Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation - A meta-analysis

Bukva Mátyás and Dobra Gabriella and Gyukity-Sebestyén Edina and Böröczky Timea and Korsós Marietta Margaréta and David G Meckes and Horváth Péter and Buzás Krisztina and Harmati Mária: Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation - A meta-analysis.
CELL COMMUNICATION AND SIGNALING, 21 (1). ISSN 1478-811X (2023)

[thumbnail of 2023_Bukva_CellC.pdf] Text
2023_Bukva_CellC.pdf - Published Version

Download (7MB)
Item Type: Journal Article
Journal or Publication Title: CELL COMMUNICATION AND SIGNALING
Date: 2023
Volume: 21
Number: 1
Number of Pages: 17
Publication identifier: 333
ISSN: 1478-811X
Faculty/Unit: Albert Szent-Györgyi Medical School
Faculty of Science and Informatics
Institution: Szegedi Tudományegyetem
Language: English
MTMT rekordazonosító: 34417027
DOI azonosító: https://doi.org/10.1186/s12964-023-01344-5
Date Deposited: 2024. May. 06. 14:35
Last Modified: 2024. May. 06. 14:35
URI: http://publicatio.bibl.u-szeged.hu/id/eprint/30718
Web of Science® Times Cited: 1 View citing articles in Web of Science®

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year