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Every day, developers have the daunting task of tracing vulnerabilities back in a morass of commits. In this 
article, we report the experience of the industrial open source tool, Prospector, to support  developers in 
this task. 

D etailed code-level vulnerability data are essen-
tial to fuel software composition analysis (SCA) 

tools that are used to detect known vulnerabilities in 
open source software (OSS) dependencies. However, 
such data are scarce; advisories rarely contain infor-
mation about the code changes that fix the flaws they 
describe. Finding such code changes (for example, in 
source code repositories such as Git) manually is time 
consuming and error prone as it involves the analysis of 
multiple unstructured resources.

Introduction
To help security experts map vulnerability adviso-
ries onto the corresponding fix in the source code, 
we developed a tool called Prospector that employs a 
set of heuristics that mimics and automates the strat-
egies inspired by those employed by human security 
experts. Given an advisory expressed in natural lan-
guage, Prospector processes the commits found in the 

target source code repository, ranks them based on a 
set of predefined rules, and produces a report that the 
user can inspect to determine which commits consti-
tute the fix. The tool, which is freely available under 
the Apache 2.0 license, has been tested on a dataset of 
1,300+ vulnerabilities, and with minimal user input, it 
can successfully rank the candidate commits so that the 
actual fix is among the top 10 candidates in more than 
90% of the cases.

OSS has undergone a remarkable evolution over 
the years, transforming from a spontaneous niche 
movement into a cornerstone of today’s software 
industry and a critical component of modern technol-
ogy stacks. The collaborative nature of open source 
development brings about undeniable benefits, such 
as considerable cost savings and faster innovation 
cycles achieved by integrating community-developed 
reusable building blocks.

In the last decade or so, however, the industry’s ini-
tial enthusiasm for open source has given way to a sober-
ing realization and a more realistic stance; incorporating 
open source components may speed up development 
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(coding), but it comes with significant maintenance costs 
due to complex dependency structures that can be hard 
to reason about and to manage. A vulnerability in one 
component can have dramatic cascading effects. Devel-
opers and organizations must grapple with challenges 
such as version compatibility, conflicting dependencies, 
and the need to ensure that security updates are applied 
in a timely manner across all interconnected components.

A concrete effect of this realization is a growing 
awareness of the need for effective automated security 
analysis of open source components used within soft-
ware projects. It is now imperative to understand and 
manage the complex web of dependencies that underlie 
modern software applications and that make up a large 
part of their attack surface. This realization led to the 
emergence of a thriving market of SCA tools. These 
tools, employing diverse techniques, become crucial as 
they offer a structured approach to deal with the com-
plexity of open source dependencies.

The growing awareness of the security implications 
of open source has led to the development of a growing 
market for tools specifically designed to mitigate these 
challenges. One such category of tools is SCA tools. 
SCA tools serve as a crucial bridge between OSS and 
secure software development practices. They provide 
a systematic approach to identifying and managing 
OSS components within a software project, help-
ing developers and organizations track their depen-
dencies, vulnerabilities, and licensing requirements. 
Despite the technical differences in the methods they 
employ under the hood, their common foundation is 
constituted by some form of vulnerability databases. 
These databases act as vital repositories of knowledge, 
constantly updated with information on vulnerabili-
ties discovered in open source components. Obvi-
ously, the analysis provided by SCA tools is only as 
robust as the quality and timeliness of the data they 
draw from these databases.

The National Vulnerability Database (NVD) stands 
as a de facto standard repository of security advisories, 
but it is not without its shortcomings; it is well docu-
mented that the NVD contains inconsistent or incom-
plete data related to vulnerability publication dates and 
to applications affected by the vulnerability, their sever-
ity scores, and their high-level type categorization.1 
Furthermore, NVD advisories that refer to OSS do 
not systematically link the code-level details about the 
vulnerability and its correction. This lack of code-level 
information has significant practical consequences. If 
the code changes that implement the fix to a given vul-
nerability are known, SCA can use this information to 
determine whether a particular artifact contains that 
code (and is therefore safe because it was fixed) or if it 
contains the code as it was before the fix (and hence, it 

is vulnerable). Without this information, the remaining 
alternative is to match artifact filenames (or maybe the 
contents of some metadata file included in the depen-
dency package) against the contents of the advisory. For 
a discussion of the reasons why this method is less reli-
able and inadequate for industrial use, see the work of 
Ponta et al.6,7

