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Abstract
Fracture identification and evaluation requires data from various resources, such as image logs, core samples, seismic data, 
and conventional well logs for a meaningful interpretation. However, several wells have some missing data; for instance, 
expensive cost run for image logs, cost concern for core samples, and occasionally unsuccessful core retrieving process. 
Thus, a majority of the current research is focused on predicting fracture based on conventional well log data. Interpreting 
fractures information is very important especially to develop reservoir model and to plan for drilling and field development. 
This study employed statistical methods such as multiple linear regression (MLR), principal component analysis (PCA), and 
gene expression programming (GEP) to predict fracture density from conventional well log data. This study explored three 
wells from a basement metamorphic rock with ten conventional logs of gamma rays, thorium, potassium, uranium, deep 
resistivity, flushed zone resistivity, bulk density, neutron porosity, sonic porosity, and photoelectric effect. Four different 
methods were used to predict the fracture density, and the results show that predicting fracture density is possible using MLR, 
PCA, and GEP. However, GEP predicted the best fracture density with R2 > 0.86 for all investigated wells, although it had 
limited use in predicting fracture density. All methods used highlighted that flushed zone resistivity and uranium content 
are the two most significant well log parameters to predict fracture density. GEP was efficient for use in metamorphic rocks 
as it works well for conventional well log data as the data is nonlinear, and GEP uses nonlinear algorithms.

Keywords  Fractured reservoir · Fracture density · Multiple linear regression · Well-logging · Gene expression 
programming · Metamorphic basement
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Introduction

Fracture interpretation and evaluation are very important 
in analyzing reservoir characteristics. Fractures improve 
the fluid flow inside the rocks (Li et al. 2021; Rajabi et al. 
2021; Gao et al. 2023), and in some cases, can serve as 
hydrocarbon sinks (Vass et al. 2018; Gamal et al. 2022). 
Fracture detection requires data from core samples and 
image logs for accurate results (Shalaby and Islam 2017; 
Delavar 2022). However, imaging logging could be costly; 
hence, this is not a feasible option (Yang et  al. 2017; 
Hussein 2022), and many wells, especially old wells, 
have no image logs (Delavar 2022). Coring can also be 
problematic to a certain extent as core retrieval processes 
are not always successful (Zazoun 2013), especially 
when coring in a highly consolidated formation (Abdideh 
2016). The core analysis process can be costly and time 
consuming as well (Yang et al. 2017; Hussein 2022).

Conventional well logs can be used as an indirect 
method to evaluate fracture (Delavar 2022). Some of 
the previous studies outline the guidelines to indicate 
fracture indirectly from the conventional well logs (Serra 
1986; Verga et al. 2000; Martinez et al. 2002; Ellis and 
Singer 2007). In recent years, several studies have been 
performed to explore the potential of conventional well 
log data to evaluate internal fractures when image logs 
and core samples are missing, especially for old wells. 
To date, many of these improvements are reliable enough 
to achieve this objective, and most of them leverage 
statistical methods and machine-learning applications 
(Tokhmechi et al. 2009a, 2009b; Tokhmchi et al. 2010; 
Ja'fari et al. 2012; Aghli et al. 2017, 2016, 2020; Pei and 
Zhang 2022; Qiu et al. 2022).

Several studies have been performed on fractures in 
carbonate rocks (Shalaby and Islam 2017; Gamal et al. 2022; 
Hussein 2022). Owing to the advantage and widely available 
conventional well log data, Gamal et al. (2022) proposed 
an integrated workflow to characterize and quantitatively 
analyze the fracture of three carbonate rock wells. Although 
a single definite well log cannot precisely confirm the 
presence of fracture, an integration of all available well logs 
can be an advantage for indirect measurement. However, 
the study also concluded that without spectral gamma ray 
information, a gamma ray log is not a conclusive tool for 
fracture detection. Hussein (2022) analyzed the conventional 
well log data (caliper, gamma ray, neutron, density, and sonic 
log) of two carbonate wells. The study utilized the gamma 
ray log by calculating the shale volume and compared the 
calculated values to the shale volume obtained by neutron-
density logs; the positive difference indicated the fracture 
zones.

A few studies reported the use of only conventional 
well logs to evaluate fractures in reservoirs; and most 
of the papers agreed that porosity logs (density, neutron 
and sonic) also play an important role in analyzing the 
fracture characteristics (Lyu et al. 2016), with each log 
having its own function in the fractured zones. Further, the 
secondary porosity index can be determined using these 
porosity logs. Secondary porosity is one of the fracture 
indicators, although other reasons could also contribute 
to secondary porosity (Shalaby and Islam 2017). Aghli 
et  al. (2020) also studied the potential of using sonic 
and resistivity conventional logs to determine fracture 
parameters. Lyu et al. (2016) reported that for fracture 
intensities > 1 m−1, all three porosity logs together with 
the caliper and resistivity logs display fracture responses 
to a certain extent.

The studies show that conventional well logs can be used 
to predict fracture by analyzing the properties of each data. 
Further, some other studies reported the integration of these 
conventional well logs with other methods. Luo and Tang 
(2013) applied Monte Carlo simulation to four well log 
parameters for the identification of fractures and reduction 
of uncertainty problems. Abdideh (2016) employed multiple 
regression analysis by analysing four log parameters which 
are caliper, sonic, density, and photoelectric factor to 
predict fracture density (FD). A recent study by Tóth et al. 
(2023) employed multiple regression analysis to explore the 
relationship between FD and geophysical log data. The study 
explored the potential of claystone as a potential nuclear 
waste repository and concluded that multiple regression 
analysis is a good tool to be used to predict FD for older 
wells without image logs. Two of the most influencing 
geophysical parameters are resistivity and density logs. 
Aghli et al. (2016) used a differentiation method to analyze 
the fracture responses by conventional logs; however, 
adequate understanding of the study area structure and 
stratigraphy is important when applying this method. In 
addition, wavelet transform is one of the methods employed 
to improve fracture detection. Yang et al. (2017) studied the 
relevance of using wavelet transform to metamorphic rocks 
well log data and is one the few studies that report the use of 
wavelet transform for fractured crystalline rocks, specifically 
metamorphic rocks. The majority of the published literature 
has focused on the fracture in sedimentary rocks. In this 
study by Yang et al. (2017), wavelet transform was applied to 
an integrated curve called as the fractured integrated index. 
The study used density, caliper, deep resistivity (RD), and 
acoustic logs as the main well log data for fracture detection; 
the application of wavelet transform was successful for this 
type of reservoir as the method can detect the same fracture 
numbers as the image logs.

