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Abstract—There is substantial evidence about the scale-
independent nature of human dynamics. Within the field of 
actigraphy, numerous findings support this claim, such as the 
emergence of power-law distributions and the presence of 
1/f noise in human locomotor activity. Recently, we discovered 
that the spectral characteristic of human activity – which 
includes 1/f noise at frequencies greater than the daily 
periodicity – is universal, as both the raw acceleration of the 
wrist and the diverse kinds of activity signals (i.e., acceleration 
data compressed in varied ways) follows the same spectral 
nature. Here, we demonstrate that this spectral characteristic 
persists for daily human activity in general by analysing datasets 
from various sources containing activity or acceleration signals 
of healthy, free-living subjects. 
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I. INTRODUCTION 
Several studies have unveiled that scale-free behaviours 

constitute an intrinsic part of daily human dynamics [1], 
including both spatial and temporal regularities. In the field of 
human mobility, these patterns are typically assessed through 
the analysis of location data [2]. However, the temporal 
aspects of human dynamics could also be examined using the 
method of actigraphy [3], which [4] quantifies the locomotor 
activity of the subject using a typically wrist-attached, 
accelerometer-based device, that is called actigraph. 

Actigraphy is a versatile method employed across diverse 
disciplines in addition to the analysis of human dynamics, 
such as sleep medicine [5], psychiatry [6], or sports science 
[7]. Given its prevalence, one would expect it to be highly 
standardized. Although all actigraphs inherently measure 
acceleration, most of them are only capable of storing 
“activity values” that are derived from the relatively highly 
sampled (e.g., 10-100 Hz) acceleration for every consecutive 
timeslot (i.e., epochs, typical length of 1 minute) in a 
manufacturer-specific way. Fig. 1 illustrates a typical scenario 
for such an activity determination procedure: the raw triaxial 
acceleration recording is first preprocessed (e.g., magnitude 
calculation, normalizing or digital filtering), then cut into 
epochs, and converted into an activity signal using an activity 
metric (which is a set of nonlinear operations). However, as 
we already pointed out [4], the preprocessing techniques and 
activity metrics lack uniformity among manufacturers and 
vary across several scientific works, which complicates the 
comparison or reproduction of such studies.  

Nevertheless, the scale-free nature of human daily activity 
has already been observed through the power-law scaling 
distribution of – for example – the passive periods of the 
motion [8], and the identification of 1/f noise in the 
fluctuations of human activity [3, 9]. In the literature, the latter 
is mainly carried out using Detrended Fluctuation Analysis 
(DFA), and rarely by examining the Power Spectral Density 
(PSD) of such recordings, typically for medical goals [10, 11] 
over a narrow timescale and frequency range, respectively. 
Therefore, even if the fluctuation patterns of human activity 
have already been partially analysed in the literature, it was 
difficult to draw general conclusions about the spectral nature 
of human activity, especially if considering the wide range of 
activity determination methods that may also affect it. 

In our previous work [12], we overcame the limitations 
mentioned so far by spectrally analysing the acceleration 
recordings of 42 healthy individuals and also the activity 
signals computed from these recordings using numerous 
activity calculation procedures. By analysing the activity data, 
we revealed that human activity follows a universal spectral 
characteristic independent of the way of activity 
determination. We also discovered that even the raw triaxial 
acceleration of the wrist and its differently preprocessed 
alternatives follow the same spectral characteristic as the 
activity signals that are derived from the acceleration data. 
This full-band spectral characteristic is depicted in Fig. 2 
subplot a) and contains the following components. Above a 
certain frequency (approx. 10-4 Hz) 1/fα (where α = 1) noise 
can be observed for multiple decades, while the spectrum 
flattens at lower frequencies, and peaks corresponding to 
periodicities around 24 and 12 hours are visible over this white 
noise dominated region. 

