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Abstract 

Pleiotropic variants (i.e., genetic polymorphisms influencing more than one phenotype) are often 

associated with cancer risk. A scan of pleiotropic variants was successfully conducted ten years ago in 

relation to pancreatic ductal adenocarcinoma susceptibility. However, in the last decade, genetic 

association studies performed on several human traits have greatly increased the number of known 

pleiotropic variants. Based on the hypothesis that variants already associated with a least one trait have 

a higher probability of association with other traits, 61,052 variants reported to be associated by at least 

one genome wide association study (GWAS) with at least one human trait were tested in the present 

study consisting of two phases (discovery and validation), comprising a total of 16,055 pancreatic ductal 

adenocarcinoma (PDAC) cases and 212,149 controls. The meta-analysis of the two phases showed two 

loci (10q21.1-rs4948550 (P=6.52×10-5) and 7q36.3-rs288762 (P=3.03×10-5) potentially associated with 

PDAC risk. 10q21.1-rs4948550 shows a high degree of pleiotropy and it is also associated with colorectal 

cancer risk while 7q36.3-rs288762 is situated 28,558 base pairs upstream of the Sonic Hedgehog (SHH) 

gene, which is involved in the cell differentiation process and PDAC etiopathogenesis. In conclusion, 

none of the single nucleotide polymorphisms (SNPs) showed a formally statistically significant 

association after correction for multiple testing. However, given their pleiotropic nature and association 

with various human traits including colorectal cancer, the two SNPs showing the best associations with 

PDAC risk merit further investigation through fine mapping and ad hoc functional studies. 

 

Key words: pleiotropy, pancreatic cancer, single nucleotide polymorphism, genetic susceptibility 
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Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is a relatively rare disease with a crude incidence rate of 18.7 

per 100,000 individuals per year in Europe[1]. Only a small number of potential PDAC risk factors have 

been identified, such as cigarette smoking, type 2 diabetes mellitus, chronic pancreatitis, overweight 

and non-O blood groups [2–4]. Recently a study carried out in the context of UK Biobiank (UKBB) has 

suggested stress as a major contributor for the development of the disease [5]. The genetic 

susceptibility to PDAC is due to rare high-penetrance mutations and common low-penetrance genetic 

variants, that alone or in combination are associated with increased risk of developing PDAC [6–24]. 

However, PDAC is a polygenic and complex multifactorial disease that shares a portion of the genetic 

background with several human traits [25,26]. For example, the TERT-CLPTM1L region is known to be 

associated with PDAC risk, but it is also associated with risk of melanoma, breast, and cervical cancers 

[26]. A genetic variant independently associated with more than one trait is defined as pleiotropic, a 

characteristic shared by many risk loci for a large number of human traits [27]. Pleiotropic 

polymorphisms could have a crucial role in the genetic architecture of complex diseases due to their 

influence on different pathways and biological mechanisms [28–30]. Pleiotropic single nucleotide 

polymorphisms (SNPs) are common in cancer, and there are regions in the genome called "nexus" that 

are associated with more than one type of cancer [31,32]. In addition, several PDAC risk loci are also 

associated with non-cancer phenotypes. For example, ABO and TERT SNPs are associated with a 

plethora of human traits, such as longevity [33], type II diabetes [34], male infertility [35], mitochondrial 

DNA copy number [36], and high-density lipoprotein cholesterol level [37]. Therefore, the study of 

pleiotropic SNPs could be instrumental in unravelling the genetic architecture of human diseases, as 

SNPs that are already associated with one trait have an increased chance of being associated with other 

phenotypes. The analysis of the possible association of pleiotropic variants with PDAC was completed in 

a study comprising 1,087 SNPs in 2,857 PDAC cases and 2,967 controls, in which the authors identified, 

for the first time, a new PDAC risk locus (rs7310409) in the HNF1 homeobox A (HNF1A) gene [38]. In the 

decade since that study our knowledge of SNP-phenotype associations has greatly increased. With these 

premises, we aimed to identify novel pleiotropic SNPs associated with PDAC risk in an extensive multi-

ethnic study of 16,880 PDAC cases and 219,861 controls. 