The lack of comprehensive databases of code-level 
vulnerability fixes is also an obstacle to researchers who 
seek to study how vulnerabilities are introduced and cor-
rected, and it hinders the development of more effective 
methods to detect, correct, and possibly prevent vulner-
abilities. Finally, the availability of code patch data is 
essential for the development and training of machine 
learning (ML) applications that can improve the process 
of detecting and addressing vulnerabilities. It turns out 
that, in the process of building datasets that were instru-
mental to training ML models, researchers developed ad 
hoc tools that apply simple Common Vulnerabilities and 
Exposures (CVE)-to-commit mapping criteria to collect 
just enough fix commits to train an ML model.

Issues like inconsistencies and the absence of ref-
erences to detailed code-level fixes in the NVD have 
spurred SCA vendors to build and maintain their own 
proprietary vulnerability databases. While these data-
bases may enhance the accuracy of vulnerability informa-
tion, they present a somewhat paradoxical situation; the 
data concerning vulnerabilities within OSS are not open 
themselves. By their proprietary nature, not only do these 
vulnerability databases hinder the further development 
of SCA tools (particularly of open source tools) that 
could push the state of the art in vulnerability detection 
and mitigation, but they also have the same scalability 
and coverage issues that we have experienced ourselves.

This paradox could be interpreted as a sign of a 
market that is still immature; therefore, vendors lever-
age their knowledge bases as differentiators rather than 
focusing on the unique analysis capabilities of their 
tools. Arguably, a community-driven approach would 
be more beneficial for the industry at large, including 
the vendors of SCA products themselves, who could 
concentrate their efforts on the differentiating capa-
bilities of their tools rather than on the endless effort 
of building yet another vulnerability database (which is 
bound to be incomplete, no matter the amount of effort 
put into maintaining it).

How Do SCA Tools Work? The Case 
of Eclipse Steady and the Need for 
Accurate Code-Level Data About OSS 
Vulnerabilities
At an abstract level, the basic operation of an SCA tool 
consists of collecting the set of (third-party open source) 
dependencies that are imported by the application 
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under analysis and then querying a vulnerability data-
base to obtain, for each such dependency, a list of vulner-
abilities that affect it. The method to determine the set of 
dependencies is crucial. The open source tool OWASP 
Dependency Check relies on the name and version of 
the package as extracted from its metadata (that is, the 
name of the package archive, the contents of the meta-
data included in the archive, etc.), allowing it to readily 
query the NVD to obtain a list of relevant CVEs—an 
approach that has the advantage of being straightforward 
and lightweight but that comes with important short-
comings (see Ponta et al.7 for more details). It bases its 
vulnerability-package mapping on metadata (package 
names and versions), but these metadata are known to 
be unreliable since they may be inconsistently reported 
in NVD records.2 As a result, it can produce inaccurate 
results (both false positives and false negatives). 

Furthermore, in several practical scenarios, devel-
opers may include “customized” versions of some 
dependencies (for example, through practices such as 
“repackaging” and “rebundling”) that may alter file-
names and metadata, making the task of correctly iden-
tifying the resulting packages nontrivial. To discern 
accurately whether such a dependency is affected by 
some vulnerability, one needs to consider the actual 
(byte-)code contained in the package.

For these reasons, accurate SCA relies on code-based 
analysis (as opposed to a purely metadata-based one), 
and this explains why code-level vulnerability data are 
so critical for SCA tools to work. But how are such 
code-level vulnerability data used in practice by SCA 
tools? Very little information is available on the inter-
nals of modern SCA tools, with a notable exception. 
Originally developed by SAP Security Research, Eclipse 
Steady (simply referred to as Steady in the following) 
was used at SAP between late 2016 and April 2021 to 
scan the open source dependencies of all SAP prod-
ucts developed in Java (later, some limited support for 
Python was added). At the peak of its utilization, the 
Steady instance deployed at SAP served thousands of 
distinct development teams, and by being integrated 
into the corporate continuous integration and continu-
ous delivery pipelines, it performed more than 250,000 
scans a month.

