later
in the commit history). For this, we analyzed if the commits marked as ‘bug
inducing’ in the dataset also contain refactoring actions or not.
RQ3. What are the most common refactoring types appearing in bug
inducing commits?
Finally, if we find that bug inducing changes may contain refactoring code
modifications as well, we explore what are the most common types of
refactorings we observe. It can help us understand what are the most
‘dangerous’ refactoring types where the developers need to pay special
attention not to introduce bugs alongside with the modifications.

3 SMARTSHARK MINING
To carry out the study and answer our research questions, we analyzed the
change history of 96 projects stored in the SmartSHARK dataset version
2.2. It is critical in our study to identify bug-fixing commits and those that
reference the id of the issue resolved by the commit. Concerning the first
point (i.e., labels for bugs), each commit in SmartSHARK has a set of labels
indicating if that commit is a bug-fix or not, which are either automatically
inferred by heuristics or confirmed by manual validation. In terms of the
second issue, having an explicit link between commits and defects allows
us to pinpoint the bug-fixing commits we require for our research. To find
commits containing refactoring operations, we used SmartSHARK’s
RMiner detection tool results. The precision and recall of Rminer [3] are
expected to be 98 percent and 87 percent, respectively. For finding fix-
inducing updates, we searched for file actions related to the commits with
an ‘inducing’ flag. All the mining scripts and collected data is available
online.1

4 STUDY RESULTS
RQ1. How common it is that a bug-fixing commit contains refactoring
changes as well?
Refactorings are behavior-preserving source code modifications, according
to Fowler [6]. The fundamental goal of refactoring is to increase
maintainability or comprehensibility, as well as to minimize the code
footprint if necessary. Here we analyze if refactoring activity can be
triggered by a bug in the code by analyzing bug fixing commits. We
discovered that 41 out of 96 projects do have validated bug-fixing commits
that contain refactoring activities as well. Moreover, for these projects a

1 https://doi.org/10.5281/zenodo.6381329

quite large portion of bug-fixing commits were labelled as refactoring
commits as well. We relied on the label 'validated_bugfix' stored in
SmartSHARK for each commit to identify. To find out if that commit
contains refactoring actions, we observed the entries in the ‘refactoring’
collection referencing the same commit id. If a refactoring entry pointing to
the same commit id had 'rMiner' value in its ‘detection_tool’ field, we
identified this bug-fixing commit affected by refactoring as well. We found
a total of 2,345 bug-fixing commits that also include refactorings in the
SmartSHARK data set.

Project NRB RNB RB R%
ant-ivy 440 447 128 0.23
archiva 396 1107 148 0.27
calcite 250 908 177 0.41
cayenne 686 1479 164 0.19
commons-bcel 42 130 7 0.14
commons-beanutils 51 161 8 0.14
commons-codec 48 161 11 0.19
commons-collections 75 572 13 0.15
commons-compress 165 382 41 0.20
commons-configuration 182 759 61 0.25
commons-dbcp 88 243 18 0.17
commons-digester 22 216 4 0.15
commons-imaging 20 211 6 0.23
commons-io 98 220 21 0.18
commons-jcs 53 288 19 0.26
commons-jexl 109 331 54 0.33
commons-lang 213 552 29 0.12
commons-math 316 1075 80 0.20
commons-net 138 168 38 0.22
commons-scxml 46 178 21 0.31
commons-validator 69 129 4 0.05
commons-vfs 88 313 26 0.23
deltaspike 165 413 52 0.24
directory-fortress-core 42 179 10 0.19
eagle 94 211 36 0.28
falcon 218 534 98 0.31
giraph 109 329 32 0.23
gora 91 161 11 0.11
jspwiki 209 904 25 0.11
knox 279 381 69 0.20
kylin 1052 2241 212 0.17
lens 187 480 89 0.32
mahout 269 756 59 0.18
manifoldcf 555 789 116 0.17
nutch 466 403 83 0.15
opennlp 124 283 20 0.14
parquet-mr 84 492 36 0.30
santuario-java 70 466 27 0.28
systemml 207 1427 97 0.32
tika 536 686 134 0.20
wss4j 187 764 61 0.25
Total/Avg. 8539 21929 2345 0.21

