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Abstract
Plants produce a wide variety of secondary metabolites to sustain and protect themselves against a wide range of stresses. 
Among these metabolites, tannins are one of the most abundant polyphenolic compounds, accounting for 25% of the dry 
weight of leaves, roots and bark of woody plants, but are also abundant in flowering and seed-producing plants. The pres-
ence of tannins in these organs serves to protect plants against herbivorous and pathogenic attack through their antidigestive 
and antimicrobial properties. In addition, tannins play a role in regulating plant growth and development by inhibiting the 
consumption of unripe fruits due to their astringency. In addition, several studies have also revealed various roles of them 
under environmental stresses. Tannins can be classified into condensed tannins (CTs), hydrolysable tannins (HTs) and 
phlorotannins. They are synthesised in plants via the acetate–malonate and shikimic acid pathways. Their accumulation is 
regulated by several transcription factors during normal development and under different stress conditions. Despite their 
multiple roles in plant life, information on the regulation of tannin metabolism by defence-related phytohormones is very 
limited. To cope with biotic and abiotic stresses, plant responses are regulated by defence-related phytohormones such as 
salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA), which act as regulators of tannin produc-
tion under adverse conditions. This review focuses on tannin production, moreover its occurrence, defence potential and 
regulation by phytohormones under different environmental and biotic stresses, based on the most recent and relevant data.
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Introduction

Plants are constantly exposed to harmful environmental 
conditions such as high light, UV-B radiation, drought, 
heat waves, infections, etc. at all developmental stages 
throughout their lives. The fluctuating environmental con-
ditions are severely affecting crop production worldwide, 
resulting in reduced crop yields and food insecurity for 
the rapidly growing population (Samota et al. 2017; Saijo 
and Loo 2020). Thus, various abiotic and biotic stresses 
due to climate change cause severe damage to agricultural 
plants (Zhou et al. 2020; de Bang et al. 2021; Chauhan 
et al. 2022). These stresses, with their devastating effects 
on crop production are driving scientists to find solutions 
for sustainable agriculture. Enhancing plant resistance by 
endogenous or exogenous agents and inducing the produc-
tion of secondary metabolites under stress conditions are 
also considered as suitable approaches to reduce the nega-
tive effects of different stressors (Dresselhaus and Hückel-
hoven 2018). Therefore, it is essential to pay attention to 
plant–stress interactions and to provide relevant scientific 
knowledge on the molecular-biochemical mechanisms 
involved in these defence responses.

Stress stimuli trigger an increase in intracellular cal-
cium levels as well as the production of reactive oxygen 
species (ROS) and nitric oxide (NO) in plant cells, which 
affect the biosynthesis and signalling of various defence-
related phytohormones such as salicylic acid (SA), jas-
monic acid (JA), ethylene (ET) and abscisic acid (ABA) 
to induce multiple functions, including defence responses, 
to enhance plant resistance/acclimatisation and to regulate 
plant growth and development (Pieterse et al. 2012; Edel 
and Kudla 2016; Checker et al. 2018; Ku et al. 2018). 
These phytohormones can orchestrate long-term plant 
defence responses by regulating the synthesis of second-
ary metabolites, such as tannins, locally or systemically. 
At the same time, their differential effects have not been 
analysed systemically.

In plants, several secondary metabolites such as phe-
nolics, flavonoids, terpenoids and tannins are accumu-
lated in response to adverse stressors (Dehghanian et al. 
2022). Among these, tannins play a crucial role in regu-
lating plant’s life during plant–environment interactions 
(Ucar et al. 2013). Among others, tannins as polyphenolic 
compounds play an important role in inhibiting various 
diseases due to their antimicrobial effects, moreover by 
limiting oxidative stress, inhibiting herbivore feeding as 
antidigestive compounds, and preventing gene mutations 
(Sommerauer et al. 2019; Champagne et al. 2020; Tong 
et al. 2022). Tannins impart a bitter taste to various plant 
parts to repel herbivores, e.g., to protect leaves and unripe 
fruits, but can also prevent bacterial infections (War et al. 

2012; Kubalt 2016). On the other hand, tannins’ consump-
tion can result in serious consequences for invertebrates, 
including liver or kidney damage (Champagne et al. 2020; 
Sharma et al. 2021). Due to their diverse functions in liv-
ing organisms, tannins play a crucial role in mitigating 
the negative effects of various stressors, thus enhancing 
plant defence, in particular the protection of plant organs 
in terms of survival and reproduction. Despite their mul-
tiple roles in plants, information on the regulation of tan-
nin metabolism by defence-related phytohormones is very 
limited. The following review provides a current overview 
of the relevant literature, highlighting the function of tan-
nins and regulation by the key defence-related phytohor-
mones. Other functions of tannins in relation to various 
stress stimuli are also discussed.

Basic Properties of Tannins

Tannins are high molecular weight (500–3000 Da) and 
water soluble molecules at 20–35 °C, except for some com-
plex high molecular weight structures (Serrano et al. 2009; 
Hassanpour et al. 2011; Marsh et al. 2020). Tannins can be 
defined as polyphenolic compounds that bind to proteins 
to form tannin-protein complexes. In addition, tannins can 
also bind to saponins, nucleic acids, alkaloids and polysac-
charides such as cellulose, hemicellulose and pectin (Chaichi 
Semsari et al. 2011). They are localised in plant vacuoles 
preventing their inhibitory effect on cellular metabolism 
(Mir et al. 2015). Moreover, it is known that tannins have 
antimicrobial activity and inhibit the growth of a wide 
range of microbes in vitro at inhibitory concentrations of 
0.5–20.0 g L−1 for bacteria and at 0.012 g L−1 for pathogenic 
fungi (Njokuocha 2020). However, the antimicrobial capac-
ity of tannins depends mainly on the specific tannin and the 
microbial strain under consideration (Anderson et al. 2012).