Material and methods 

Study design 

The present study was carried out in two phases. First, a discovery phase where pleiotropic SNPs 

reported to be associated with at least one human trait were tested for association in a case-control 

study consisting of 8,738 PDAC cases and 7,034 controls. The discovery phase consisted of the PanScan I, 

II, III [9,11,12], and PanC4 studies [14]that were imputed separately and then merged and analysed 

together. After the discovery phase two rounds of replication were carried out, the first (replication1) 

consisting of theEuropean Study into Digestive Illnesses and Genetics (PanGenEU) study [39] and the 

second (replication2) consisting of the Pancreatic Disease Research (PANDoRA) consortium [24], the 
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Japan Pancreatic Cancer Research Consortium (JaPAN) [7,10,40,41] and FinnGen [42]. Replication 2 was 

carried out in all SNPs that were significant in the discovery and replication 1 phases. Table 1 shows the 

number of cases and controls analysed in each dataset, alongside age and sex distribution. 

 

Discovery phase 

A list of SNPs associated with at least one human trait at genome-wide significance level (P<5x10-8) was 

obtained from the GWAS Catalog portal. The list contained 126,080 SNP-trait associations, consisting of 

73,700 unique SNPs, among which 1,869 did not have reference SNP ID number (rs#) and therefore 

were not included in the analyses. The list included SNPs associated with any disease and/or any trait 

and was not restricted by ethnicity. All the selected SNPs were analysed using the genotypes of the 

PanScan I, II, III and PanC4 GWASs. The genotypes were downloaded from the database of Genotypes 

and Phenotypes (dbGaP; study accession nos. phs000206.v5.p3 and phs000648.v1.p1; project reference 

no. 12644). Genotyping and quality control details of these studies have been described in the original 

publications [9,11,12,14].  

The four combined datasets included 9,563 PDAC cases and 8,073 controls. The genotypes were 

imputed using the Michigan Imputation Server (https://imputationserver.sph.umich.edu), and the 

Haplotype Reference Consortium (HRC, V.r1.1) as reference panel. The imputation for PanScan I, II, III 

and PanC4 GWASs was carried out separately for each dataset. 

Before imputation, the datasets were filtered applying the following quality controls: removal of 

individuals with sex mismatches, missing genotypes >2%, relatedness issues (PI_HAT>0.2) and minimal 

or excessive heterozygosity (>3 standard deviations from the mean). Additionally, the SNPs with a minor 

allele frequency (MAF) <0.01, call-rate<98%, and evidence for violations of Hardy-Weinberg equilibrium 

(HWE, P<1×10−5) were discarded. Principal component analysis (PCA) was performed with PLINK 2.0, 

including the genotypes of phase 3 of the 1000 Genomes Project as reference panel [43]. Individuals not 

clustering in the PCA with the 1000 Genomes subjects of European descent were excluded from further 

analysis. After imputation the four datasets were merged using only the SNPs with imputation quality 

(INFO score r2) higher than 0.7 (N= 24,735,918 SNPs). The pooled dataset was filtered, removing the 

variants with call rate<98% (N=11,699,683 SNPs), MAF<1% (N=5,524,684 SNPS) or departure from HWE 

(P<1x10-5, N=2,206 SNPs). The discovery dataset consisted therefore of 8,738 PDAC case and 7,034 

controls that were analysed for 7,509,345 SNPs. The “inflation factor” calculated in each dataset did not 

show evidence of systematic inflation (λ=1.000 for PanScan I, λ=1.015 for PanScan II, λ=1.026 for 

PanScan III, λ=1.000 for PanC4, and λ=1.000 for the aggregate dataset). 

Replication phase 

In the replication phase, data obtained from four independent populations were analysed, using the 

summary statistics of three studies: (I) PanGenEU, (II) FinnGen, and (III) JaPAN. Additionally, the SNPs to 

be validated were genotyped in the PANDoRA consortium. All populations have been described in detail 

elsewhere [23,24,41,42,44]. A brief description is also given in supplementary material 1. 
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Summary statistics of PanGenEU were used as first replication (Replication 1), then the variants that 

showed a statistically significant association (P<0.05) in PanGenEU were genotyped in PANDoRA and 

looked up in FinnGen and JaPAN (Replication 2) for a total of 7,317 cases and 212,142 controls 

comprised in the four populations.  

 

PANDoRA sample preparation and genotyping 

DNA of cases and controls from PANDoRA was extracted from whole blood, using the QIamp 96 DNA 

QIAcube HT Kit (Qiagen, Hilden, Germany). Genotyping was performed using TaqMan technology 

(ThermoFisher Applied Biosystems, Waltham MA, USA) in 384-well plates. A similar number of cases and 

controls was distributed in each plate, and duplicate samples (8%) were added for quality control 

purposes. Genotypes were determined using the QuantStudioTM 5 Real-Time PCR system (Thermofisher, 

USA). 