In the present work, we are extending our spectral analysis 
across several different datasets and groups of healthy subjects 
to reveal that the full-band spectral characteristic we 
previously identified universally describes the daily 
fluctuations of healthy, free-living subjects.  

II. MATERIALS AND METHODS 
 On the one hand, actigraphs available on the market 
mostly store activity data that are determined from the raw 
triaxial acceleration of the wrist. On the other, modern devices 
that can also store raw acceleration data are becoming 
increasingly common. In the latter case, it is up to the user to 
determine activity from the recorded acceleration 
retrospectively, which can be done in numerous ways, similar 
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to how variously classical actigraphs do it in their 
manufacturer-specific ways during measurement.  

 Therefore, we aimed to include such datasets in the 
analysis that represent the heterogeneity of the actigraphic 
methodology. We have examined 2 datasets of activity signals 
recorded using devices of different manufacturers, 2 datasets 
of raw acceleration signals sampled at very different rates, and 
activity signals calculated from these raw recordings to assess 
their spectral characteristics. 

A. Examined Datasets 
Dataset D1 [4] originates from our measurement for 

psychiatric purposes utilizing a special actigraphic device 
developed by us. It contains 10-day-long raw triaxial 
acceleration signals measured at the sampling rate of 10 Hz in 
the ±8 g interval on the wrist of 42 healthy, free-living 
individuals. In our prior work [12], we assessed the spectral 
characteristics of daily human activity based on the analysis 
of these recordings, and we used it for comparison here. 

Similar to D1, dataset D2 also contains acceleration data, 
measured on the wrist in the ±8 g interval, but in this case, we 
used an off-the-shelf instrument (GENEActiv Original – 
Activinsights Ltd., Cambridge, UK) at the sampling rate of 
100 Hz. These signals were measured alongside EEG 
recordings as a part of a sleep research study to examine the 
effects of sleep deprivation. In this analysis, we examined the 
4-day-long raw triaxial acceleration data of 28 healthy 
subjects (15 females, age: mean 24.2, SD 5.56) living their 
normal daily routine that was recorded before the sleep 
deprivation stage. 

Contrary to D1 and D2, dataset D3 comprises activity 
recordings of 24 individuals. This data has been already used 
in the literature [3] to examine the scale-independent features 
of human activity by others, making it highly relevant to our 
investigations. The activity of sleep-deprived individuals and 
control subjects was acquired using the wrist-attached Micro 
Motionlogger (Ambulatory Monitoring Inc., Ardsley, NY, 
USA) instrument. The device employed the ZCM (Zero 
Crossing Mode, explained in detail later) activity metric [13] 
to determine an activity value for each 1-minute interval. In 
this analysis, we examined the 6-day-long activity data of 22 
control subjects. 

The machine learning research-oriented dataset D4 [14] 
contains activity recordings of 32 healthy control subjects, and 
22 individuals suffering from depression. The data were 
recorded with a 1-minute epoch length using the wrist-
attached Actiwatch AW4 (CamNtech Ltd., Cambridge, UK) 
actigraph. The activity values were determined in such a 
device-specific way (using a complex, integration-based 
metric, described in the technical appendix of the device 
manual [15]), that is very different from the typical methods 
in the literature, making the analysis of these recordings of 
particular interest. In this work, we analysed the 13-day-long 
activity data of 28 healthy subjects. 

B. Activity Determination 
As D3 and D4 contain activity signals recorded in different 

manufacturer-specific ways, and the fact that activity signals 
can also be calculated from the raw acceleration data of D1 
and D2, it is necessary to have insight into the underlying 
methodology of activity determination. In one of our previous 
works [4],  we collected and categorised the main working 

principles and steps [4] of how activity values can be derived 
from the raw acceleration. 