Machine learning and deep learning have evolved 
rapidly each day and provide many solutions to different 
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problems. It is indeed of the powerful prediction methods 
to help solve reservoir and petroleum problems especially 
using the conventional well logs (Zhang et al. 2023a, b). 
In terms of fracture studies, one of the widely studied 
fracture parameters is FD, which many previous studies 
have attempted to predict using different machine-learning 
algorithms. Li et al. (2021) proposed a novel methodology 
to estimate FD and orientation from azimuthal elastic 
impedance difference using singular value decomposition. 
Li et al. (2018) predicted FD using acoustic logging signals 
as inputs and implemented a machine-learning technique, 
which is a genetic algorithm-support vector machine. It was 
able to classify fractures into low, medium, and high fracture 
densities. The model was proven accurate using the image 
logs. Pei and Zhang (2022) used a multi-layer perceptron 
(MLP) machine-learning algorithm to predict fracture 
parameters including FD; the algorithm that had been tested 
for carbonate reservoirs showed 82% accuracy in prediction. 
Rajabi et al. (2021) presented four hybrid models to predict 
FD using 12 input parameters; MLP with a combination of 
particle swarm optimizer (PSO) was suitable in predicting 
FD of a carbonate oil field. The same methodology was 
adopted by Gao et  al. (2023) by using the two similar 
machine-learning-based predictions (MLP-PSO and MLP-
Genetic Algorithm (GA)) as Rajabi et al. (2021). The two 
new algorithms were also used—the least squares support 
vector machine combined with PSO and with GA. Although 
Rajabi et al. (2021) reported that MLP-PSO was a better 
methodology for predicting the FD based on their dataset, 
Gao et  al. (2023) concluded that least squares support 
vector machine-PSO improved the overall prediction as it 
worked for unstructured and non-dependent data, had lower 
adjustment parameters, and fast convergence speed. Delavar 
(2022) agreed with Gao et al. (2023) since the support vector 
machine in combination with other methods, i.e., radial basis 
function and gray wolf optimizer, was superior in accuracy 
for overall fractures detection. The focus of this study was 
not on FD.

Realizing the simplicity in the use of GA, Ferreira (2001) 
combined GA with gene programming and developed a new 
method known as gene expression programming (GEP). 
This newly developed method has been widely applied in 
several fields to solve different issues (Algaifi et al. 2021; 
Chu et al. 2021; Afrasiabian and Eftekhari 2022; Hassan 
et al. 2022; Ari and Alagoz 2023). Since the inception of this 
GEP method, it has been studied rigorously in the literature. 
Undeniably, the applications of GEP are mostly concentrated 
in civil engineering studies. For example, rock strength tests 
such as uniaxial compression strength test study was done 
by Jahed Armaghani et al. (2018) and İnce et al. (2019), 
Jalal and Iqbal (2023) compared the unconfined compression 
strength prediction between GEP and multigene expression 
programming, and Zhang and Zhang (2024) predicted 

coefficient of permeability of soils using GEP and compared 
the performance with some other predictive models. 
Nonetheless, there are a few studies of GEP in the geoscience 
and petroleum engineering field, however, it is still in its 
infancy stage. A few studies that utilized GEP is the study 
by Zhang et al. (2023a) which explored the potential of 
using GEP to the hydraulic fracturing effects specifically 
fracture complexity index after fracturing process. The 
applied GEP method was able to be used for this application. 
Esmaeilpour et al. (2024) aimed to develop a more precise 
model to calculate equations of state that deal with two-
phase geofluids properties. The current simulation models 
for this calculation tend to give unimportant parameter in 
their solving model. The implementation of GEP solved 
this issue and Esmaeilpour et al. (2024) proposed GenEOS 
for accurate and efficient computation of two-phase fluid 
properties mixtures. Other than that, various topics were also 
studied such as Shahabi-Ghahfarokhy et al. (2022) predicted 
the density of pure hydrocarbons and their mixtures, Rostami 
et al. (2017) predicted the CO2 solubility in crude oil, Lv 
et al. (2023) also studied on the fluid solubility but together 
with group method of data handling and GEP, the solubility 
of CO2-N2 gas mixtures in aqueous solutions was predicted. 
In short, GEP has been used widely in many applications 
and field, however, to authors’ best knowledge, GEP has not 
been studied to predict FD based on conventional well-log 
parameters as the inputs and especially predicting FD in a 
metamorphic reservoir.

The aim of this study was to predict the FD in a fractured 
metamorphic hydrocarbon reservoir in the event that image 
logs or core samples are not available. The prediction was 
based on the 10 conventional well logs used for this study: 
gamma ray (GR), spectral gamma ray (thorium (TH), 
potassium (K), uranium (U)), RD, flushed zone resistivity 
(RXO), bulk density (D), neutron porosity (N), sonic 
porosity (S), and the photoelectric effect (PE). Multiple 
linear regression (MLR), principal component analysis 
(PCA), and GEP were used to determine the best method 
for predicting the FD.

Geological setting

The study area was the Mezősas field, located in the north-
ern rim of the Békés Basin (Fig. 1), which is the largest 
and deepest sub-basin in the Pannonian Basin in Southeast 
Hungary (Tóth et al. 2000). This fractured buried-hill hydro-
carbon reservoir has been active for decades.

The area has undergone several subsequent geological 
events that have resulted in a very complex mosaic of 
basement structures (Tari et al. 1992, 1999). The entire 
basement reservoir comprises Variscan metamorphic rocks 
evidenced by previous petrological studies (Tóth et al. 2000; 
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Tóth and Schubert 2018). The Eoalpine compressional 
tectonic evolution during the Cretaceous formed the complex 
nappe systems throughout the metamorphic basement of the 
Pannonian Basin. As a result, the basement at present is 
made of blocks of intermediate and high-grade metamorphic 
rocks with significantly different metamorphic evolutions 
(Tóth et al. 2021) separated by post-metamorphic structural 
elements (Molnár et al. 2015; Hasan et al. 2023).

Due to the formation of the Pannonian Basin during the 
Neogene, normal fault systems became active, and small 
pull-apart basins were formed, making the previous base-
ment structure even more complicated (Albu and Pápa 1992; 
Tari et al. 1999). Due to these motions, a few domes or crys-
talline highs became exhumed in the Miocene, such as the 
Szeghalom Dome (SzD), which is located near Mezősas 
and had been extensively studied (Tóth et al. 2000; Juhász 
et al. 2002; Molnár et al. 2015; Vass et al. 2018). Based on 
the petrological and structural similarities, SzD can be a 

reference field for the study area (Tóth et al. 2000, 2021; 
Tóth and Zachar 2006). In this study, three major lithological 
units have been proposed based on detailed petrology and 
well log analysis. The lowermost rock body of the basement 
reservoir is dominated by orthogneiss (OG), which is cov-
ered by sillimanite and garnet-bearing biotite gneiss realm 
(SG), while at the topmost layer, amphibolite and amphibole 
biotite gneiss (AG) have been reported (Molnár et al. 2015). 
The OG is derived from the medium-grade metamorphism 
of an igneous intrusion (Tóth and Schubert 2018), while 
the SG has a sedimentary protolith (paragneiss). The same 
sequence of rock units was previously determined for the 
Mezősas field by petrological (Tóth and Zachar 2006) and 
well log (Hasan et al. 2023) analyses. Hasan et al. (2023) 
also proved a two-part internal structure for the topmost 
amphibolite unit as shown in Fig. 2.