 

Statistical analysis 

The association between SNPs and risk of developing PDAC was evaluated through unconditional logistic 

regression analysis adjusted for sex, age and the top eight principal components for the discovery phase 

(PanScan I, II, III and PanC4) and for sex, age, and country of origin in the replication phase (PANDoRA). 

All the statistical analyses were conducted using PLINK 2.0 and R software. The details on the statistical 

analyses adopted in the PanGenEU, JaPAN and FinnGen GWASs are reported elsewhere [23,41,42]. A 

meta-analysis was performed for all the variants that showed a statistically significant association in 

PanGenEU using all the populations (PanScan I, II, III, PanC4, PanGenEU, PANDoRA, JaPAN and FinnGen). 

Stratified analysis including only European individuals was also performed to avoid confounding bias due 

to the different ethnic groups. To account for multiple testing, we considered linkage disequilibrium 

(LDr2>0.8; 1000 genomes, Europeans) among the SNPs used in the discovery phase to obtain a list of 

independent variants (N=37,435). The threshold for statistical significance was, therefore, set to 

P=0.05/37,435=1.34×10-6 using Bonferroni’s correction.  

Results 

Figure 1 shows the flowchart of the study design and replication across the populations. During the 

discovery phase 73,700 unique SNPs associated with at least one human trait were identified in GWAS 

Catalog and analysed in the Pancreatic Cancer Cohort Consortium (PanScan I, II and III), and the 

Pancreatic Cancer Case-Control Consortium (PanC4) datasets, for a total of 8,738 PDAC cases and 7,034 

controls; 12,728 variants and their LD proxies (r2>0.8) were not present in the dataset. Among the 

61,052 remaining variants, 428 showed a statistically significant association with PDAC risk (P<0.05) 

(Supplementary Table 1). Among these, 164 SNPs were in LD (r2>0.8) with known PDAC risk loci, and the 

remaining 264 variants were pruned (r2>0.6) to eliminate residual LD and to identify independent SNPs 
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to be validated. The final list of SNPs to be further validated consisted of 113 SNPs (Supplementary 

Table 1). 

These 113 SNPs were tested in PanGenEU, where seven variants showed an association (P<0.05). One 

SNP (11p14.2-rs117551578) showed a statistically significant association with the risk of developing 

PDAC in both the discovery phase and in PanGenEU, but in the opposite direction, therefore it was 

excluded from the subsequent analyses. Table 2 shows the seven SNPs associated in PanGenEU, their P-

value of association with PDAC risk and the P-value of association with the trait for which they were 

originally selected. 

The remaining six SNPs (6q22.32-rs6919397; 8p23.1-rs2980752; 7q36.3-rs288762; 10q21.1-rs4948550; 

12q12-rs12427164; 17q23.2-rs9903801) were analysed in replication 2 (described in the methods), that 

included genotypes of PANDoRA and summary statistics from FinnGen and JaPAN and then meta-

analysed. None of the SNPs showed a statistically significant association in the studies belonging to 

replication 2. Furthermore, the overall meta-analysis, performed including a total of 16,055 PDAC cases 

and 212,149 controls, did not show any statistically significant association, considering Bonferroni 

correction for multiple testing (Table 3). Excluding non-European (Brazilian from PANDoRA and Japanese 

from JaPAN) individuals from the meta-analysis, lower P-values compared to the discovery phase were 

observed for 7q36.3-rs288762 (OR=1.08, 95%CI=1.04-1.12, P=3.03×10-5) and for 10q21.1-rs4948550 

(OR=0.92, 95%CI=0.89-0.96, P=6.52×10-5).  

Discussion 

Among the six SNPs selected for the replication phase in PANDoRA, JaPAN, and FinnGen, none showed 

significant associations (P<0.05) in the studies taken individually; however, 10q21.1-rs4948550 and 

7q36.3-rs288762 showed a lower P-value in the meta-analysis compared with the discovery phase. In 

addition, removing individuals of non-European or of admixed ancestry from the analysis, the 

significance level of the results improved further for 7q36.3-rs288762 (Pvalue=3.03×10-5) and for 10q21.1-

rs4948550 (Pvalue=6.52×10-5). This improvement could be explained by the fact that the two SNPs are just 

risk markers, not directly responsible for the disease and, therefore, the presence of a different LD 

architecture across populations could dilute the results when considering different ethnicities together. 