 Table 1. No Refactoring and Bug-fix (NRB) commits; Refactoring and
No Bug-fix (RNB) commits; Refactoring and Bug-fix (RB) commits; R%
= RB/(RB+NRB) proportion of RB commits from all bug-fixing commits

Table 1 presents the detailed results for the 41 projects we found bug-fixing
commits tangled with refactoring actions. For the rest of the projects, we
found no bug-fixing commits or only bug-fixes not including refactoring
operation at all (thus the RB count is 0). The first column (NRB) in the table
shows the number of bug-fixing commits that do not include refactorings,
the second column (RNB) shows the number of commits identified as
refactorings but not bug-fixes, the third column is the number of commits
where bug-fixing and refactoring co-occur, and the last column shows the

https://doi.org/10.5281/zenodo.6381329

Is Refactoring Always a Good Egg? MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA

ratio of RB commits compared to all bug-fixing commits. As can be seen,
21% of bug-fixing commits include at least one type of refactoring on
average. So, this is not uncommon to perform refactorings alongside with
bug fixing. This ratio is the lowest (5%) for the ‘commons-validator’
project, while the highest (41%) for project ‘calcite’. However, this does
not mean that most of the refactoring activities happen together with bug
fixes. There are 21,929 commits containing refactoring but not labelled as
bug-fix. The number of refactoring commits that are bug-fix commits as
well is 2345, which is slightly more than 10% of all refactoring commits.

Answer to RQ1. It is not uncommon for bug-fixes and code refactorings to
co-occur in the same commit. We found that 41 out of the 96 projects had
such commits. We observed the highest proportion of such commits
compared to the total number of bug-fixing commits for project ‘calcite’,
where 41% of all bug removal code changes contained at least one
refactoring operation as well. Nonetheless, refactorings do not typically
occur tangled with bug fixes as only 10% of all the refactoring actions in
these projects were identified in bug-fixing commits.

RQ2. Do refactoring operations appear in code modifications inducing
bugs?
In theory, refactoring is described as performing simple actions in such a
way that they are "unlikely to go wrong" and generate errors. To empirically
investigate this hypothesis, we study the fix-inducing changes in commits
overlapping with refactoring actions (i.e., search for commits that contain
bug inducing changes and include at least one refactoring operation as well).
We stress here, that again, we only observe the co-occurrence of bug-
inducing changes and refactorings. A refactoring itself only induces a bug
if a line affected by the refactoring is also modified in a bug-fixing commit
later in the project history. Nonetheless, a refactoring could still influence
the introduction of a bug even if it does not directly touch a line changed in
the bug-fix. Therefore, it is very difficult to decide if a refactoring
contributes to the bug introduction or simply co-occur with bug-inducing
changes. We stress that here we only analyze whether refactoring operations
appear in bug-inducing commits or not but do not track the exact modified
lines back to bug-fixes. Nonetheless, it is in itself an interesting empirical
question whether refactoring operations are associated with bug-inducing
changes or not.
We used the bug-fix commits as a start to dig deeper and see what is
happening in the files touched by these code changes. For this, we can locate
bug-inducing commits inside the FileAction entries linked to the commits.
In our study, we used the inducing commits labeled as 'JLMIV+' (Jira Links
Manual(JLM), Issue Validation(IV), only java files(+), skip comments and
empty spaces in blame(+)) that also had 'szz_type' value for the 'inducing'
filed and omitted the ‘hard_suspect’ labels. Then, we investigated
FileAction entries for 'change_file_action_id' and searched the issues for
linked issues in those commits and if they had an issue type labelled as 'bug'
and in the same commit refactorings were detected, we collected them.
These commits are those that induce a bug in the system and contain
refactoring operations as well. One of the projects (‘commons-imaging’)
did not have any bug-inducing changes, therefore we have data for 40
projects in this analysis.
In our findings displayed in Table 2, we discovered that over 54% of the
bug-inducing commits in the selected projects contain refactoring actions
as well on average. The project-wise percentages range from 20%
(‘commons-validator’ project) up to 71% (project ‘calcite’) of all bug-
inducing commits in one project, which is very significant. Refactoring
operations happen rather frequently in code changes leading to bug
introduction. Interestingly, the same two projects are the two extremes as in
case of RQ1. Since ‘commons-validator’ contains the lowest number of
refactoring commits (133) among the 40 projects, it is not surprising that
this is the project where the ratio of refactoring commits co-occurring with
bug-fixes and bug-inducing changes are also the lowest. In the case of
‘calcite’, however, we observe a high number (1085) of refactoring commits
but it is far not the highest. Yet, it contains the highest proportion of bug-
fixing and bug-inducing commits tangled with refactorings among the 40
projects. 71% of all the bug-inducing changes do include refactoring
operations as well.