Concerning the reservoir geological aspects, much 
evidence shows how the internal structure of the basement 

Fig. 1   The map showing the study area and the surrounding field (modified from Vass et al. 2018)
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provides the migration pathways and storage capacity for 
hydrocarbons. The study by Molnár et al. (2015) proved 
that low-angle thrust faults that separate the lithological 
realms are responsible for hydrocarbon migration from 
adjacent over-pressured deep sub-basins. By studying 
hydrocarbon fluid inclusions and organic geochemical 
fingerprints, the eminent role of the thrust sheets was 
demonstrated during paleomigration activity through 
the basement block (Juhász et al. 2002; Schubert et al. 
2007; Tóth et  al. 2020). The integration of structural 
evolution and the fracture network geometry suggested 
that the topmost amphibolite bodies (AG block) have 
the highest storage capacity in the entire metamorphic 
basement reservoir due to the mutual interconnectivity of 
the microfracture system (Tóth et al. 2020).

Methodology

Data availability

Three wells were selected for this study—Wells 21, 22, 
and 25. From the well log analysis, the wells penetrated 
the basement of the reservoir and the different types of 
lithology. For this study, only the top basement section 
was considered for the analysis as it contained amphibo-
lite. Therefore, a single lithology was considered for frac-
ture evaluation for the purpose of standardization. This is 
mainly because the amphibolite lithology had more frac-
tures as compared to SG and OG; and acted as a conduit 

for the flow of the fluid (Molnár et al. 2015). All three 
wells had ten measured log parameters—GR, spectral 
gamma ray (TH, K, and U), RD, RXO, D, N, S, and PE. 
All three wells had image logs for the FD determination. 
The descriptive statistics are shown in Table 1.

Flow chart

The borehole televiewer image log was analyzed, the inter-
pretation of fractures was hand-picked, dip angle and fracture 
direction measurements were conducted. Fractures on image 
logs normally showing sinusoid features with more dip than 
structural dip as shown in Fig. 3. A few types of fractures 
were determined which were bedding, fault or microfault, 
fracture, induced fracture, and partial fracture. These inter-
pretations were carefully marked on the image logs and FD 
results were extracted. This is the only parameter from bore-
hole televiewer that is needed for this study. An example of 
image log including the interpretation of Well 21 is shown in 
Fig. 3. This figure also includes other conventional logs used 
in further analysis such as GR, resistivity, and porosity logs. 
After the image logs interpretation was done, at each depth, 
the number of fractures shown are calculated. The FD used in 
this study was known as P10, which was calculated by count-
ing the number of fractures per meter along the wellbore. The 
FD data were standardized with the other 10 conventional 
well log parameters. Since the P10 FD data was used, the 
well logs were also standardized accordingly by calculating 
the well logs value per meter along the well depth. Data was 
then checked for missing values and outliers. All conditions 
including the normal distribution of the dependent variable 

Fig. 2   The proposed model of 
OG-SG-AG sequence (Hasan 
et al. 2023). OG: orthogneiss; 
SG: sillimanite and garnet-
bearing biotite gneiss; AG: 
amphibolite; AG2: amphibole-
biotite gneiss
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and correlations of independent variables for PCA and MLR 
were checked.

Since three wells were considered for this study, the 
first method was to use a single well as a training set and 
extrapolate the equation generated using MLR for the other 
two wells. This is a simple and straightforward first method. 
However, the results from this first method were not good. 
Hence, a second method was executed. For the second 
method, to improve the results of the first method, PCA was 
applied to the original dataset. The MLR was then applied 
to the new variables derived from the PCA. Since all three 
wells provided different PCA results, the entire dataset from 
all three wells was combined to generate PCA results, and 
regression analysis was applied to the new set of variables.

After the PCA results were generated by the statistical 
tool, which is the IBM SPSS Statistics 24, the data had to 
be divided into two which were the training and testing 
sets. The training data set was the one that will be used to 
generate MLR equation, and the equation generated will be 
applied to the testing set. The data can be divided into two 
ways which are using the random data division or separat-
ing the data manually into two. Since the data from all three 
wells have different range and standard deviation, the ran-
dom selection method to divide the data into training and 
testing sets was not used in this case to avoid skewed results 
and biasness because some data from one well might be 
selected more than the other wells. Hence, one of the practi-
cal ways to divide the data was by separating the data into 
upper and lower sections of the well in which 70% of the 
data from the upper section of each well was selected as a 

training set for MLR (Jahed Armaghani et al. 2018; Afra-
siabian and Eftekhari 2022). The equation generated was 
applied to the data for the lower section of the well.

Upon executing the second method, it was observed that 
PCA did not significantly improve the results. However, the 
method to separate the data into upper and lower sections 
of the wells was suitable to be used. Thus, for the third 
method, the original data set (without involving PCA results) 
was reused, but instead of using a single well, the training 
set was a combination of all upper sections of three wells 
combined. For the last method, the nonlinear regression 
method using GEP was implemented. This method also 
used a combination of data from all three wells. To simplify, 
this study attempted to determine the best possible way 
to incorporate MLR, PCA, and nonlinear techniques for 
predicting FD. The workflow is provided below and also 
summarized in Fig. 4. The workflow also shows the design 
of each method listed below.