Tannins can be classified into condensed tannins (CTs), 
hydrolysable tannins (HTs) and phlorotannins in plants 
(Fig. 1) (Shirmohammadli et al. 2018; Dehghanian et al. 
2022). Among these, phlorotannins are the simplest tannins 
and are commonly found in aquatic species such as brown 
algae (Mannino and Micheli 2020). A single phlorotannin 
consists of two phloroglucinols with C–C or C–O–C bonds, 
while two single phlorotannins with four phloroglucinols 
form a tetrameric phlorotannin. The structural changes in 
these molecules may be due to an increased number of –OH 
groups or increased bonding in the monomers. Similarly, 
two or more monomer units combine to form concentrated 
tannins known as procyanidins (Smeriglio et al. 2017). HTs 
are considered to be plant secondary metabolites in combi-
nation with phenolic compounds such as caric acid, which 
have various biological functions (Das et al. 2020). Further-
more, HTs can be classified according to their structure into 
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ellagitannins, gallic acid and gallotannins. Interestingly, the 
hydrolysis of gallotannins and ellagitannins yields gallic acid 
and ellagic acid, respectively, which are potent antioxidants 
and maintain cellular redox homeostasis (Barbehenn and 
Constabel 2011; Anstett et al. 2019). In contrast to HTs, 
CTs contain monomers of prodelphinidins and procyanidins, 
whose accumulation plays role e.g., in the protection of plant 
cells under insect or herbivore attack (Abdalla et al., 2014; 
Kumar et al. 2020; Rubert-Nason and Lindroth 2021).

Biosynthesis of Tannins in Plants

The synthesis of basic polyphenols in plants is achieved 
by the acetate–malonate and shikimic acid pathways 
(Dehghanian et al. 2022) (Fig. 2). Briefly, carbon diox-
ide is fixed to glyceraldehyde-3-phosphate via the Calvin 
cycle, which is further degraded to phosphoenolpyruvate 
or pyruvate if required, or to erythrose-4-phosphate via 
the oxidative pentose phosphate pathway (Salminen and 

Karonen 2011). Both pyruvate and erythrose-4-phosphate 
are substrates of the acetate/malonate and the shikimate 
pathway, respectively, enabling the synthesis of the respec-
tive CTs and HTs downstream (Takos et al. 2006). How-
ever, brown algae only require the acetate/malonate path-
way for the synthesis of phlorotannins, whereas plants 
can produce tannins using both pathways (Salminen and 
Karonen 2011). It was reported that this step of tannin 
biosynthesis (the synthesis of phloroglucinol monomers 
from malonyl-CoA) in the brown alga Ectocarpus siliculo-
sus is catalysed by the type III polyketide synthase, PKS1 
(Meslet-Cladière et al. 2013).

In higher plants, the precursor of shikimic acid, 3-dehy-
droshikimic acid, is the primary building block of gallic acid 
for the synthesis of HTs regulated by shikimate dehydro-
genase (SDH; Mora et al. 2022). The pentgalloyl glucose 
of the HT pathway yields gallotannins and ellagitannins, 
while the p-coumaroyl CoA of the phenylpropanoid precur-
sors combines with the malonyl-CoA of the acetate pathway 
(Mora et al. 2022).

Fig. 1   The chemical structures of A phloroglucinol, B tetrameric phlorotannin, C condensed tannin, and D hydrolysable tannin (Dehghanian 
et al. 2022)
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The acetate/malonate CoA initiates the CT pathway by 
forming chalcone in the presence of chalcone synthase 
(CHS), which is then converted to flavanone by chalcone 
isomerase (CHI), followed by the production of dihydro-
flavanol due to the activity of flavanone-3β-hydroxylase 
(F3H) (Anwar et al. 2021). In the next step, dihydrofla-
vanol is converted to leucoanthocyanidin by dihydrofla-
vonol-4-reductase (DFR) and then to anthocyanidin by 
anthocyanidin synthase (ANS). The enzyme UDP-glucose: 
flavonoid-3-O-glycosyltransferase (UFGT) is involved 
in the synthesis of anthocyanin from anthocyanidin 
(Takos et al. 2006). During this CT synthesis pathway, 
two enzymes, leucoanthocyanidin reductase (LAR) and 
anthocyanidin reductase (ANR) convert leucoanthocya-
nidin and anthocyanidins to catechins and epicatechins, 
respectively, which are the initial constructing units of 
CTs (Anwar et al. 2021). The essential compounds for 
the biosynthesis of CTs are flavan-3 and flavan-3, 4-diol 
(Hassanpour et al. 2011). The synthesis of CTs in plants 
can be influenced by various factors such as plant species, 

soil fertility, plant organ/part and developmental season 
(Bharathidhasan 2018; Kumar et al. 2020; Roca-Fernandez 
et al. 2020). For example, structural differences have been 
reported in polymers isolated from leaves and roots of the 
same plant, suggesting different regulation of tannin syn-
thesis in both plant tissues. In Lotus pedunculatus two 
distinct mechanisms of tannin biosynthesis was revealed; 
the first was light quality-mediated and found in the apical 
meristem, while the second was nutrient supply based such 
as nitrogen and found in the root zone (Hassanpour et al. 
2011). Moreover, other studies documented the synthe-
sis of tannins in fruits of e.g., wine grapes, pomegranate, 
persimmon and seeds of sorghum (Hassanpour et al. 2011; 
Bernjak and Kristl 2020), as well as in leaves of woody 
plants such as acacia, poplar, oak, especially under infec-
tion or wounding (Gourlay and Constabel 2019, Gourlay 
et al. 2020; Rubert-Nason and Lindroth 2021). These find-
ings also suggest that phytohormone-mediated regulation 
of tannin synthesis is required in the different parts of 
plants, as well as in the case of different environmental 
stimuli.