Project #Bug-Induce RI R%
ant-ivy 313 169 0.53
archiva 444 225 0.50
calcite 408 292 0.71
cayenne 522 317 0.60
commons-bcel 51 13 0.25
commons-beanutils 36 17 0.47
commons-codec 44 16 0.36
commons-collections 52 34 0.65
commons-compress 151 68 0.45
commons-configuration 150 76 0.50
commons-dbcp 63 28 0.44
commons-digester 20 6 0.30
commons-io 67 26 0.38
commons-jcs 128 88 0.68
commons-jexl 200 117 0.58
commons-lang 171 52 0.30
commons-math 284 128 0.45
commons-net 110 22 0.20
commons-scxml 54 29 0.53
commons-validator 35 7 0.20
commons-vfs 94 44 0.46
deltaspike 153 86 0.56
directory-fortress-core 63 33 0.52
eagle 107 71 0.66
falcon 282 180 0.63
giraph 142 104 0.73
gora 37 20 0.54
jspwiki 244 82 0.33
knox 188 106 0.56
kylin 879 525 0.59
lens 311 191 0.61
mahout 341 213 0.62
manifoldcf 440 218 0.49
nutch 270 125 0.46
opennlp 99 41 0.41
parquet-mr 124 82 0.66
santuario-java 96 60 0.62
systemml 490 307 0.62
tika 383 167 0.43
wss4j 187 105 0.56
Total/Avg. 8233 4490 0.54

Table 2. Total number of bug-inducing commits (#Bug-Induce), bug-
inducing commits containing refactoring as well (RI), and their ratio (R%)

Answer to RQ2. The presence of code refactoring is even more significant
in bug-inducing commits than in bug-fixing ones. More than half of the bug-
inducing changes contain refactoring operations as well on average. For
‘commons-validator’ we observed the lowest ratio (20%), while for ‘calcite’
the highest (71%) of bug-inducing commits tangled with refactorings.

RQ3. What are the most common refactoring types appearing in bug
inducing commits?
As we found that a significant portion (54% on average) of the bug-inducing
commits contain refactoring operations as well, we used the SmartSHARK
dataset once again to collect the actual types of refactorings appearing in
such commits. For the sake of this RQ, we only evaluate the case where the
refactoring overlaps with the bug-induce at the commit level. Table 3 lists
the different types of refactorings and shows the number of commits
including at least one such refactoring operation (first column, #Refact), the
number of bug-inducing commits with that type of refactoring (second
column, #Bug-Induce), the proportion of bug-inducing commits containing
that type of refactoring compared to the total number of commits containing
that refactoring (third column, R1%), and the proportion of bug-inducing
commits compared to the total number of bug-inducing commits with that
refactoring operation in the full dataset (fourth column, R2%). Small
refactorings that change types or rename attributes/types (change variable

MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA Bagheri and Hegedűs

type, change return type, rename variable/attribute), as well as extracting
code parts (extract method/attribute/variable/class) have the highest odds of
appearing in bug-inducing code changes (highest R2%). For example, the
Change Variable Type refactoring occurs in 7.92% of all the bug-inducing
commits. Nevertheless, exactly these are the refactorings with the most
occurrences in the dataset. Looking at the R1% values, we can see that
Extract Subclass is at the top with 33%. It means that one third of this
refactoring operation happens in code changes that induce bugs.