The causative SNP could be linked to the markers in central Europeans but not in Asians, or Brazilians, or 

in LD with a variant that was not genotyped and that is in different LD blocks in the various populations. 

However, none of the variants reached the P-value threshold set for this study, considering the 

correction for multiple testing (P=1.34×10-6). 

The best association was observed for 10q21.1-rs4948550 which is located in the BicC Family RNA 

Binding Protein 1 (BICC1) gene, that encodes an RNA-binding protein that regulates cell proliferation and 

apoptosis [45]. This SNP is a missense variant that leads to the aminoacidic variation Ser943Pro, for 

which a benign clinical significance is reported on NCBI dbSNP portal (www.ncbi.nlm.nih.gov). The 

10q21.1-rs4948550 region shows a high degree of pleiotropy since the SNP (or the SNPs in LD with it) is 

associated with cardiovascular disease, bilateral cleft lip, morningness (i.e., the individual preference of 
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waking up early) and colorectal cancer [46–48]. In particular, 10q21.1-rs4948550 is in strong LD with 

rs4948317 (r2=0.82, D’=0.98 in Europeans) which was identified to be associated with risk of colorectal 

cancer (CRC, P=7x10-8) in a GWAS study carried out in Est Asian individuals. The connection between CRC 

and PDAC is intriguing because the two tumours share several risk loci, for example 5p15.33-TERT, 

16q24.1-LINC01081/LINC00917, 7p12.3-TNS3 and the region of ABO on 9q34 [9,12,49–52]. Therefore, 

the results of our study may suggest another potential pleiotropic locus shared by PDAC and CRC, 

highlighting the importance of pleiotropy in human neoplastic diseases and a possible overlap in 

pathways and mechanisms that lead to the development of the two diseases. 

The other potentially interesting SNP, 7q36.3-rs288762, is situated 28,558 base pairs upstream of the 

sonic hedgehog (SHH) gene, that is involved in cell differentiation. SHH has been observed to be 

overexpressed in cancer patients, thus creating a favourable environment for metastasis, proliferation, 

and drug resistance [11,53,54]. Three SNPs located in the SHH gene (rs167020, rs172310, rs288746) are 

already known to be associated with the risk of developing PDAC [12], highlighting the importance of 

the genetic variability of this region in PDAC. These three SNPs are in weak LD withrs288762, (r2<0.35 in 

the European population). This region is particularly interesting due to the different results obtained 

with cohort and case-control studies. Amundadottir and colleagues observed a strong association for 

rs167020 (P=1.76x10-7), rs172310 (P=2.01x10-7) and rs288746 (P=1.35x10-4) in prospective cohorts 

included in PanScan-I, but the associations were not confirmed in the retrospective studies used for 

replication (P=0.122, P=0.095 and P=0.108, respectively) [12]. Similarly, in our study, 7q36.3-rs288762 

was observed to be associated with PDAC risk in the discovery phase (P=1.09×10-4), that included mainly 

prospective studies, among which those analysed in 2009 by Amundadottir and colleagues, but not in 

the European retrospective populations used in the replication phase (PanGenEU P=0.03, PANDoRA 

P=0.66 and FinnGen P=0.37). Interestingly, Regan et al. observed that non canonical expression of SHH 

pathways positively regulates WNT signalling and may be crucial for colon cancer stem cell survival once 

again highlighting a connection between PDAC and CRC. [55]. Moreover, the T allele of rs288762, 

associated with an increased risk of developing PDAC, is also significantly associated with a low 

estimated glomerular filtration rate. This trait was already found to be associated with one (rs9903801) 

of the six SNPs analysed in Replication 2, suggesting a possible correlation between the risk of 

developing PDAC and a low estimated glomerular filtration rate. Additionally, it is interesting to note 

that C-reactive protein/albumin ratio is a predictor of pancreatic cancer survival, however further 

studies are warranted to characterise the mechanism linking these two traits. 

A clear strength of this study is the large sample size, with 16,055 cases of PDAC and 212,149 controls, 

and a rigorous multi-phase process to eliminate spurious findings. 

A possible limitation is the lack of a prospective cohort to replicate the finding on 7q36.2 to shed more 

light on the association of rs288762, located at this locus, since it appears to have different effect in 

prospective and retrospective studies. Another possible limitation is the fact that in the FinnGen study 

exocrine and endocrine pancreatic cancers are not divided. However, considering the very low 

prevalence of the latter (less than 2% of all pancreatic cancers), it is unlikely that this would have 

changed our results. 
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In conclusion, none of the SNPs showed a formally statistically significant association after correction for 

multiple testing. However, due to their pleiotropic nature and their connection with CRC, the two SNPs 

showing the best associations with PDAC risk merit further investigation through fine mapping and ad 

hoc functional studies. 
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Figure 1: Flowchart of SNP selection. 
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Table 1. Description of the study populations. 