In a nutshell, Steady is used to 1) detect whether a 
given application depends on open source components 
that are affected by known vulnerabilities; 2) collect 
evidence regarding the execution of vulnerable code in 
the context of the application at hand, through a com-
bination of static and dynamic analysis techniques; 
and 3) support developers in replacing the vulnerable 
dependency artifacts with alternative versions that are 
not vulnerable. For all these three functions, Steady 
relies on code-level knowledge of the vulnerability and 

of its correction. To detect if a dependency is affected 
by a particular vulnerability, the package for that vulner-
ability is searched to find the functions that are touched 
by the fix; if they are found, Steady checks whether the 
code of those functions in the dependency artifact at 
hand corresponds to the version before the fix (vulner-
able) or after the fix (safe) found in the source code 
repository of that dependency. Analogously, know-
ing the functions that are related to a given vulnerabil-
ity, Steady enables an impact assessment based on the 
reachability of those functions from the code of the 
application under analysis.

Vulnerability Datasets and Mining Tools
Given the code-based approach on which Steady relies, 
having a rich knowledge base of code-level vulnerabil-
ity data to rely upon is a priority when operating the 
tool productively in an enterprise context. Collecting 
and curating vulnerability information, however, is 
difficult and time consuming—as the team that oper-
ated Steady at SAP learned the hard way by commit-
ting considerable effort to the mining of source code 
repositories and the curation of a knowledge base of 
fix commits. Given the increasing size of open source 
ecosystems and the pace at which new vulnerabilities 
affecting OSS are discovered at a continuous pace, a 
manual approach to creating and maintaining such a 
knowledge base cannot scale.

The problem of mining source code repositories to 
build datasets of vulnerability data received attention 
in the scientific literature, too, resulting in several use-
ful datasets and mining techniques (see Table 1). Tool 
availability, however, is severely lacking. As shown in 
Table 1, scientific articles that present repository min-
ing approaches to find vulnerability-fixing commits are 
rarely (virtually never) accompanied by a publicly avail-
able tool that implements the approach that the article 
describes. This makes it hard to reconstruct and extend 
those datasets.

Building a Vulnerability Database 
for Eclipse Steady: Project KB 
and Prospector
To fill this gap, SAP published Project KB, an initiative 
to support the creation and maintenance of a collabora-
tive knowledge base of vulnerability data about open 
source projects. Project KB consists of a vulnerability 
dataset (a collection of plain-text files, each containing 
information about a vulnerability, including the refer-
ences to the fixing commits) as well as a tool, named 
Prospector, whose goal is to assist security experts in 
searching open source code repositories to locate the 
commits that address a given known vulnerability. Pros-
pector aims to significantly reduce the effort that is 
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necessary to search open source code repositories for 
commits that correct a given vulnerability and thus con-
tribute to the construction and maintenance of compre-
hensive datasets of code-level vulnerability fixes.

To do so, the tool employs a set of heuristics to 
search for commits that match predefined criteria that 
indicate the presence of vulnerability fixes. By analyz-
ing the advisory given as input and by scanning com-
mit messages, code changes, and related metadata, 
the tool aims to rank and pinpoint the commits that 
address the vulnerability described in the advisory 
while providing a plain English explanation of the rea-
sons why the selected commits are considered a vul-
nerability fixing commit.

Prospector is released under the Apache 2.0 license 
terms as part of SAP’s Project KB (https://github.com/
sap/project-kb). To the best of our knowledge, it is the 
only tool of its kind that can provide a clear explanation 
for its outputs, is open source, and has been validated on 
a large scale in an industrial context.

Figure 1 illustrates the workflow of Prospector. The 
tool takes as input a vulnerability identifier, a repository 
URL, and (optionally) a version interval and produces 
a report that lists commits found in the repository likely 
to fix the vulnerability. The report presents the commits 
ranked by relevance, which is computed by applying a 
set of rules to each candidate. The steps of the workflow 
in Figure 1 are as follows.