Type #Refact #Bug-Induce R1% R2%
change_variable_type 6475 652 0.10 0.0792
extract_method 5257 454 0.09 0.0551
change_return_type 3529 338 0.10 0.0411
extract_attribute 3306 331 0.10 0.0402
rename_variable 2844 241 0.08 0.0293
rename_attribute 1724 213 0.12 0.0259
rename_parameter 2200 208 0.09 0.0253
extract_and_move_meth
d

1228 206 0.17 0.025
move_method 1534 206 0.13 0.0250
extract_variable 1697 199 0.12 0.0242
extract_class 680 162 0.24 0.0197
rename_method 2406 143 0.06 0.0174
extract_superclass 720 136 0.19 0.0165
rename_class 1148 127 0.11 0.0154
move_attribute 1224 116 0.09 0.0141
inline_method 846 111 0.13 0.0135
parametrize_variable 614 102 0.17 0.0124
move_class 1664 87 0.05 0.0106
inline_variable 734 57 0.08 0.0069
pull_up_method 705 57 0.08 0.0069
replace_variable_with_at

ib
479 46 0.10 0.0056

extract_subclass 123 41 0.33 0.0050
pull_up_attribute 467 39 0.08 0.0047
push_down_method 230 38 0.17 0.0046
push_down_attribute 170 36 0.21 0.0044
move_and_rename_class 479 32 0.07 0.0039
extract_interface 206 28 0.14 0.0034
merge_variable 159 23 0.14 0.0028
merge_parameter 127 21 0.17 0.0026
split_attribute 58 12 0.21 0.0015
merge_attribute 48 8 0.17 0.001
split_variable 48 7 0.15 0.0009
move_and_rename_attri
b

18 5 0.28 0.0006
replace_attribute 14 4 0.29 0.0005
split_parameter 28 4 0.14 0.0005

Table 3: Bug-Inducing commits by refactoring types

Answer to RQ3. Type changes of variables and return statements,
renaming attributes and variables, and extracting method or
attribute are the most frequent refactorings appearing in bug-
inducing commits. Moreover, 33% of the extract subclass
refactoring appears in bug-inducing commits, even though it has
only few instances altogether (123) in the dataset. Instances of
move class on the other hand rarely occur in bug-inducing commits
(only 5% of the cases).

5 CONCLUSIONS
The goal of this study was to investigate the relationship between
refactorings and bug-fixing or bug-inducing code changes. As they are

completely different code maintenance activities, our hypothesis was that
they do not co-occur within the same commit. Nonetheless, previous works
already pointed out that this might not be the case in practice.
Using the rich data available in the SmartSHARK dataset, were able to
connect refactoring activities to bug-fixing and bug-inducing commits. For
identifying refactoring operations, we relied on the results of the RMiner
tool included in the dataset, a highly precise detection technique with a
reported 98 percent precision and 87 percent recall. For locating bug-
inducing commits, we used the data produced by the SZZ algorithm, which
is utilized to detect fix-inducing changes in SmartSHARK. We
acknowledge that the validity of our results depends on the accuracy of
these tools/algorithms and data they produce. However, the many high-
quality works relying on these tools and data increase the confidence in the
presented results.
We found that it is not at all uncommon to have refactoring operations
tangled to bug-fixes in a single commit. This suggests that developers in
practice perform code structure improvement upon finding and fixing a
software defect. In 41 out of 96 projects, we found that on average, 21% of
bug-fixing commits contain refactorings as well. Even though the highest
percentage was 41%, refactorings do not typically occur tangled with bug
fixes as only 10% of all the refactoring actions in these projects were
identified in bug-fixing commits.
The presence of code refactorings were even more significant in bug-
inducing commits, where 54% of these commits contained at least one
refactoring operation. We must note, however, that we analyzed only the
co-occurrence of refactorings in bug-inducing changes not that the
refactored lines directly contributed to the defect introduced. Therefore, a
co-occurring refactorings might not be the root causes of the defects.
Nonetheless, this high number of refactorings in bug-inducing code is
alarming. This result might trigger an alert for practitioners by pointing out
that refactoring might not always be behavior-preserving in practice,
therefore developers must be prepared with suitable verification and
validation techniques to mitigate potential hazards caused by refactorings.
We even identified that type changes of variables and return statements,
renaming attributes and variables, and extracting method or attribute are the
most frequent refactorings appearing in bug-inducing commits. Moreover,
33% of the extract subclass refactoring appears in bug-inducing commits,
even though it has only few instances in the dataset. Instances of move class
on the other hand rarely occur in bug-inducing commits (only 5% of the
cases).
In this study, we provided quantitative data that shows the interconnection
of refactorings and bug-fixes as well as refactorings and bug-inducing code
changes. However, further qualitative studies are needed to discover the
precise relationship between them. In the future, we plan to carry out such
analysis on the SmartSHARK data we extracted.