Fig. 2   The biosynthetic pathways of tannins in plants (Takos et al. 2006; Salminen and Karonen 2011; Mora et al. 2022)
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Role of Phytohormones in Tannin Production

Plants have evolved different defence mechanisms against 
different environmental stressors or at different stages 
of pathogen or herbivore attacks. For example, at the 
pre-invasion stage in the case of biotic stress, cell wall 
modification followed by thickening by callose and lignin 
deposition prevents pathogen invasion and provides a 
more stable cell wall structure against cell wall-degrading 
enzymes secreted by phytopathogens (Das et al. 2016). 
At the next stage, programmed cell death (PCD) can limit 
further spread of pathogenic infection, followed by induc-
tion of defence-related gene expressions and synthesis of 
metabolites with antimicrobial and antioxidant proper-
ties (Jahangir et al. 2009). Various phytohormones such 
as SA, JA, ET and ABA are involved in the regulation 
of defence responses of plants against abiotic and biotic 
stressors such as microbial pathogens and herbivores (Piet-
erse et al. 2012; Belkadhi et al. 2014; Murcia et al. 2016; 
Iqbal et al. 2023a). As part of the signalling mechanisms 
induced by biotic stressors, pathogen-derived proteins are 
recognised by specific receptors which induces the activa-
tion, production and transport of hormones to their target 
sites (Spoel and Dong 2012). The hormonal responses 
under biotic stress, especially under bacterial and fungal 
infection, depend on the nature of the pathogens such as 
biotrophs, hemibiotrophs and necrotrophs. In general, SA 
induces plant defence responses against biotrophic patho-
gens, whereas JA and ET are involved in the induction of 
plant resistance against necrotrophs and herbivores (Das 
et al. 2016). At the same time, all of these phytohormones 
regulate the defence responses of plants against abiotic 
stressors, respectively, such as ABA mediates rapid stoma-
tal closure to prevent plants from water loss under drought 
stress, as well as regulates cold- or salt stress tolerance 
(Lim et al. 2015). It is also known that phytohormones 
regulate the allocation of plant resources to prevent energy 
starvation and provide a balance between plant growth and 
defence (Huot et al. 2014). Several studies have examined 
the exogenous application of these hormones, while a few 
have focused on their endogenous roles in plant defence 
responses using transgenic and mutant plants (Shao et al. 
2016; Machado et al. 2017). Hormonal crosstalk has also 
been studied under different conditions, such as herbivory, 
and changes in plant primary and secondary metabolism 
have been analysed (Liu et al. 2019).

Among the secondary metabolites, tannins are well-
known for their diverse roles in inducing plant defence 
responses and protecting plants from stress, particularly 
biotic stress, as increasing tannin levels in various plant 
organs provides astringency and bitter taste (Dehghanian 
et al. 2022; Mora et al. 2022). Despite the importance of 

tannins in plant defence responses, there is a significant 
scientific gap in the hormonal regulation of their metabo-
lism. This may be due to the fact that tannin production 
in some woody or food plants has been the focus of most 
scientific attention, particularly during ripening. This may 
also explain the lack of in-depth scientific studies in model 
plants such as Arabidopsis, tomato, rice or other crops.

In the next subchapters, the effects of key defence-related 
phytohormones on various plant species and organs are 
summarised for the first time to gain a better understand-
ing of hormone-regulated changes in tannin metabolism at 
the physiological, biochemical, and molecular levels under 
diverse environmental conditions (Table 1). This knowledge 
can provide new scientific questions and research perspec-
tives, as well as help to improve our ability to improve stress 
resistance in crops, facing future challenges in a changing 
environment.

Salicylic Acid (SA)

SA is involved in many plant defence responses to biotic 
and abiotic stresses through various defence mechanisms, 
including morphological, physiological and biochemi-
cal, to enhance plant growth and development (Kobayashi 
et al. 2020; Zhong et al. 2021). SA plays a crucial role in 
the hypersensitive reaction (HR) upon infection by gener-
ating high production of ROS and local cell death but it 
also plays role in the systemic responses of distal parts of 
infected plants, respectively (Klessig et al. 2018; Kachroo 
et al. 2020; Vlot et al. 2021).

The concentration of tannins also depends on the prox-
imity to the infection sites, similar to SA. Higher levels of 
tannins were found in turtle grass (Thalassia testudinum L.) 
against marine protists (Labyrinthula sp.), but the concen-
tration of CTs gradually increased with distance from the 
lesions. At the same time, the levels of other phenolic com-
pounds also increased with infection (Steele et al. 2005). 
A similar study reported higher levels of CTs in the root 
and rhizome of turtle grass when sea urchins grazed on the 
leaves, suggesting a systemic induction of tannin biosynthe-
sis which could be used as an indicator of infection or grazer 
attack (Arnold et al. 2008).

The eight-toothed spruce bark beetle (Ips typographus L.) 
is one of the most important pests of Norway spruce [Picea 
abies (L.) H. Karst] in Europe (Felicijan et al. 2016). Tan-
nins in the bark provide chemical resistance to bark penetra-
tion and act as antifeedant and antifungal chemicals (Beck-
man 2000; Franceschi et al. 2005). Since, there is a crosstalk 
between SA and polyphenols (Liao et al. 2021), Norway 
spruce trees were treated with exogenous SA (Felicijan et al. 
2016). It was found that SA increased the accumulation of 
CTs as a function of time, alleviated phenolic responses and 
inhibited bark beetle colonisation (Felicijan et al. 2016). 
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These results also indicated the time-dependent effects of 
SA in plants.

Not only time-dependent but also concentration-depend-
ent effects of SA have been investigated. Using Hassawi rice 
(Oryza sativa L.) cell suspension culture, 50 and 100 mg L−1 
SA significantly increased the biomass-packing cell volume, 
fresh weight, dry weight, antioxidant activity, as well as total 
flavonoids, anthocyanins, tannins and total phenolics content 
(El-Beltagi et al. 2022). At the same time, 200 mg L−1 SA 
did not alter CT content in cells (El-Beltagi et al. 2022), 
confirming its concentration-dependent effects on tannin 
biosynthesis.