1.	 Using one well as a training set method
2.	 Using PCA and regression methods
3.	 Using combination data of all wells as a training set 

method
4.	 Using GEP method

A preliminary study was conducted to understand the 
relationship between fracture density and all ten well log 
parameters that were used in this study. It is essential that 
this relationship to be established first to see if there is any 
strong correlation between one well log parameter to the 

Table 1   Descriptive statistics of Wells 21, 22, and 25 including the combination n of all three wells

Min minimum value, Max maximum value, SD standard deviation, GR Gamma ray, K potassium, TH thorium, U uranium, RD deep resistivity, 
RXO flushed zone resistivity, D bulk density, N neutron porosity, S sonic porosity, PE photoelectric effect

Well (Depth) GR (API) K (%) Th (ppm) U (ppm) RD (ohm.m) RXO (ohm.m) D (g/cc) N (v/v) S (us/f) PE

21 Min 25.06 1.33 0.78 0 9.36 1.58 2.52 4.24 50.85 3.97
(2584 m Max 134.42 5.54 14.63 2.03 609.84 1126.55 3.02 23.05 93.05 12.16
– Mean 61.14 2.58 4.11 0.39 66.51 59.61 2.77 13.12 61.6 6.74
2694 m) SD 22.8 0.78 2.68 0.31 62.21 101.65 0.08 3.84 6.4 1.08
22 Min 20.51 0.98 0.85 0 16.25 12.97 2.49 3.16 47.28 2.96
(2618 m Max 143.65 6.09 19.91 4.21 581.27 416.63 3.01 25.3 82.31 16.19
– Mean 60.82 2.8 5.43 0.54 103.33 89.69 2.76 13.65 58.64 6.26
2738 m) SD 32.04 0.97 4.35 0.59 94.74 84.45 0.09 4.47 6.65 1.97
25 Min 23.8 1.1 0.88 0.35 15.19 0.1 2.46 2.02 47.39 2.64
(2532 m Max 130.47 4.81 16.94 8.21 327.26 5717.52 3.1 25.1 76.42 12.27
– Mean 77.32 2.77 5.07 3.13 94.29 311.47 2.68 13.6 60.9 5.61
2654 m) SD 18.57 0.68 2.31 1.85 62.15 2109.49 0.11 4.32 5.6 1.31
All wells 

(21, 22, 
25)

Min 20.51 0.98 0.78 0.00 9.36 0.10 2.46 2.02 47.28 2.64
Max 143.65 6.09 19.91 8.21 609.84 5717.52 3.10 25.30 93.05 16.19
Mean 66.69 2.72 4.88 1.40 88.37 157.46 2.73 8.76 60.38 6.19
SD 26.20 0.82 3.27 1.72 76.09 1253.45 0.10 7.16 6.34 1.57
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fracture density. If more than half of the parameters show 
strong correlation with FD, then it would be best to select 
these parameters as input parameters and exclude the other 
remaining parameters for the next step. The results of these 
correlations are shown in Fig. 5. Only one well, which is 
Well 21 results are shown in this figure for simplicity. It is 
well noted that all three wells exhibit about similar results. 
From this figure, it shows that none of the well log param-
eters is highly correlated with FD. The highest correlation 
based on R2 is shown by neutron porosity with 0.76. This 
study on correlation between input and output parameters 
is important so that significant parameters can be selected 
for the next step. However, based on the study on this 

correlation, it shows that all parameters are selected for 
the next step since only two parameters show R2 value 
above 0.5 and the other parameters show R2 value below 
0.2. Hence, eliminating most of the parameters would not 
be a good idea. Therefore, for the next step, all parameters 
will be included.

PCA

PCA has applications in several fields related to petroleum 
engineering and geosciences studies (Tóth 2012; Konaté 
et al. 2017; Geng et al. 2021; Ren et al. 2023). PCA is a 
dimensionality reduction method that transforms the original 

Fig. 3   The example of image log and conventional logs used in the analysis
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b) Method 1: Using one well as a training set method c) Method 2: Using PCA and regression methods

d) Method 3: Using combination data of all wells as
a training set method e) Method 4: Using GEP method

a) Flowchart

Fig. 4   The flowchart used for this study. a The overall flowchart, b Method 1 workflow, c Method 2 workflow, d Method 3 workflow, e Method 4 workflow
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a) b)

c) d)

e) f)

g) h)

i) j)

Fig. 5   The correlation between each well log parameter with fracture density. Only uranium content and neutron porosity correlated quite well with fracture density
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variables into a new dataset or uncorrelated variables (Tir-
yaki 2008). The new variables known as principal compo-
nents (PCs) are transformed using orthogonal transformation 
and are the linear combination of all the original variables 
(Li et al. 2018). The original variables might or might not 
be related to one another. The advantage of PCA is that it 
reduces a large number of variables into a smaller number 
while retaining information (Habibi et al. 2014). A deep 
understanding of the data is required to interpret the results 
so that the interpreted variables are meaningful and use-
ful for further analysis. Since PCs are not intercorrelated, 
a PC can be described in length without having to refer to 
the other PC (Konaté et al. 2015). The determination of the 
number of PCs to be included in the analysis is normally 
determined by the eigenvalue. The number of PCs is deter-
mined by the Kaiser criterion, wherein the PCs are selected 
if the eigenvalue > 1; this is also known as the eigenvalue 
one criterion (Kaiser 1960). In this study, the PCA was per-
formed on the original 10 log parameters. The three wells 
used in this study yielded three different PCA results; thus, 
data from all three wells were combined for further PCA.

MLR

MLR has been widely used in geological and petroleum 
engineering studies (Habibi et al. 2014; Alizadeh et al. 
2022; Khosravi et al. 2022; Cai et al. 2023; Yuan et al. 
2023; Tóth et al. 2023). It is a statistical technique used 
to produce a model based on one dependent variable 
and several independent variables (Cai et al. 2023). In 
the linear regression model, the assumption is that the 
response variable (or equation produced) is a linear 
function of the model parameters, and the residuals are 
normally distributed (Enayatollahi et  al. 2014). The 
general expression of MLR is as follows:

where y is the dependent variable, β1, β2, …, βp are the 
regression coefficients, x1, x2, …, xp are the independent 
variables, and ϵ is the regression constant.

In this study, backward selection was employed for 
MLR as several well log parameters were used in this 
study, and it was better to explore and test all parameters 
and select the best parameters. The software used for 
the study was IBM SPSS 24. This method considers all 
available variables or parameters in the beginning and 
removes the least significant variables until there is no 
parameter left or when the stopping condition is met 
(Mantel 1970; Heinze et al. 2018; Dunkler et al. 2014).

The variables are removed normally as their presence 
contributes to lowered R2 value and the higher p-value 

(1)y = �1x1 + �2x2 + ... + �pxp + �

of the model, or when variables are eliminated, it can 
cause a reduced residual sum of squares (Harrell 2001). 
The stopping condition is normally determined by the 
p-value, and the model or regression analysis stops when 
all remaining variables have a p-value smaller than the 
pre-set value of 0.05 (Heinze et al. 2018; Afrasiabian and 
Eftekhari 2022).