ACKNOWLEDGMENT
The presented work was carried out within the SETIT Project (2018-1.2.1-
NKP-2018-00004). Project no. 2018-1.2.1-NKP-2018-00004 has been
implemented with the support provided from the National Research,
Development and Innovation Fund of Hungary, financed under the 2018-
1.2.1-NKP funding scheme.
Furthermore, Péter Hegedűs was supported by the Bolyai János Scholarship
of the Hungarian Academy of Sciences and the ÚNKP-21-5-SZTE-570
New National Excellence Program of the Ministry for Innovation and
Technology.

REFERENCES

[1] A. Trautsch, F. Trautsch, S. Herbold, “MSR Mining Challenge: The
SmartSHARK Repository Data,” Proceedings of the International
Conference on Mining Software Repositories (MSR 2022), 2022 .

[2] A. Trautsch, F. Trautsch, S. Herbold, B. Ledel, and J. Grabowski,
“The smartshark ecosystem for software repository mining,” in Proc.
of the 2020 Int. Conf. Softw. Eng. - Demonstrations Track, 2020.

[3] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D.
Dig, “Accurate and efficient refactoring detection in commit

Is Refactoring Always a Good Egg? MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA

history,” in Proceedings of the 40th International Conference on
Software Engineering, ser. ICSE ’18. New York, NY, USA: ACM,
2018, pp. 483– 494.

[4] S. Herbold, A. Trautsch, and F. Trautsch, “Issues with szz: An
empirical assessment of the state of practice of defect prediction data
collection,” 2019.

[5] S. Herbold, A. Trautsch, B. Ledel, A. Aghamohammadi, T. A.
Ghaleb, K. K. Chahal, T. Bossenmaier, B. Nagaria, P. Makedonski,
M. N. Ahmadabadi, K. Szabados, H. Spieker, M. Madeja, N. Hoy,
V. Lenarduzzi, S. Wang, G. Rodr´ıguez-P´erez, R. Colomo-Palacios,
R. Verdecchia, P. Singh, Y. Qin, D. Chakroborti, W. Davis, V.
Walunj, H. Wu, D. Marcilio, O. Alam, A. Aldaeej, I. Amit, B.
Turhan, S. Eismann, A.- K.Wickert, I. Malavolta, M. Sulir, F. Fard,
A. Z. Henley, S. Kourtzanidis, E. Tuzun, C. Treude, S. M. Shamasbi,
I. Pashchenko, M. Wyrich, J. Davis, A. Serebrenik, E. Albrecht, E.
U. Aktas, D. Str¨uber, and J. Erbel, “Large-scale manual validation
of bug fixing commits: A finegrained analysis of tangling,” 2020.

[6] FOWLER, M., & BECK, K. (1999). Refactoring: improving the
design of existing code. Reading, MA, Addison-Wesley

[7] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software
Engineering, vol. 42, no. 8, pp. 707–740, 2016.

[8] J. Lee, D. Kim, T. F. Bissyand´e, W. Jung, and Y. Le Traon,
“Bench4BL: reproducibility study on the performance of ir-based
bug localization,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2018,
pp. 61–72.

[9] D. Jeffrey, M. Feng, N. Gupta, and R. Gupta, “BugFix: A learning-
based tool to assist developers in fixing bugs,” in 2009 IEEE 17th
International Conference on Program Comprehension. IEEE, 2009,
pp. 70–79.

[10] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert:
Suggesting repairs for broken unit tests,” in 2009 IEEE/ACM
International Conference on Automated Software Engineering.
IEEE, 2009, pp. 433–444.

[11] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software
Testing and Analysis, 2014, pp. 437–440.