The organ-specific effects of SA on tannin levels have 
also been described. The role of SA was investigated in bean 
(Phaseolus vulgaris L.) seedlings under cadmium (Cd) tox-
icity in a 6-day-long experiment. SA application (1 mM) 
significantly reversed Cd-induced negative effects by pro-
moting plant growth and improving germination rate (Hediji 
et al. 2021). SA treatment generally increased CT content 
in cotyledons but decreased it in embryonic axes of bean 
seedlings (Hediji et al. 2021). The effects of exogenous SA 
application on different parts of Theobroma cacao plants 
and calli from its stamen and petals were also demonstrated, 
and it was found that 0.1 mg L−1 SA concentration signifi-
cantly increased the content of tannins, alkaloids, phenols, 
flavonoids, reducing carbohydrates and free amino acids as 
compared to the control, while SA-induced reducing power 
was also observed to be elevated in cells obtained from pet-
als (Rosabal et al. 2022).

The genotype-dependent effects of SA were investigated 
in groundnut (Arachis hypogaea L.) leaves (War et al. 2015). 
In this experiment, different resistant genotypes, including 
ICG1697, ICGV86699, ICG2271 and ICGV86031, and the 
insect-susceptible genotype JL24, were used to determine 
the effects of SA and JA application against an insect (Heli-
coverpa armigera). It was found that SA and JA increased 
the levels of tannins, phenolic and flavonoid compounds, and 
antioxidant activities in a genotype-dependent manner, more 
significantly in the resistant genotypes than in the suscepti-
ble genotype (War et al. 2015). At the same time, JA showed 
a greater potential to induce resistance than SA by reducing 
plant growth and larval survival and increasing CT levels in 
resistant genotypes (War et al. 2015).

The application of exogenous SA as a postharvest method 
and changes in tannin content were investigated for the first 
time by Khademi et al. (2012). Postharvest softening and 
disease development are among the major problems during 
storage of Karaj persimmon fruit. Therefore, SA treatments 
were carried out to improve disease resistance and prolong 
the storage period of this fruit. It was found that SA appli-
cation at 2 mM concentration significantly reduced disease 
symptoms in fruits, but SA at 1 mM concentration failed 
to prevent disease incidence (Khademi et al. 2012). On the Ta
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contrary, SA did not affect soluble tannin or total soluble sol-
ids content and fruit firmness. The authors explained these 
changes based on the ineffectiveness of SA on ET produc-
tion in Karaj persimmon fruit (Khademi et al. 2012).

Secondary metabolites are the main components of 
the defence responses of plants whose content are highly 
dependent on environmental stimuli such as light (Landi 
et al. 2020). Moreover, SA levels and their effects are also 
dependent on the light quality and quantity (Poór et al. 
2019). The effect of different irradiances of sunlight (100, 
52 and 26%) on the production of phenolic compounds such 
as SA and condensed tannins in the needles of Larix gmelinii 
seedlings was investigated (Yan et al. 2014). Interestingly, 
needles under full irradiance had the highest CT content, but 
phenolic acid content was the highest under the lowest irra-
diance (Yan et al. 2014). These negative changes suggested 
the key role of abiotic factors in the regulation of defence-
related phytohormones and tannin biosynthesis. At the same 
time, foliar application of SA under water deficit ameliorated 
the stress effects and significantly increased the levels of 
secondary metabolites such as tannins, flavonoids, alkaloids 
and polyphenols in Simarouba glauca leaves (Awate and 
Gaikwad 2014). Curiously, the effect of artificial magnetism 
on tannin content was also investigated recently in the pres-
ence and absence of SA in shoots and roots of pea (Pisum 
sativum L.) plants (Naseer et al. 2023). However, the results 
showed that artificial magnetism along with foliar applica-
tion of SA did not alter or reduce the tannin content in these 
organs of pea plants (Naseer et al. 2023).

It can be concluded that different abiotic and biotic 
stresses can result in significant increment in the levels of 
tannins and other phenolic compounds in an SA-dependent 
manner. Moreover, the effects of SA on tannin levels may 
depend on environmental stimuli (e.g., light), plant species 
and genotypes, as well as on organs (e.g., leaves, fruits, bark) 
and time (e.g., within hours or days). At the same time, more 
detailed studies are needed to describe the effects of SA on 
tannin metabolism at the transcriptional and metabolomic 
level.

Jasmonic Acid (JA)

Due to its involvement in various biological processes, the 
regulatory role of JA has been studied in different plant spe-
cies to regulate stress conditions and induce plant defence 
responses against both biotic and abiotic factors (Lu et al. 
2015; Machado et al. 2017). JA can limit plant growth by 
reducing the accumulation of carbohydrates, including 
starch and sugars, and enhancing plant defence responses, 
such as the accumulation of defensins or proteinase inhibi-
tors (Goossens et al. 2016; Costarelli et al. 2020; Li and 
Ahammed 2023). It was found that exogenous JA treatment 
can increase the resistance of tomato (Solanum lycopersicum 

L.) plants against herbivory, whereas JA-deficient mutants 
showed susceptibility to herbivores (Lu et al. 2015). Upon 
herbivore attack, chemicals present in herbivore oral secre-
tions induce herbivore-induced molecular patterns (HAMPs) 
in plants, similar to microbe-associated molecular patterns 
(MAMPs), leading to higher Ca2+ and ROS production, fol-
lowed by a rapid increase in the levels of plant hormones 
such as JA (Gandhi et al. 2020). For example, ROS accu-
mulation in plants resulted in resistance to oral secretion 
from a caterpillar (Manduca sexta) and similarly, oral secre-
tion from pests such as Spodoptera litura and H. armigera 
due to rapidly increased JA levels in cotton plants (Si et al. 
2020). Interestingly, phenolic compounds such as tannins, 
coumarins, lignins and flavonoids are synthesised in plants 
under pathogen attack and are involved in plant defence 
responses regulated by JA (Jaiswal et al. 2012; Gantner et al. 
2019). In addition, tannin compounds reduce nutritional 
quality following pathogen infection. It was found that tan-
nin complexes can reduce nitrogen content and protect plants 
from plant-feeding insects by inhibiting enzymatic activities 
in their digestive tract. However, some insects possess spe-
cific proteins in their saliva that can mitigate the negative 
effects of tannins (Kariñho-Betancourt 2018; Perkovich and 
Ward 2022).