GEP

Ferreira (2001) introduced a GEP that combined the 
advantages of GA and gene programming (GP) and 
eliminated its limitations. GA was developed by Holland 
John (1975) based on the theory of evolution. It is well-
known as the optimization algorithm that mimics natural 
selection processes that involve population modification 
procedures (Gao et al. 2023). GAs have been widely used 
in fracture detection studies (Rajabi et al. 2021; Gao et al. 
2023) as it helps in feature selection and can be integrated 
with other methods for hybrid algorithm development. GA 
elements are linear strings of fixed length (chromosomes), 
while GP elements are nonlinear entities of different sizes 
and shapes (Ferreira 2001; Sharifi and Moghbeli 2020). 
GP, also traditionally known as tree-based GP, is the 
implementation of GA that operates as a powerful regression 
procedure for nonlinear, nondifferentiable, discrete, and 
continuous problems (Sharifi and Moghbeli 2020).

GEP combines the GA and GP; the chromosomes in 
GEP are encoded as linear strings of fixed length and are 
expressed as nonlinear entities of different sizes and shapes. 
GEP uses populations of individuals and introduces genetic 
variation using one or more genetic operators (Aydogan 
et al. 2023). It utilizes chromosomes that can express and 
create strings in the form of functions and mathematical 
relations (Afrasiabian and Eftekhari 2022). Chromosomes in 
GEP can contain one or more genes. GEP offers a complete 
genotype/phenotype system. The phenotype in GEP is the 
expression trees, and genes in GEP are expressed as geno-
types. The main determinants in GEP are chromosomes and 
expression trees (Aydogan et al. 2023) as can be observed 
in Fig. 6. It shows a simple chromosome structure with four 
heads (function) and four tails (terminal). The function 
codes in chromosomes include mathematical expressions, 
such as plus, minus, times, multiply, and square root. An 
example from Fig. 6b shows that Q is actually a square root 
function. The terminal codes are variables (examples: x, y, 
z) and constants (examples: 1.2 and 3.11).

The GEP process is initiated by a random initial pop-
ulation generation of a specific size. Each of these initial 
populations or chromosomes is then assessed against fitness 
function over various groups of fitness situations. The chro-
mosomes are then selected according to their fitness value 
in which the most fitted chromosomes have more chances 
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to be selected to proceed to the next generation. After the 
selections, these are reproduced with some modifications 
performed by different genetic operators, such as mutation, 
insertion sequence transposition, inversion, gene recombina-
tion, and gene transposition. GEP uses the simplest criteria 
and further permits the development of complex and non-
linear programs due to multigenic behavior because of the 
genetic process at the chromosome level (Javed et al. 2020). 

The flowchart of GEP is shown in Fig. 7. In this study, Gen-
eXproTools 5.0 was used to run the GEP for predicting the 
FD.

GEP is a robust method that can handle different types of 
data. Obviously, the input parameters should be consistent, 
any missing data is handled correctly, extreme outlier 
values should also be removed or treated appropriately. The 
significance of input parameters should also be checked if 
the input parameters have any meaningful interpretation to 
the target output. In this study, all 10 well log parameters are 
studied and determined to be significant to predict FD. The 
GR and spectral GR such as K, TH and U are very useful 
to determine the lithology of the rock. However, the use of 
these GR logs especially spectral GR can be useful give an 
indication of fracture existence specially uranium because 
uranium is soluble to both water and hydrocarbons that filled 
up the formation fractures. The resistivity logs are proven to 
be useful to indicate fractures indirectly as well because the 
RXO can read the mud filtrate invasion of the flushed zone 
if there are large fracture openings and these RXO values 
can be compared with RD to ensure that there is mud filtrate 
filling up the fractures. In terms of porosity logs, if there is 
mud invasion into the fractures, the overlay of the D-N logs 
can indicate this scenario by showing the sharp drop in D 
and sharp increase in N values. S porosity log will show 
a cycle skipping if there is a fracture existence. Lastly, if 
barite-loaded muds enter the fractures, this scenario will 
be captured on PE log by showing high reading of values. 
These are all reported in Aghli et al. (2016), Aghli et al. 
(2017), Shalaby and Islam (2017), Aghli et  al. (2020), 
Hussein (2022), Gamal et al. (2022). Therefore, all these 

Fig. 6   Example of a classic chromosome structure a Chromosome 
with a gene structure having a head and a tail. b Expression tree 
structure with function and terminal. c Mathematical expression 
example based on this expression tree (modified from Ferreira 2001; 
Ari and Alagoz 2023)

Fig. 7   The common workflow 
of gene expression program-
ming (modified from Ferreira 
2001; Afrasiabian and Eftekhari 
2022; Ari and Alagoz 2023)
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logs used in this study are important and significant to 
fracture determination.

Results

Using one well as a training set method

In this study, three wells with image logs were analyzed 
and used as the training set for regression analysis. Only 
the amphibolite section of the Mezősas field was analyzed 
in this study to maintain the consistency of the data as 
described in the previous section.

The purpose of designing the workflow was to select the 
best well based on the data and regression analysis and use 
that well as the training well for the other wells with the 
same lithology. Therefore, the results of the first section 
show the selection of the best well. Basically, all three wells 
were processed with regression analysis, and the generated 
equation was applied to the other two wells.

As can be observed from Fig.  8, the measured FD 
was obtained from the image log. Equation Well 21 is 
the regression analysis result for Well 21. The equation 
generated is as follows:

where FD is fracture density, 21 refers to Well 21 data, U 
refers to uranium content log value, RXO is the flushed zone 
resistivity, and D is the bulk density log value. This equa-
tion was then applied to Wells 22 and 25. The equations 

(2)
FD(21) = 25.481 + 3.966 × U−4.005 × RXO−8.145 × D

generated for Wells 22 and 25 were applied to Well 21. The 
equation from Well 22 is as follows:

where K is the potassium log value, TH refers to thorium 
content, U is the uranium content, RXO refers to the flushed 
zone resistivity, and D is the bulk density log value.

The equation from Well 25 is as follows:

where TH refers to the thorium content, RD is the deep 
resistivity value, and RXO is the flushed zone resistivity.

From Fig.  8a, equations from Wells 22 and 25 did 
not satisfy the data from Well 21 as it shows that both 
equations did not correspond to the measured FD of Well 
21. This observation was supported by the R2 value. The 
R2 value of measured versus predicted FD value from 
different wells is shown in Table 2.