 PanScan I II III & 
PanC4 

PanGenEU  PANDoRA JaPAN1 FinnGen2 Total 

Study phase  Discovery Replication 1 Replication 2 Replication 2 Replication 2  
Number of subjects       

Cases  8,738 1,317 3,442 2,039 519 16,055 
Controls 7,034 1,616 3,928 32,592 174,006 212,149 

Total 15,772 2,933 7,370 34,631 174,525 235,231 
Median age (25%-75% 

percentiles) 
      

Cases 65 (55-75) 66 (57-73) 66(58-73) 62.7| 66.3 - - 
Controls 65 (55-75) 65 (55-75) 59(50-66) 43.6| 56.3 - - 

Sex       
Female 46% 42% 47% - - - 

Male 54% 58% 53% - - - 
 

1The information about sex and age are reported as minimum | maximum value.  

2 We used the FinnGen documentation of R4 Release.  

"-": Information not available in the original database. 
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Table 2: SNPs associated with PDAC risk in discovery phase (PanScan and PanC4) that were found associated also in replication 1 (PanGenEU 

GWAS).  

SNP Locus M/m MAF in CEU 
Results of replication 1 Associated traits in GWAS Catalog 

OR (95%CI) Pvalue Traits OR (95%CI) Pvalue 

rs6919397 6q22.32 T/G 0.409 
0.80 (0.69-

0.92) 
0.002 Neuroticism NR (NR) 4x10

-8 

  
 

 
 

 
Type 1 diabetes (rs9388489, r

2
=0.99, D'=1.00) 

#
 1.17 (1.10-1.24) 4x10

-13
 

  
 

 
 

 
Type 2 diabetes (rs4897182, r

2
=0.97, D'=0.99) 

#
 1.05 (1.02-1.11) 3x10

-8
 

rs288762 7q36.3 C/T 0.384 
1.17 (1.01-

1.36) 
0.034 Estimated glomerular filtration rate in non-diabetics 1.44 (1.11-2.30) 2x10

-11
 

rs2980752 8p23.1 C/A 0.294 
0.84 (0.72-

0.99) 
0.034 Heel bone mineral density 1.03 (1.00-1.07) 3x10

-50
 

  
 

 
 

 
Triglyceride levels (rs2980755, r

2
=0.41, D'=0.91) 

#
 0.98 (0.95-0.99) 1x10

-10
 

rs4948550 10q21.1 C/T 0.328 
0.85 (0.73-

1.00) 
0.049 Cardiovascular disease NR (NR) 7x10

-8
 

  

 

 

 

 

Colorectal cancer (rs4948317, r
2
=0.82, D'=0.97) 

#
 1.10 (1.06-1.13) 7x10

-8
 

  
 

 
 

 
Morning person (rs2893787, r

2
=0.91, D'=0.99) 

#
 NR (NR) 2x10

-8
 

rs35138700* 12q12 C/T 0.394 
1.18 (1.02-

1.37) 
0.029 Morning person 1.05 (NR) 4x10

-43
 

  
 

 
 

 
Type 2 diabetes (rs7315028, r

2
=0.57, D'=0.96) 

#
 1.13 (1.04-1.33) 2x10

-8
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rs7214227* 17q23.2 C/T 0.146 
0.76 (0.63-

0.93) 
0.014 Estimated glomerular filtration rate 1.01 (1.00-1.01) 2x10

-36
 

  

 
 

 
 

Renal function-related traits (rs11868441, r
2
=0.61, D'=0.89) 

#
 1.01 (1.00-1.01) 2x10

-9
 

*SNPs selected as proxy (r2=1, D’≥ 0.94). 

# Traits reported in GWAS Catalog for variants in LD (r2>0.4) with the SNPs analysed in replication 1. 

M/m: major/minor allele; OR (95%CI): odds ratio and its 95% confidence interval; NR: data nor reported in GWAS Catalog, the Pvalue refers to 
the association with the reported trait. 
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Table 3: Associations between selected SNPs and PDAC risk in the individual studies and in the meta-analysis. 