 
Fig. 1. Examplery 1-hour-long acceleration and activity data of a given 
subject of dataset D1. The x, y, and z-axis acceleration data (a) sampled with 
10 Hz are illustrated with blue, red, and yellow colours, respectively. The 
magnitude of acceleration (b) was calculated from the raw triaxial 
acceleration, and then the gravity of Earth was removed by normalizing the 
magnitude of acceleration, which resulted in the UFNM data (c). Finally, the 
ZCM activity signal (d) was calculated from this normalized acceleration 
using epoch lengths of 1 minute.  

The triaxial acceleration signal recorded by the actigraph 
is first subjected to a preprocessing step where the main goal 
is to remove the effect of Earth’s gravity. This can be achieved 
in numerous ways, for example, by normalising or digital 
filtering. The preprocessed acceleration recording is then cut 
into epochs of equal length, and an activity value is calculated 
for each epoch using an activity metric. Several activity 
metrics exist in the literature with different working 
principles. For example, some use the standard deviation or 
the integral of the acceleration values, while other metrics are 
based on the level intersections of the acceleration signal. The 
proper combination [4] of the preprocessing techniques and 
activity metrics determines different kinds of activity signals. 
In our previous work [12], we have performed an in-depth and 
comprehensive spectral analysis on 7 common activity 
metrics combined with various preprocessing techniques.  



In the current analysis, we limited to a given combination 
to calculate activity from the triaxial acceleration data to 
facilitate comparability between the examined datasets if 
analysing activity signals. At the preprocessing step, we chose 
the simplest technique of removing the effect of Earth’s 
gravity by taking the absolute difference of the magnitude of 
acceleration (i.e., the length of the acceleration vectors) from 
1 g. This results in the UFNM (unfiltered normalised 
magnitude of acceleration) data. As one of the analysed 
datasets (D3) of activity recordings was known to be collected 
using the classical ZCM activity metric, we also chose this 
metric to calculate activity values from the normalised 
acceleration data. This level intersection-based metric defines 
an activity value as the number of times the acceleration signal 
of a given epoch crosses a predefined threshold level. The 
correct choice of the threshold level has been discussed in our 
previous work [4], accordingly, the value of the threshold was 
set to be equal to the standard deviation of the normalised 
acceleration data. We used 1-minute epochs to determine 
activity from the acceleration datasets (D1 and D2) because 
both activity datasets (D3 and D4) contain minutely recorded 
activity values. Fig. 1 shows an illustration of how the x-, y-, 
and z-axial acceleration data is transformed into activity 
values during the procedure we use throughout the current 
study.  

C. Spectral Analysis 
In our analysis, we intended to directly compare the 

spectral nature of the collected recordings, for both 
acceleration (for D1 and D2) and activity signals (for D3 and 
D4, and for activity data determined from D1 and D2), to 
assess the universality of our prior findings about the spectral 
characteristics of human activity that we established by the 
former examination of D1. 

To examine these spectral characteristics, we applied 
Discrete Fourier Transform (DFT) on the full-length 
acceleration or activity recordings of each subject and then 
determined their PSDs. Note that, the analysed data can vary 
both in terms of measurement length T and sampling rate Fs, 
therefore, the frequency range of the PSDs – which are 
bounded by frequencies of 1/T and Fs/2 – also changes 
between datasets and whether analysing acceleration or 
activity data. Then we averaged the subjects’ PSDs for each 
dataset of activity or acceleration data, to examine their 
general spectral nature. The details of this ensemble-averaging 
procedure can be found in our previous work [12], but the 
principle was to divide the broadest common frequency range 
of the spectra into 10 logarithmic bins per frequency decade, 
and then take the average of the PSD values of all these spectra 
for each bin. 

We present our results through the resulting averaged 
PSDs for the UFNM acceleration data of D1 and D2 (blue 
crosses in Fig. 2) and for the activity data of all datasets (red 
curves in Fig. 2 and Fig. 3), where the possible 1/fα scaling is 
illustrated as a trendline on log-log scales, where α = 1. 