Exogenous JA application was tested by Cooper and 
Riske (2008) to analyse the JA-dependence of defensive 
responses of two chestnut species, an American (Cas-
tanea dentate Borkh.) and a Chinese (Castanea mollissima 
Blume), against gypsy moths (Lymantria dispar) (Cooper 
and Rieske 2008). Soluble tannins and proanthocyanidins 
were quantified in the leaves and stems of both chestnut 
species as a result of which higher levels of proanthocya-
nidins were observed in the leaves and stems of American 
chestnut, whereas Chinese chestnut had higher levels of 
soluble tannins in the leaves. These results confirm the 
genotype-dependent differences in tannin content. At the 
same time, neither of the chestnuts showed difference 
under moth attack (Cooper and Rieske 2008). JA treatment 
significantly increased the level of proanthocyanidins in 
the stem and hydrolysable tannins in the stem and leaves 
of American chestnut, with organ-specific changes. On the 
contrary, JA application did not affect the tannin concen-
trations in the examined plant tissues of Chinese chestnut. 
The effect of JA treatment significantly reduced the growth 
of caterpillars (gypsy moth) in American chestnut, which 
remained unaffected in case of Chinese chestnut. It can be 
concluded that this study was the first to demonstrate JA-
induced tannin production and defensive responses against 
herbivory depending on plant species and organs (Cooper 
and Rieske 2008). The effects of JA on changes in tannin 
levels were further confirmed using a JA inhibitor (diethyl-
dithiocarbamic acid; DIECA) in different chestnut species 
(Cooper and Rieske 2011). The authors demonstrated the 
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effects of JA and DIECA on American and Chinese chest-
nut on gall development and their interaction with the gall 
wasp (Dryocosmus kuriphilus). They found that JA-treated 
leaves of both chestnuts showed reduced empty chambers 
and pronounced levels of tannins, while DIECA applica-
tion resulted in opposite results with higher fungal lesion 
development, indicating the role of JA in the regulation 
of gall development and nutrient partitioning (Cooper and 
Rieske 2011).

The age-dependent accumulation of tannins induced by 
JA was first described in poplar by Arnold et al. (2004). In 
their experiments, leaves of hybrid poplar seedlings were 
treated with JA to check its effects on source-to-sink carbo-
hydrate and secondary metabolite production. Carbohydrate 
import directly and positively influenced phenylpropanoid 
metabolism in induced sink leaves and uninfluenced leaves 
as well (Arnold et al. 2004). JA-induced tannin production 
was detected in younger leaves, but no change was observed 
in mature leaves. The concentration of CTs was found to 
be three times higher in apical and basal sink leaves, but 
JA-induced CT production was only correlated with this in 
apical sink leaves (Arnold et al. 2004). Similarly, JA treat-
ment increased carbohydrate import and invertase activity 
in younger branches and leaves of poplar. Conversely, JA did 
not affect nitrogen import in girdling and branching. Never-
theless, girdling significantly increased CTs’ production in 
poplar seedlings after 48 h (Appel et al. 2012).

Genotype-dependent effects were also found in ground-
nut plants treated with JA and SA. Both phytohormones 
increased the levels of tannins, phenolic and flavonoid com-
pounds, especially in the leaves of resistant peanut compared 
to the susceptible genotype (War et al. 2015). In addition, 
JA-induced changes were more significant, primarily in 
increasing CT levels and reducing H. armigera larval growth 
in resistant groundnut genotypes (War et al. 2015).

The effects of different types of jasmonates on tannin 
levels have also been described as a function of time (Yan 
et al. 2021). The effects of JA, methyl jasmonate (MeJA) 
and Z-jasmone were investigated in Rosa rugosa leaves in 
response to the insect Monolepta hieroglyphica and it was 
found that JA and MeJA increased the tannin content of 
the leaves more than Z-jasmone after 1 day. The highest 
tannin levels were found after 5 days of jasmonate treat-
ment. In parallel, the feeding area on the leaves was signifi-
cantly reduced after 1 day (Yan et al. 2021). Interestingly, 
the activity of detoxification enzymes such as glutathione 
S-transferase (GST), alkaline phosphatase (AKP) and acid 
phosphatase (ACP) was reduced in adult insects feeding 
on jasmonate-treated leaves compared to controls. These 
results firstly show a strong positive correlation between 
the reduced feeding area of insects with higher tannin and 
phenol content induced by jasmonates and the negative cor-
relation with insect detoxification enzymes (Yan et al. 2021).

Another recent study elucidated the positive effect of 
exogenous MeJA on the production of HTs, flavonoids 
and phyto-oxylipin in pomegranate (Punica granatum L.) 
leaves and showed that MeJA is involved in the regulation 
of expression of genes and transcription factors involved 
in the biosynthesis of HTs, phyto-oxylipin and flavonoids 
(Chang et al. 2021). JA induced the expression of lipox-
ygenase-encoding genes responsible for the oxidation of 
polyunsaturated fatty acids, while non-jasmonate phyto-
oxylipin was produced in cellular compartments. MeJA 
treatment increased HTs’ levels in leaves by promoting the 
expression of 3-dehydroquinate dehydratase/shikimate dehy-
drogenase (DHQ/SDH) and two glycosyltransferase genes 
(PgUGT84A23, PgUGT84A24) within 6 h, indicating the 
key role of MeJA in tannin production (Chang et al. 2021).