From the table, the R2 value was 0.721 for the measured 
versus predicted FD value of Well 21 using the equation 
from Well 21, which is acceptable but not high. However, 
when predictions of Well 21 FD were made using equa-
tions from Wells 22 and 25, the R2 values were low, as 
seen in Table 2. The R2 values of Well 21 for predicted 
FD were 0.052 and 0.026 when using equations from Well 
22 and 25, respectively. Considering the results for Well 
22 as observed in Fig. 8b, the equation from Well 21 was 
not suitable, especially for the top section of the well as 

(3)
FD(22) = 2.871−1.245 × K + 0.522 × TH−3.022

× U−29.728 × RXO + 2.258 × D

(4)
FD(25) = 3.147−0.257 × TH + 27.137 × RD−21.55 × RXO

Fig. 8   The results for the first method, which uses one well as the training set and applies the derived equation to the other two wells
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it predicted a considerably high FD and a low R2 value of 
0.039, as shown in Table 2. From Fig. 8b, the equation 
from Well 25 provided an optimum prediction for Well 
22, and the predicted value followed the same trend as the 
data from Well 22. However, the R2 value is 0.006, which 
is very low, as shown in Table 2.

The equation from Well 21 was also not useful in 
predicting the FD for Well 25 as the predicted values were 
far off from the measured FD of Well 25. The results also 
did not follow the trend of the measured FD, and the R2 
value was 0.4607. Equation from Well 22, however, showed 
a slightly better prediction trend when applied to the dataset 
of Well 25 from a depth of 2580 to 2640 m. However, the 
R2 value using the equation from Well 21 was better as 
compared to that when using the equation from Well 22 as 
the R2 value for predicting the FD value for Well 25 using 
the equation from Well 22 was 0.172, which is low.

As observed in Table 2, the R2 value was always the 
highest when the equation for a particular well was applied 
to its own data. For example, for Well 22, the R2 value 
of measured versus predicted value was 0.666 and 0.598 
for Well 25. As observed from the first method, Well 21 
performed slightly better than the other two wells. To 
summarize, the first method to select only one well as the 
training well failed because no single equation from any 
well can be applied for the dataset from the other wells, 
warranting the need for other methods.

Using PCA and regression methods

PCA was performed to analyze the contribution of each log 
parameter toward FD and to simplify the variables by reduc-
ing the multicollinearity effects. It was conducted by first 
determining the number of relevant PCs with eigenvalue 
> 1. This is portrayed in the results and scree plot shown in 
Table 3 and Fig. 9, respectively. The scree plot also shows 
the eigenvalue versus the PCs and the cumulative variance 
against the PCs. From the figure, three PCs satisfy the eigen-
value criterion. The cumulative variance percentage shows 
that for the first three PCs, the cumulative value is 80.83% 
which means that 80.83% of the first three PCs contain the 
variation of the original log parameters or variables. The 

original 10 well log parameters were analyzed and Varimax 
rotation was applied, resulting that from 10 original param-
eters, the parameters were reduced to 8 due to some param-
eters were loaded onto several different PCs which were GR 
and Th, hence both of these parameters were removed to get 
better results. This has also been listed in Table 3.

PCA reduced the 10 log parameters into three uncor-
related PCs with 80.83% of the dataset information. The 
advantage of this method is that PCA removes the collinear-
ity between the original variables. From Table 3, the first PC 

Table 2   The R2 values based on 
results in Fig. 8

The R2 values were generated from the plot of measured FD versus predicted FD from the multiple linear 
regression equations
FD fracture density

R2 value Equation Well 21 Equation well 22 Equation Well 25

Measured FD Well 21 0.721 0.053 0.026
Measured FD Well 22 0.039 0.666 0.006
Measured FD Well 25 0.461 0.172 0.598

Table 3   The results of PCA show the initial generated PC with the 
eigenvalue, variance, and cumulative variance

The first three PCs have an eigenvalue > 1 and a cumulative variance 
of 80.826%
PCA principal component analysis, PC principal components

Principal 
component (PC)

Eigenvalue Variance (%) Cumulative 
variance (%)

1 3.683 46.033 46.033
2 1.654 20.676 66.710
3 1.129 14.116 80.826
4 0.595 7.441 88.267
5 0.388 4.856 93.122
6 0.279 3.491 96.614
7 0.213 2.666 99.280
8 0.058 0.720 100.000

Fig. 9   The scree plot from the PCA results shows three PCs with 
eigenvalue of more than 1
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has an eigenvalue of 3.683, the second PC of 1.654, and the 
third PC of 1.129.

The three PCs were independent of each other. The 
Varimax rotation was applied to understand if the variables 
were important or unimportant in rotated space as shown 
in Table  4. In the rotated loading, the first PC shows 
five variables highly correlated to PC1, two variables 
corresponding to PC2, and only one PC correlated to PC3. 
The other two variables were excluded from the analysis 
as their correlations with other variables, GR and K, were 
very high. The variables having PC loading > 0.5 belonged 
to the particular PC. For GR and K, both variables had PC 
loading > 0.5 in two different PCs, and thus, both variables 
were excluded to improve the results.

The first PC had five variables with PC loading > 0.5—
RXO, RD, N, photoelectric effect, and S. The second 
PC had two other variables—U and D. The last PC had 
only one variable, K. Based on these results, the three 
new variables or PCs were newly categorized as fluid 
effects, fracture effects, and metamorphic lithology. 
These three new parameters were then verified against the 
FD and processed for regression analysis. As described 
in Sect.  “Flow Chart”, data from all three wells were 
combined for PCA as individual wells yielded different 
PCA results. Due to this, it was no longer possible to use 
the first method for regression analysis as described before. 
The approach here was to divide each well into upper and 
lower sections. A total of 70% of the data belonging to 
the upper section of the wells was grouped as a training 
set and processed for regression analysis. The generated 
equation was then applied to the lower section of the well 
with 30% of the data. The results are shown in Eq. 5:

where FD (PCA) is the FD function generated based on PCA 
results; PCA is the principal component analysis, and PC is 
the principal components.

The equation was applied to the lower section of each 
well as shown in Fig. 10. The predicted FD results are shown 
in green lines in Fig. 10.

The plots of predicted versus measured FD values are 
shown in Fig. 11, and the R2 values were calculated to verify 
the validity of the second method. As shown in Figs. 10 
and 11, the R2 value for Wells 21, 22, and 25 were − 0.492, 
0.420, and 0.595, which were low. The predicted FD values 
also did not show the same trend as the measured values 
as shown in Fig. 10. However, the results were improved 
as compared to the first method. For Well 21 (Fig. 11a), 
the slope was negative, and the R2 was − 0.492. A negative 
slope indicated that the predicted values were lower than the 
measured values.