Advisory Retrieval and Processing
Given the vulnerability identifier in input, Prospector 
retrieves the advisory from the NVD and processes it 
to extract information for the later steps. (Note that 
sources other than the NVD could also be used.) In 
particular, it retrieves the advisory description, time 
stamps, and references. From the description, Prospec-
tor extracts keywords characterizing the vulnerability 
by using natural language processing techniques, the 
presence of security-relevant keywords by matching a 
static list, and mentioned file/classes/method names 
by using pattern matching. For relevant references, for 
example, GitHub pages and bug-tracking tickets, Pros-
pector employs parsing techniques to extract hyperlinks 
therein present. The identified keywords, files, classes, 
methods, and hyperlinks are later used during the rule 
application step and are key for the ranking of the can-
didate commits.

Commit Retrieval and Processing
Besides building and analyzing the advisory record, 
Prospector retrieves a set of candidate commits from 
the source code repository. The commit retrieval step 
relies on Git to streamline the cloning of repositories 
and enable the efficient selection of commit subsets. If a 

Input

Git
Raw Commits

Commit Cache

Report
(HTML, JSON)

Rule
Application

Report
Generation

Candidate
Commits

Advisory
Record

Advisory Processing Commit Processing

Commit RetrievalAdvisory Retrieval

– VULN ID
– Repository URL
– [Version Interval]

Figure 1. A high-level overview of Prospector’s workflow. JSON: JavaScript 
Object Notation; VULN: vulnerability identifier.

Table 1. Other works on mapping advisories to vulnerability fixing 
commits in source code repositories.

Authors Method summary Tool availability

Perl 
et al.5

Mapped CVE to Git commits using 
direct references in both directions

No publicly available 
implementation

Xu 
et al.11

Tracer: finds patches from multiple 
knowledge sources

Tool not available from 
the URL indicated in 
the article*

Hong 
et al.4

xVDB: finds patches by analyzing 
code repositories, bug trackers, and 
Q&A sites; by doing so, it discovers 
more patches than those

Not available

Tan 
et al.10

PatchScout: a ranking-based 
approach that computes a 
correlation score between the 
commits in a repository and a 
given vulnerability; the approach 
is demonstrated on a set of five 
popular open source projects

Not available

Dunlap 
et al.3

Vfcfinder: a recently published tool 
with limited documentation; uses 
CodeBERT and similarity measures 
to match commits and advisories

Open source tool 
available on GitHub

Wang 
et al.12

PatchDB: collects patches obtained 
from NVD references as well as other 
sources on the web; focuses on C/
C++ only

Not available

*https://patch-tracer.github.io (23 May 2023). 
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version interval is provided in input, Prospector uses it 
to retrieve commits whose time stamp falls in between 
the release dates; otherwise, commits in the time win-
dow of 60 days before and after the advisory reservation 
date are retrieved.

Once the candidate retrieval process is completed, 
each commit undergoes further processing to extract 
additional information to be used in the rule application 
step (unless already available in the commit cache). This 
includes metrics such as the number of hunks, changed 
files, code changes, and references to bug-tracking iden-
tifiers and GitHub issues in the commit message. Pro-
cessed commits are stored in the cache.

Rule Application
Given a processed advisory and a candidate commit, 
Prospector applies a set of rules to establish whether 
there is a match, that is, whether the input satisfies the 
rule definition. The rules currently implemented in 
Prospector are summarized in Table 2. For example, 

rule CVE_ID_IN_MESSAGE reads the attribute of the 
advisory record that contains the vulnerability identifier 
and checks whether that identifier appears in the log 
message of the candidate commit at hand. As another 
example, the rule XREF_BUG is satisfied if the candidate 
commit in the input contains in its commit message a 
bug-tracking ticket identifier extracted during the pro-
cessing of the advisory (that is, mentioned in the advi-
sory itself or in any of the referenced pages).

When a match is determined, the candidate commit 
is annotated with the rule identifier and a plain Eng-
lish explanation of the match. This explanation and the 
annotations are used when producing the final report 
that the user will inspect.