SNP, locus, 
M/m 

  PanScan/PanC
4 

PanGenEU PANDoRA
1
 PANDoRA

2
 JaPAN FinnGen Meta-analysis

1
 Meta-analysis

2
 

rs6919397 OR 
(95%CI) 

0.92 (0.88-
0.96) 

0.80 (0.69-
0.92) 

098 (0.92-1.05) 0.98 (0.91-
1.05) 

- 1.06 (0.93-1.2) 0.94 (0.87-
1.02) 

0.95 (0.88-
1.03) 

6q22.32 Pvalue 1.31×10
-4

 2.44×10
-3

 6.17×10
-1

 5.40×10
-1

 - 3.84×10
-1

 1.35×10
-1

 2.17×10
-1

 

T/G Pvalue Het.       1.18×10
-2

 9.70×10
-3

 

rs288762 OR 
(95%CI) 

1.10 (1.05-
1.15) 

1.17 (1.01-
1.36) 

1.02 (0.95-
1.10) 

1.02 (0.95-
1.09) 

1.02 (0.94-
1.11) 

1.09 (0.96-
1.24) 

1.07 (1.04-
1.11) 

1.08 (1.04-
1.12) 

7q36.3 Pvalue 1.09×10
-4

 3.38×10
-2

 5.04×10
-1

 6.60×10
-1

 6.13×10
-1

 1.79×10-
1
 3.98×10

-5
 3.03×10

-5
 

C/T Pvalue Het.       2.52×10
-1

 2.13×10
-1

 

rs2980752 OR 
(95%CI) 

0.90 (0.85-
0.95) 

0.84 (0.72-
0.99) 

0.98 (0.91-
1.05) 

0.98 (0.91-
1.06) 

1.02 (0.95-
1.10) 

0.97 (0.85-
1.10) 

0.95 (0.89-
1.01) 

0.92 (0.89-
0.96) 

8p23.1 Pvalue 2.92×10
-4

 3.38×10
-2

 5.29×10
-1

 5.40×10
-1

 5.33×10
-1

 6.28×10
-1

 7.98×10
-2

 1.38×10
-4

 

C/A Pvalue Het.       2.55×10
-2

 1.71×10
-1

 

rs4948550 OR 
(95%CI) 

0.91 (0.87-
0.96) 

0.85 (0.73-
1.00) 

0.97 (0.89-
1.04) 

0.95 (0.88-
1.03) 

0.99 (0.91-
1.07) 

0.99 (0.86-
1.14) 

0.94 (0.91-
0.97) 

0.92 (0.89-
0.96) 

10q21.1 Pvalue 2.92×10
-4

 4.99×10
-2

 3.64×10
-1

 2.40×10
-1

 7.74×10
-1

 8.84×10
-1

 3.91×10
-4

 6.52×10
-5

 

C/T Pvalue Het.       2.58×10
-1

 4.47×10
-1

 

rs35138700* OR 
(95%CI) 

1.11 (1.04-
1.18) 

1.18 (1.02-
1.37) 

1.01 (0.94-
1.09) 

1.02 (0.93-
1.12) 

1.03 (0.93-
1.14) 

0.91 (0.93-
1.20) 

1.05 (0.97-
1.12) 

1.05 (0.96-
1.16) 

12q12 Pvalue 9.32×10
-5

 2.86×10
-2

 7.11×10
-1

 6.40×10
-1

 5.29×10
-1

 1.48×10
-1

 2.19×10
-1

 2.92×10
-1

 

C/T Pvalue Het.       1.24×10
-2

 1.06×10
-2

 

rs7214227* OR 
(95%CI) 

0.9 (0.85-0.96) 0.76 (0.63-
0.93) 

1.03 (0.94-
1.14) 

1.01 (0.92-
1.11) 

1.03 (0.93-
1.14) 

0.92 (0.77-
1.10) 

0.94 (0.86-
1.03) 

0.92 (0.88-
0.97) 

17q23.2 Pvalue 1.14×10
-3

 6.68×10
-3

 4.74×10
-1

 8.60×10
-1

 5.87×10
-1

 3.72×10
-1

 1.93×10
-1

 8.89×10
-4

 

C/T Pvalue Het.       1.06×10
-2

 5.18×10
-2

 
1 result with all subjects; 2 results excluding non-European subjects.  

* SNPs selected as proxy (r2=1, D’≥ 0.94). 

m= minor allele; M= major allele; "Pvalue Het" = Pvalue of heterogeneity. When the studies were heterogeneous, we performed the meta-analysis 
with the random effect model, while when studies were not heterogenous, we used the fixed-effect model.  
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