Using combination data of all wells as training set 
method

Since the second method showed improved results, the 
approach of separating the data to upper and lower sections 
was retained. The third approach was to combine some data 
from the upper section of each well and use them altogether 
for the regression analysis. However, instead of using the 
new variables from PCA results, this third method used 
the original 10 log parameters as the PCA results did not 
significantly improve the results. The combined data were 
also checked for normal distribution. This method was easier 
to use since the data would not be chosen at random but 
selected at a known depth. After the equation was generated, 
it was applied to the lower section of each well. The same 
data separation method was applied 70% of the data from the 
upper section was used as the training set, and the remaining 
was used as the testing set. The results for this section are 
shown in Fig. 12. The equation generated from this method 
is as follows:

where N is the neutron porosity value, D is the bulk density 
value, and S is the sonic porosity value. This new equation 
is labeled as FD (3) to indicate the third method used in this 
study.

From Fig. 12, the orange line was the selected data for 
the training set. After the equation from this training set had 
been generated, it was applied to the lower section of each 
well. The results are shown in the green line in Fig. 12. As 
can be observed, these results are better than the previous 

(5)
FD(PCA) = 2.870−0.143(PC1) + 0.510(PC2) + 0.180(PC3)

(6)
FD(3) = −36.265−0.351 × N + 13.323 × D + 0.122 × S

Table 4   The results of PCA after applying Varimax rotation to show 
the three most significant components with the variables grouped 
together

The original variables belong to a certain PC for PC loading value 
> 0.5
PCA principal component analysis, PC principal components

Well log Principal component (PC)

1 2 3

RXO 0.975 0.144 0.185
RD 0.959 0.024 0.165
N 0.721 − 0.023 − 0.421
PEF 0.653 − 0.227 − 0.377
S 0.578 − 0.471 0.154
U 0.042 − 0.871 − 0.204
D 0.117 0.862 − 0.285
K 0.117 − 0.094 0.899
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methods. The predicted values show a better trend. The R2 
values for each well are also improved as can be seen in 
Fig. 13. For example, from Fig. 13a, the R2 value when the 
predicted versus measured FD value was plotted for Well 21 
is 0.748. Similar graphs were plotted for Wells 22 and 25 
showing R2 values of 0.724 and 0.745, respectively.

It can be summarized that if using the MLR method, all 
data from all wells can be combined for regression analysis 
for a better prediction of FD values.

Using GEP method

The approach of separating the upper and lower sections of 
the well was maintained for the nonlinear regression analysis 
in the gene expression tool. The training set was the same 
as described earlier. GEP results were produced in terms of 
expression trees (ETs) as seen in Fig. 14. From this figure, 
there are four sub-ETs that made up Eq. 7. Equation 7 is a 
combination of all sub-ETs. Each of the expression trees 
is rewritten in a mathematical equation form as seen from 
Eqs. 8–11. Equation 8 is the mathematical equation for sub-ET 
1, Eq. 9 for sub-ET 2 and such on.

Fig. 10   The results of fracture density prediction based on the new 
variables generated from the principal component analysis. The 
orange line was the data used for the training section. The data from 

the upper section of all three wells were combined together, and Eq. 5 
generated was applied to the lower section of the well as shown in 
green lines

Fig. 11   The plot of the predicted FD value generated from Eq. 5 versus the measured FD value. These plots are from the results shown in Fig. 8. 
FD fracture density
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(7)FD(GEP) = y1 + y2 + y3 + y4

(8)
y1 = Tanh

[

(N − ((8.78 + U) × A tan (K))) −
(

U2 + ln (RXO)
)]

(9)

y2 = (−2.88 + D) ×

(

1

6 ⋅ 89 − 4.08
+

(

0.86

RXO
+ (1 − RD)

))

(10)

y3 = min
((RXO

RD
× (1 − RD)

)

+(min (RXO,RD) × (−7.36)),
(−5.98 + PE

2

)

× 1.70
)

This GEP Eq. 7 was the one used to generate results for 
FD prediction and the results can be observed in Figs. 15 
and 16. Figure 15 shows the plot of measured versus pre-
dicted FD values. The training set is plotted in orange line 
and the testing set in green. For all wells, the training set 
showed similarity to the measured FD values. When the 
nonlinear equation was applied to the testing data set, the 
predicted FD values were also similar to the measured 
FD values.

(11)
y4 =

21.86

min

(

max (6.16,Th)−6.52D

2
,

(

−
Th

1.27
−3.60

)

2
+ N

)

Fig. 12   The results of multiple linear regression based on the method of separating the well data into upper and lower sections. The original 10 
well logs data were used in this method. Equation 6 was applied to the lower section of each well as shown in green lines

Fig. 13   The R2 values form the plot of predicted versus measured FD values based on the third method and results in Fig. 10. FD fracture den-
sity
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Fig. 14   Expression Tree of Gene Expression Programming results with all sub-expression trees

Fig. 15   The results are based on gene expression programming 
method. The prediction of the fracture density values was better and 
improved significantly as compared to the earlier methods. The R2 

values also improved as shown in Fig. 16; the R2 values for Wells 21, 
22, and 25 for predicted versus plotted FD values were 0.891, 0.893, 
and 0.869



	 Journal of Petroleum Exploration and Production Technology

Discussion

FD responses on conventional well logs

In this study, three wells with FD data were analyzed using 
different methods to be used as a model for predicting 
the FD of wells in case of non-availability of image logs 
or core samples. Many predictive models in the literature 
have discussed different complex algorithms to be used for 
FD prediction (Gao et al. 2023; Rajabi et al. 2021). Here, 
we present a direct and more economical way of using 
regression analysis and GEP to determine FD.

Well log responses are complicated in metamorphic 
rocks due to their complex system, and predicting 
fractures using the conventional logs would be helpful. 
A slight change in the log responses will yield different 
results; therefore, careful interpretation of well log 
data is crucial. The first method indicated that it was 
not suitable to use one well as a training set for other 
wells even for the same lithology. This could be since 
the first method was mainly based on the linear function 
of regression analysis, while the well log data are most 
nonlinear (Delavar 2022). The regression analysis of the 
first method could only predict the FD of its own data, 
i.e., the same data from the same well. Also, the data 
ranges in wells are quite different. For example, in Well 
25, the standard deviation values for U and RXO were 
dissimilar and had a larger range as compared to that for 
the data from Wells 21 and 22.

However, all three equations (i.e., Eqs. 1–3) had RXO 
as one of the variables with an inverse relationship with 
FD. This is true, especially when a formation is drilled 
with water-based mud, the flushed zone near the wellbore 
will typically be filled with mud filtrate. This will cause 
the values of RXO to be lower than that for formation 
resistivity (or RD). This scenario was particularly 
accurate in the case of Well 25, as one of the variables for 

Eq. 4 was RD. The RD was positive in this equation, and 
RXO was negative, which clearly shows that in the case 
of fracture, on the log signals, there will be a crossover 
showing that the resistivity near the wellbore (flushed 
zone) will be lower, and the formation resistivity will 
be higher for the fracture zones. In this case, all three 
wells showed consistent results after MLR was conducted 
on each individual well. The role of RXO was also 
significant in the equation produced by GEP, as shown in 
Eq. 7. During the implementation of GEP to the dataset, 
all variables were included in the simulation, and GEP 
was selected as the best and the most significant variable 
in predicting FD. RXO also played a significant role in 
using the nonlinear approach.