[12] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. Marcote, T.
Durieux, D. L. Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions
on Software Engineering, vol. 43, no. 01, pp. 34–55, jan 2017.

[13] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 2013 35th International
Conference on Software Engineering (ICSE), 2013, pp. 802–811.

[14] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L.
Zhang, “Precise condition synthesis for program repair,” in
Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28,
2017, S. Uchitel, A. Orso, and M. P. Robillard, Eds. IEEE / ACM,
2017, pp. 416–426.

[15] H. Zhong, X. Wang, and H. Mei, “Inferring bug signatures to detect
real bugs,” IEEE Transactions on Software Engineering, pp. 1–1,
2020.

[16] Emerson Murphy-Hill, Chris Parnin, and Andreaw P. Black. 2011.
How We Refactor, and How We Know It. Transactions on Software
Engineering 38, 1 (2011), 5–18.

[17] Anthony Peruma, Mohamed Wiem Mkaouer, Michael J. Decker, and
Christian D. Newman. 2018. An Empirical Investigation of How and
Why Developers Rename Identifiers. In Proceedings of the 2Nd
International Workshop on Refactoring (IWoR 2018). 26–33.

[18] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016.
Why we refactor? confessions of GitHub contributors. In
Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016. 858–870.

[19] Carmine Vassallo, Giovanni Grano, Fabio Palomba, Harald Gall,
and AlbertoBacchelli. 2019. A large-scale empirical exploration on
refactoring activities in open-source software projects. Science of
Computer Programming 180, 1 (2019) ,1–15.

[20] Yi Wang. 2009. What motivate software engineers to refactor source
code? Evidences from professional developers. In Software
Maintenance, 2009. ICSM 2009. IEEE International Conference on.
413 –416.

[21] Mohammad Alshayeb. 2009. Empirical investigation of refactoring
effect on software quality. Information and Software Technology 51,
9 (2009), 1319 – 1326.

[22] Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego
Cedrim, and Alessandro Garcia. 2017. How Does Refactoring Affect
Internal Quality Attributes?: A Multi-project Study. In Proceedings
of the 31st Brazilian Symposium on Software Engineering
(SBES’17). 74–83.

[23] Konstantinos Stroggylos and Diomidis Spinellis. 2007. Refactoring–
Does It Improve Software Quality? In Proceedings of the 5th
International Workshop on Software Quality (WoSQ ’07). IEEE
Computer Society, Washington, DC, USA,10–.

[24] Gábor Szoke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor
Gyimóthy.2014. Bulk Fixing Coding Issues and Its Effects on
Software Quality: Is It Worth Refactoring? In Source Code Analysis
and Manipulation (SCAM), 2014 IEEE 14th International Working
Conference on. IEEE, 95–104.

[25] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto
Sillitti, and Giancarlo Succi. 2008. Balancing Agility and Formalism
in Software Engineering. Chapter A Case Study on the Impact of
Refactoring on Quality and Productivity in an Agile Team, 252–266.

[26] Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. 2019. Are
Refactorings to Blame? An Empirical Study of Refactorings in
Merge Conflicts. In 26th IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2019. 151–162.

[27] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano
Di Penta, Rocco Oliveto, and Orazio Strollo. 2012. When Does a Refactoring
Induce Bugs? An Empirical Study. In 12th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2012, Riva
del Garda, Italy, September 23-24, 2012. 104–113.

[28] Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, Anderson Uchôa, Ana
Carla Bibiano, Alessandro Garcia, João Lucas Correia, Filipe Santos, Gabriel
Nunes,Caio Barbosa, and et al. 2018. The Buggy Side of Code Refactoring:
Understanding the Relationship between Refactorings and Bugs. In
Proceedings of the 40 th International Conference on Software Engineering:
Companion Proceeedings (ICSE’18). 406-407.

[29] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan.
2012. A Field Study of Refactoring Challenges and Benefits. In
Proceedings of the 20th International Symposium on Foundations of
Software Engineering (Research Triangle Park, NC, USA).

[30] Peter Weißgerber and Stephan Diehl. 2006. Are refactorings less
error-prone than other changes?.In Proceedings of the 2006
International Workshop on Mining Software Repositories, MSR
2006, Shanghai, China, May 22-23, 2006. 112–118.