In conclusion, besides SA, JA is the other phytohormone 
whose role in the regulation of the metabolism of tannins has 
been more extensively studied, e.g., at the gene expression 
level. Tannins not only play a role in plant defence responses 
to herbivory, but also against insects and control the feeding 
range regulated by JA. At the same time, there are different 
effects of different jasmonates, which depend on time, con-
centration, plant species, genotype and organ from the aspect 
of influencing tannin levels.

Ethylene (ET)

ET regulates several physiochemical processes in plants, 
including fruit ripening, senescence, seed germination, and 
plant defence responses to biotic and abiotic stresses by reg-
ulating ROS levels and influencing cell death and plant sur-
vival (Khan et al. 2017; Iqbal et al. 2022, 2023b). ET plays 
an important role in fruit ripening in climacteric plants, 
which produce fruits that continue to ripen after harvest 
due to ET production, whereas non-climacteric fruits only 
ripen until they are attached to their parent plants (Alferez 
et al. 2021; Wang et al. 2022). Ethephone, the ET-releasing 
compound can enhance fruit ripening depending on its con-
centration, application rate, the fruit ripening stage, tempera-
ture and environmental conditions, but excessive use of ET 
can lead to the accumulation of harmful ROS and cell death 
(Huang et al. 2021).

Due to the key role of ET in fruit ripening and the influ-
ence of tannins on fruit consumption, most of the scientific 
results have come from food and post-harvest science. One 
of the first studies described the effects of elevated CO2 
concentration (20%) on the inhibition of ET biosynthesis 
in cherimoya (Annona cherimola Mill.) fruit (Assis et al. 
2001). High CO2 level significantly increased the content 
of non-tannin polyphenols and improved fruit colour, pre-
vented the reduction of tannin content and simultaneously 
increased ET production after 3 days (Assis et al. 2001). At 
the same time, lignin deposition and phenylalanine ammonia 
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lyase (PAL) activity were not affected by CO2 treatment 
during the 5 days studied (Assis et al. 2001). These results 
showed that inhibition of ET synthesis could lead to a delay 
in the reduction of tannin content in ripening fruit. Later, 
the effects of ET on tannin content were studied most thor-
oughly in persimmon (Diospyros kaki L.) fruit (Akagi et al. 
2009). First, it was found that the reduction of soluble tan-
nins was significantly accelerated in ET treatments, which 
further accelerated the deastringency process, but CO2 also 
promoted these changes, already after 1 day (Min et al. 
2012). Later, the involvement of ET-responsive genes in the 
ripening process of Mopan (astringent) and Yangfeng (non-
astringent) persimmon fruits was investigated by treating the 
fruits with ET and CO2, and it was found that both chemicals 
promoted deastringency by reducing the content of soluble 
tannins (Yin et al. 2012). In addition, the role of ET in the 
ripening of Bansi persimmon fruits was investigated using 
1-methylcyclopropene (1-MCP), a gaseous inhibitor of ET 
action, moreover its effects on fruit quality and expression 
levels of ET response genes were also observed (Park et al. 
2017). The results showed that 1-MCP treatment slightly 
softened the fruit as compared to control fruit, which showed 
a rapid decrease in firmness. Control fruits showed reduced 
tannin levels after harvest, while 1-MCP-treated fruits did 
not show difference in tannin levels during ripening. Expres-
sion levels of ET signalling-related genes such as ERF1, 
ERF3 and ERF8 were significantly decreased under 1-MCP 
exposure compared to control fruits (Park et al. 2017). This 
study clearly indicates that the appropriate application of 
ET at a specific stage of plant development and in a specific 
plant species can not only decrease tannin production, but 
also improve fruit ripening, deastringency and fruit develop-
ment. Furthermore, ET-related genes such as ERF8, ETR2 
and ERS1 significantly increased the ripening process and 
fruit softening, while ERF4, ERF5 and ETR2 genes showed 
an association with decreased tannin content in the case of 
Mopan persimmon, suggesting the key role of these genes in 
astringency removal. In contrast, ERF1 and ERF6 can induce 
deastringency in persimmon fruit under CO2 treatment (Yin 
et al. 2012). Another scientific report revealed the role of ET 
in ripening Daebong persimmon fruit at 15 and 25 °C by 
reducing the content of soluble tannins and astringency as 
well as increasing the expression of EIL, ERF2, ERF5 and 
ERF8 genes at 25 °C compared to 15 °C, which justifies the 
rapid ripening of the fruit. These results indicate that ET can 
reduce fruit firmness in a temperature-dependent manner 
by reducing the content of soluble tannins (Tilahun et al. 
2017). Furthermore, the negative effect of ET on the pro-
duction of tannins was further confirmed using its inhibitor 
1-MCP. The results showed that ET promoted fruit ripening, 
while 1-MCP had the opposite effect. During fruit storage, 
the tannin content remained almost the same in case of both 
treatments and controls, but the total soluble tannin content 

decreased steadily as the fruit ripened (Kou et al. 2020). 
The levels of total soluble solids were relatively higher upon 
1-MCP treatment, while the ET treatment reduced their lev-
els but increased the respiration rate. In addition, ET treat-
ments significantly enhanced the expression of ET signalling 
pathway genes such as ETR1, ETR2, CTR1 and EIL1, while 
1-MCP had an inhibitory effect on the expression of these 
genes. ET treatment also increased the transcript levels of 
ET transcription factors such as ERF19 and ERF22 as com-
pared to control and other treatments (Kou et al. 2020). In 
addition, ET treatment also increased the expression of deas-
tringency genes such as two pyruvate decarboxylase-related 
genes, PDC1 and PDC2, which are involved in the conver-
sion of acetaldehyde from pyruvate. Exogenous ET treat-
ment also increased the expression of genes encoding cell 
wall hydrolases, including β-GAL1 (galactokinase 1), PG1 
(polygalacturonase 1), PME1 (phosphatase methylesterase 
1) and XTH2 (xyloglucan endotransglucosylase/hydrolase 
2), while 1-MCP inhibited their expression (Kou et al. 2020). 
Recently, the interaction of ET and ABA was described in 
persimmon fruits, which was triggered by high CO2 con-
centration and inhibited by 1-MCP (Wu et al. 2022). The 
authors found that both hormones influence tannin degrada-
tion during fruit ripening and that the RNA binding protein 
RBM24 is a common regulator of both phytohormones in 
persimmon fruit (Wu et al. 2022). More recently, the effects 
of different hulling methods such as heaping, steeping and 
spraying were tested on walnut (Juglans regia L.) fruit and it 
was found that spray hulling significantly increased tannins’, 
flavonoids’ and phenolics’ content more than other meth-
ods. In addition, ethephone application accelerated cellulase 
activity to break down cellulose in the cell wall to improve 
the ripening process of green walnut (Farooq et al. 2023).