Among the three porosity logs—D, N, and S—D was 
the best quantitative indicator of fracture as it showed 
reduced values for open fractures. This is because density 
and porosity have an inverse relationship, and during 
fractures, there will be an increase in porosity values, 
hence reducing the density of the rock. This particular 
case can be observed in Eq. 2 of Well 21, where D was 
negative, which proves the decrease in density values for 
fractures.

The  wel l  log  in te r pret a t ion  and  reser voi r 
characterization are nonlinear approaches in reservoir 
engineering (Han and Bian 2018); therefore fracture 
analysis is better predicted with the nonlinear method to 
improve the accuracy classification (Delavar 2022).

FD influences PCA

Although the results from PCA were not used in the third 
and fourth methods in this study, they contribute to better 
insights for understanding the role of conventional well logs 
in the case of fracture evaluation.

From PCA results, the approach was to reduce the 
10 variables into smaller variables while retaining 
information. The results show that three new variables 

Fig. 16   The R2 results are based on the results shown in Fig. 12. The GEP model prediction improved the R2 values
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could be categorized as fluid effects, fracture effects, and 
metamorphic lithology. The fluid effects variable contained 
the original RXO, RD, CN, PE, and AC. The fracture effect 
variables contained D and U variables, and the last new 
variable of metamorphic lithology contained the K variable. 
Conventional logs behave as a function of several factors 
such as lithology, porosity type, fluid flow, heterogeneity, 
and fractures (Aghli et al. 2020). From PCA results, the 
newly generated variables were in line with these cases. 
For the first variable, i.e., the fluid effects, the five original 
variables were correctly grouped. In case of fractures, the 
flushed zones would be filled with mud filtrate, which could 
affect the RXO. In addition, the fractures in the metamorphic 
rocks would also store fluids, such as hydrocarbons or water, 
and eventually influence the RD. Neutron porosity indicated 
the hydrogen content in the fractures filled with fluids in a 
similar manner to sonic porosity. Since the open fractures 
were the pathway for the fluids, the fluids existing in the 
fractures contributed to low sonic wave velocity. As a result, 
the presence of fractures will increase the sonic travel time.

The next variable from PCA was fracture effects, and 
this variable included two original parameters, i.e., U and 
D. Fractures are mostly influenced by the deformation 
(Mancktelow 2009; Li et  al. 2022) and mineralization 
processes (Peacock and Mann 2005). The U is normally 
dissolved in fluids, and zones with high U concentrations 
can be associated with fracture zones (Hussein 2022). 
Therefore, spectral GR is very useful to analyze the presence 
of fractures. The high U log readings can indicate fluid 
migration along the fracture openings (Zazoun 2013). In 
addition, D is also a good indicator for fracture evaluation. 
D log has an influence on the FD (Aghli et al. 2020). The 
presence of fractures can heavily reduce the formation or the 
rock compaction; consequently, it will reduce the D values 
shown on the well log. The relation of bulk density and 
uranium content was opposite for fractures; the presence of 
fractures reduced the D value but increased the U content 
values. From Eq. 5, it was observed that this new variable—
fracture effects had a positive influence on the FD function, 
which showed a strong relationship of FD with U and D.

Conclusions

This study aimed to predict fracture density (FD) in case 
where image logs or core samples are not available. This 
study explored a few methods in order to ensure that the 
simplest and most economical way could be performed to 
predict the FD. Conventional well logs are mostly available 
for all wells; therefore, the study leverage on the availability 
of these conventional well logs. Based on the methods used, 
conventional well logs could be very useful to predict FD. 

Some of the important conclusions of this study are listed 
below:

1.	 This work is one of the earlier studies that explore gene 
expression programming (GEP) to predict fracture 
density for metamorphic basement rock, specifically 
amphibolite and amphibolite biotite gneiss type of 
lithology. Based on the findings, the method works well 
to predict the FD with R2 values of at least above 0.86.

2.	 Different ways of separating input data were used in 
this study for multiple linear regression (MLR) and 
gene expression programming. This study proposed 
to separate data into 70% upper section of the well for 
training dataset and 30% of lower section of the well for 
testing dataset. The method proposed is reliable and able 
to work in both MLR and GEP.

3.	 This study showcased a few ways to generate a good 
predictive model for FD, essentially, this study compares 
two different methods which are linear and nonlinear 
approaches. Linear approach was done using MLR 
and nonlinear was done using GEP and the results 
showed that nonlinear approach using GEP gives 
better predictive model since most of the well log input 
parameters are nonlinear and nonlinear approaches are 
better to tackle nonlinear problems.

4.	 Different log responses were studied to investigate 
its relationship to FD and the findings of this study 
are consistent with previous published literature. For 
instance, flushed zone resistivity played an important 
role in terms of FD; for high FD, the flushed zone 
resistivity readings tended to be lower. As predicted, 
gamma ray alone did not contribute substantially to the 
FD prediction. However, as observed in the literature, 
spectral gamma rays could be very useful since the 
individual component of the gamma ray could be 
analyzed appropriately. Uranium content tended to 
contribute the highest in predicting FD. Porosity logs 
also influenced the prediction of FD, wherein bulk 
density showed the most effects on the FD.

5.	 The four proposed methods have their own advantages 
and disadvantages. The first method seemed to work well 
for its own data but failed to predict the FD of nearby 
wells. The second method using principal component 
analysis (PCA) was good in terms of analyzing the 
conventional well logs and how they contributed to the 
FD prediction; however, the newly categorized variables 
were not able to provide desirable results, although 
they improved the results from the first method. The 
integration of PCA into the regression analysis was 
considered favorable but a fine tuning to the data was 
necessary to be able to use the variables from the PCA.
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For recommendation, future studies could explore the 
same method proposed in this study for various different 
metamorphic lithologies. Since this study only uses the 
amphibolite and amphibolite biotite gneiss, different stud-
ies exploring various lithologies and comparing the differ-
ences would be an interesting topic. In addition, various 
other methods could be employed and compared with the 
methods used in this study as well. For instance, multiple 
nonlinear regression analysis from other programs could be 
used to further improve the results. Also, some dynamic 
data could be added as input as well, for instance, water 
saturation, permeability, well test, and mud loss data during 
drilling to further improve the prediction.
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