III. RESULTS 
As depicted in Fig. 2, the PSD of D2’s acceleration data 
follows the same characteristics that we described in the 
Introduction for D1 based on our previous work [12]. There is 
a distinct change in the shape of the spectra around 10-4 Hz. 
At higher frequencies, 1/f noise can be observed for multiple 
decades as indicated by the trendline. At lower frequencies, 
the PSD is flattened and exhibits white noise while peaks 

around the periodicities of 24 and 12 hours are visible. 
Examining in more detail, certain phenomena are observed to 
various extents in the PSDs of D1’s and D2’s acceleration data 
even if the general nature of their spectra is common. The 
“whitening” at lower frequencies is more observable for D1 
because the longer measurement length introduces lower 
frequency components. In contrast, a hump between 2-3 Hz 
corresponding to periodic movements (e.g., walking) is more 
defined for D2 due to the 10 times higher sampling rate. As 
seen in Fig. 2, for both D1 and D2, the compression of the 
acceleration data into activity signals (whose PSD is depicted 
with red curves) results in a loss of information at higher 
frequencies, but at low frequencies the activity signals retain 
the spectral shape of the acceleration signals and follows the 
same spectral characteristic. 

 
Fig. 2. The averaged PSDs of the acceleration data and the ZCM activity 
signals calculated from that are depicted with blue crosses and red curves, 
respectively, both for D1 (a) and D2 (b) datasets. The power-law scaling with 
an exponent of 1 is illustrated as a black dashed 1/f trendline. 

 
Fig. 3. The averaged PSDs of the activity signals defined in the text are 
depicted with red curves, both for D3 (a) and D4 (b) datasets. The power-
law scaling with an exponent of 1 is illustrated as a black dashed 1/f trendline. 

 As presented in Fig. 3, both the activity signals of the D3, 
which had already been statistically examined in the literature, 
and of the unconventionally determined D4 follow this same 
spectral nature we described, only slight specificities can be 



observed. The PSD of D3 shows the most prominent peaks 
corresponding to the daily periodicity, which might explain 
why it flattens at a lower frequency as the harmonics could 
raise the spectrum. D4 contains the longest measurements, 
therefore, its PSD comprises additional lower frequency 
components, where its shape makes it more visible that the 
spectra indeed flatten at low frequencies, eventually. 

Overall, we observed the same spectral features and scale-
free nature [12] for the healthy subjects of all the examined 
datasets. Analysing the effect of age and health status could 
be the subject of future work. The scale independence of 
human activity is commonly associated with high complexity, 
self-similarity, and fractal nature in the literature [10]. Various 
bio- and neurophysiological regulatory mechanisms [16, 17] 
may theoretically explain this scale-free nature, while the self-
organized criticality [18] could also explain the presence of 1/f 
noise. However, finding a model suitable to describe the full 
spectral characteristics we presented including the 
“whitening” at lower frequencies – which resembles what can 
be observed for the Matérn process [19] describing diffusion 
behaviour –  is a challenging open question. Finding such a 
frequency-domain-based model may open a new perspective 
on the governing processes behind human daily activity and 
could be a step forward in understanding them, as the scale-
free nature of human locomotor activity is more directly 
observable in the spectra than through statistical analysis [3, 
8, 10]. Frequency-domain investigations are further motivated 
by the fact that – considering human spatial dynamics – even 
the minutely calculated displacement data exhibits a very 
similar spectral nature including 1/f noise – as we explored in 
one of our previous works [20]. 

IV. CONCLUSION 
We analysed acceleration and activity signals measured 

using various instruments with different methodologies over 
several groups of healthy and free-living subjects.  We 
demonstrated that the multi-day motion of these individuals 
exhibits the same spectral characteristics we previously 
described, including 1/f noise above frequencies of daily 
periodicity and white noise at lower frequencies. The observed 
spectral nature is independent of how the acceleration signals 
are preprocessed and how the activity values are determined, 
and it is identical for all four examined datasets. Therefore, we 
revealed the universality of these spectral properties of human 
activity across multiple datasets. 
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