The connection between ET production and tannins con-
tent as a function of time under biotic stress was also inves-
tigated. Cocoa (T. cacao L.) seedlings were infected with the 
causal agent of witches' broom, Crinipellis perniciosa. ET 
production and tannin content were increased during infec-
tion and then significantly reduced after the development of 
disease symptoms leading to cell death at the infection site 
(Scarpari et al. 2005). Interestingly, procyanidin (CT) has 
the potential to inhibit basidiomycetes’ spores and alter germ 
tube morphology during their biotrophic phase, whereas 
this compound has no effect during the necrotrophic phase. 
This finding suggests that a higher concentrations of tannins 
may be involved in inhibiting fungal growth during the early 
phase of infection (Scarpari et al. 2005).

Finally, a specific effect of ET has also been reported 
in the case of forage. Interestingly, forage also contains 
high concentrations of tannins whose stability and water 
solubility depend on various factors such as climatic con-
ditions, plant growth stage and specific parts of the plant 
used for browsing (Seresinhe and Pathirana 2003). However, 
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during browsing, ET induces tannin production in differ-
ent but unaffected parts of the plant to prevent browsing 
through higher tannin accumulation, especially in younger 
plants, suggesting a role for ET in defence mechanisms. This 
defence strategy is used by plants to prevent attacks by herbi-
vores or human consumption. In addition, different levels of 
tannins in the diet can have both beneficial and toxic effects, 
such as 2–4% (beneficial), 5–9% (antinutritional) and more 
than 9% (toxic) (Seresinhe and Pathirana 2003). Their effects 
are mainly due to the formation of complexes with enzymes 
and proteins, which ultimately reduces the ammonia level 
and antimicrobial activity in the rumen, affecting the forage 
utilization of the grazing animals. Nevertheless, applica-
tion of polyethylene glycol (PEG) showed effective results 
in detoxifying dietary tannins due to its higher affinity for 
CTs. Interestingly, deer saliva contains proline, which binds 
with tannins and provides a defence mechanism to promote 
the browsing of the animals, whereas sheep and cattle have 
proline-free saliva (Seresinhe and Pathirana 2003).

Consequently, ET-induced tannin accumulation can 
inhibit biotrophic attack by controlling microbial growth 
and reducing herbivory; however, at the ripening stage, ET 
promotes fruit ripening processes in a time-dependent man-
ner by converting soluble tannins to insoluble tannins to 
increase fruit deastringency.

Abscisic Acid (ABA)

ABA also plays a crucial role in the regulation of plant 
growth, development and signalling under abiotic and biotic 
stress conditions (Hewage et al. 2020). ABA is also involved 
in the regulation of seed germination, seed maturation and 
the onset of fruit ripening (Iqbal et al. 2023a, b). In addition, 
ABA regulates stomatal closure and plant–stress responses 
to drought, salt and cold (Lim and Lee 2020; Fatma et al. 
2021; Liu et al. 2022).

The effects of ABA on tannins’ production have been 
extensively studied in wine grapes (Vitis vinifera L.). First, 
it was shown that ABA is involved in the regulation of 
enzymes responsible for tannin biosynthesis, and thus ABA 
can also influence tannin levels in green grapes during the 
berry ripening stage (Lacampagne et al. 2010). ABA treat-
ment significantly reduced the enzymatic activities of LAR 
and ANR by decreasing the expression of their respective 
genes in grape skin, suggesting the involvement of ABA 
in tannin biosynthesis without affecting tannin composi-
tion. These two enzymes are involved in the biosynthesis of 
proanthocyanidins (CT), and in the production of (−) epi-
catechin and (+) catechin, respectively (Lacampagne et al. 
2010; Setha 2012). Similarly, the essential role of ABA in 
seed and berry development of Syrah grape, along with 
the accumulation of phenolic and tannin compounds, was 
assessed (Mallea 2010). ABA was sprayed at anthesis and at 

the veraison stage of plants in the field, and seeds were also 
soaked in ABA solution for 4 days after 3, 5 and 9 weeks 
at anthesis, then seeds and berry skins were analysed for 
phenolic and tannin content (Mallea 2010). Interestingly, 
ABA treatment in the field increased the number of seeds per 
berry, while ABA did not alter the trends of tannin and phe-
nolic compounds. The results also showed a higher accumu-
lation of tannin and phenolic compounds in seeds and berry 
skin at an early stage of berry development, followed by a 
rapid decline after 4 weeks and a stable level during the rip-
ening stage of the fruit (Mallea 2010). Similarly, the effect 
of the exogenous application of ABA on V. vinifera was ana-
lysed for 70 days from veraison. The ABA treatment signifi-
cantly increased the sugar and tannin content, and the enzy-
matic activities of the phenylpropanoid pathway. In addition, 
foliar ABA application initially reduced gene expression of 
LAR2 and Myb4A involved in flavonol synthesis, but then 
increased after 40 days of veraison (Villalobos-González 
et al. 2016). At the same time, tannins are also produced 
by plants during the early development to provide bitter-
ness and astringency to deter herbivores. ABA application 
upregulated the expression of DFR, ANS and PAL genes, 
encoding dihydroflavonol-4-reductase, anthocyanidin syn-
thase and phenylalanine ammonia lyase, respectively. Treat-
ment with ABA also resulted in more pronounced transcript 
levels of UFGT (involved in anthocyanin synthesis) initially, 
followed by a decrease after 40 days, while the expression 
level of LAR2 (involved in tannin synthesis) was initially 
reduced, followed by an abrupt increase after 40 days (Vil-
lalobos-González et al. 2016). These results show that tannin 
production occurs at the late stage after the application of 
ABA. It was also found that exogenous treatment with ABA 
significantly increased total phenolic and antioxidant capaci-
ties, flavonol and anthocyanin content, and ellagic acid pro-
duction (produced by hydrolysis of ellagitannins) in the skin 
of Vitis rotundifolia, but these changes were grape genotype-
dependent, with more significant ellagic acid production in 
the noble type (Sandhu et al. 2011).

In another fruit, persimmon, the involvement of both 
ABA and ET in the ripening process was tested (Wu et al. 
2022). Via modulation of ET levels using CO2 and 1-MCP 
it was found that CO2 treatment enhanced ABA and ET 
production and reduced tannin levels, while the combined 
treatment (CO2 + 1-MCP) inhibited their production in the 
fruits (Wu et al. 2022). These results suggest that there is a 
strong correlation between ABA and ET in the regulation 
of fruit ripening and tannin metabolism in fruits.

Similarly, both ABA and SA significantly increased 
the levels of secondary metabolites such as tannins, fla-
vonoids, alkaloids and polyphenols in S. glauca under 
water stress as a function of time (Awate and Gaikwad 
2014), confirming their role in activating plant defence 
mechanisms.
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These findings suggest a role for ABA not only in tannin 
production, but also in the case of other secondary metab-
olites such as flavonoids and phenolic compounds, which 
could significantly reduce plant–stress acting as potent 
antioxidants. In addition, these findings suggest a time- and 
concentration-dependent, as well as a developmental phase-
dependent role for ABA in tannin biosynthesis. At the same 
time, further research is needed to explore the direct effects 
of ABA on the transcriptional and post-transcriptional regu-
lation of tannin metabolism in various plant organs such as 
in leaves and fruits.

Conclusions and Future Prospects

It can be concluded that tannins are present at different levels 
in different parts of plants from roots, stems and leaves to 
fruits, protecting them against various stresses. They play 
a role especially under biotic stress including bacterial and 
fungal pathogens as well as herbivore attack due to their 
antimicrobial effects, bitter taste caused in different plant 
parts and inhibition of various enzyme activities. Thus, tan-
nins, as key compounds in plant defence responses, need 
to be regulated by different phytohormones to enhance 
plant–stress tolerance and defence, which may be dependent 
on environmental conditions such as light or cold (Fig. 3). 
Several studies have reported the protective role of tannins 
against biotic stresses, but only a few studies have shown 
their involvement in stress responses mediated by some phy-
tohormones under abiotic stresses. Therefore, more research 

could be carried out to increase plant tolerance to abiotic 
stressors due to their potential antioxidant effects.

In the case of biotic stress, SA-regulated local and sys-
temic tannin production was described in infected plants. 
In addition, although the time-, concentration-, organ- and 
genotype-dependent role of SA in tannin biosynthesis was 
investigated, but only regarding the levels of different tan-
nins rather than by analysing their biosynthesis at the genetic 
or biochemical level. In terms of post-harvest biology, the 
application of SA and changes in tannin levels were evalu-
ated as a useful method to improve disease resistance dur-
ing storage. In addition, the effects of environmental stimuli 
such as light have also been studied in relation to SA, but 
more research is needed on other abiotic stressors such as 
cold to obtain more data about the relationship between 
phytohormones and tannins. While SA mainly increased the 
content of CTs, JA primarily increased the levels of antho-
cyanidin and HTs, also at tissue and organ levels based on 
previous studies. In addition, the effects of exogenous treat-
ments with different types of jasmonates such as JA, MeJA 
and Z-jasmone were tested and the adverse effects on tannin 
accumulation were summarised. In contrast to SA, analysis 
of the changes in the expression of several genes related 
to tannin biosynthesis, such as DHQ/SDH and UGT​s have 
been performed and the significant effects of JA on their 
regulation have been reported. While the role of SA and JA 
has mainly been analysed under biotic stress, the role of ET 
and ABA has primarily been investigated during fruit ripen-
ing. Based on scientific data, ET plays an important role in 
reducing tannin content during ripening depending on the 

Fig. 3   Effects of defence-related phytohormones on tannins (dashed arrow indicates no or partially known effect)
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ripening stage or environmental conditions such as tempera-
ture. Under infection, ET can increase procyanidin and CT 
levels in sprouts. In addition to ET, the role of ABA in tan-
nin biosynthesis is also dependent on the ripening stage. It 
was found that ABA can down-regulate the activity of LAR, 
ANR and thus decrease the level of proanthocyanidins (CT) 
depending on the developmental stage. In the case of ABA, 
the expression of key genes involved in tannin biosynthesis, 
such as UFGTs, DFR, ANS and PAL was also studied in 
wine grape fruit.

While the effects of ABA and SA or ABA and ET have 
been investigated, other hormone interactions such as 
SA–ET or JA–ET in the induction of tannin production are 
not clearly understood. In addition, the involvement of tan-
nins in phytohormone-mediated stress responses and their 
exact time- and organ-dependent molecular mechanisms are 
still not fully understood, so further research in this area 
could provide several new insights in this field. Unfortu-
nately, the simultaneous changes in CT and HT levels and 
their transcriptomic and biochemical regulation have not 
been investigated systemically. The analysis of the role of 
phytohormones in tannin metabolism could provide broad 
application possibilities in plant breeding and creating trans-
genic plants further enhancing plant defence systems. Fur-
thermore, based on their defensive role in plants, tannins 
could be used as alternatives of chemicals against patho-
genic attack.
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