Ranking and Report Generation
After the rule application step, the annotations associ-
ated with each candidate commit are leveraged to rank 
the commits. Rules are associated with a relevance 
weight (weight W in Table 2) that is assigned following 

Table 2. A summary of the rules.

Rule identifier Weight Rule description

VULN_ID_IN_MESSAGE 64 The commit message mentions the vulnerability identifier.

COMMIT_IN_REFERENCE 64 The commit is mentioned directly by the advisory or in any of the pages 
referenced by the advisory.

XREF_BUG 32 The commit message contains the identifier of a bug-tracking ticket that is 
mentioned in the advisory or in any of the pages referenced by the advisory.

XREF_GH 32 The commit message contains the identifier of a GitHub issue that is mentioned 
in the advisory or in any of the pages referenced by the advisory.

VULN_ID_IN_LINKED_ISSUE 32 The commit message mentions a GitHub issue or bug-tracking ticket containing 
the vulnerability ID.

CHANGES_RELEVANT_FILES 8 The commit modifies files mentioned in the advisory description.

CHANGES_RELEVANT_CODE 8 The commit modifies code containing a filename or method mentioned in the 
advisory description.

RELEVANT_WORDS_IN_MESSAGE 8 The commit message contains a filename or method mentioned in the advisory 
description.

ADV_KEYWORDS_IN_FILES 4 The commit modifies files whose names contain keywords extracted from the 
advisory description.

ADV_KEYWORDS_IN_MSG 4 The commit message contains one or more keywords extracted from the 
advisory description.

SEC_KEYWORDS_IN_MESSAGE 4 The commit message contains one or more predefined security-related keywords.

SEC_KEYWORDS_IN_LINKED_GH 4 The commit points to a GitHub issue containing one or more predefined 
security-related keywords.

SEC_KEYWORDS_IN_LINKED_BUG 4 The commit points to a bug-tracking ticket containing one or more predefined 
security-related keywords.

GITHUB_ISSUE_IN_MESSAGE 2 The commit message mentions a GitHub issue.

BUG_IN_MESSAGE 2 The commit message mentions a bug-tracking ticket.
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a logarithmic scale, where a higher value implies a 
higher confidence in identifying the commit as the 
vulnerability patch. This logarithmic scale enables 
differentiating between strong (that is, )W 32$  and 
weak rules, ensuring that the application of multiple 
weak rules cannot outweigh a single strong rule during 
the ranking process. The current values are based on 
expert knowledge and need to be validated empirically 
in future work. To rank each candidate, a relevance 
score is calculated by summing the weights of all the 
matched rules. The results are saved in a report that 
displays the list of candidate commits in descending 
order of relevance. By presenting the commits in this 
manner, the report effectively highlights at the top the 
commits that have the highest likelihood of fixing the 
given vulnerability.

An Illustrative Example
To illustrate how Prospector works, but also to explain 
the kinds of tasks that a human expert would have to 
perform to find the fix commits corresponding to a 
given advisory, we examine a sample vulnerability. 
CVE-2020-1925 (https://nvd.nist.gov/vuln/detail/
CVE-2020-1925) refers to a server-side request forgery 
vulnerability in Apache Olingo (https://olingo.apache.
org). The vulnerability description (from the NVD) 
indicates that an attacker could exploit a bug in the 
implementation of class AsyncRequestWrapperImpl 
in versions 4.0.0 to 4.7.0.

Manual Search
To find the fix commit manually, one could rely on the 
list of references provided by the NVD advisory. For 
CVE-2020-1925, one of the references points to a mes-
sage in the mailing list archive of the project (https://
lists.apache.org/thread/6jfkh27wgdyq1w8ghq2qy3ggk2
7p74mx). The e-mail message does not point to the patch 
itself; however, it mentions a bug-tracking ticket where 
the issue is discussed (https://issues.apache.org/jira/
browse/OLINGO-1416), and that, in turn, points to 
a GitHub pull request (PR) (https://github.com/
apache/olingo-odata4/pull/63) used to merge the patch 
into Apache Olingo. Following this chain of links, it is pos-
sible to identify the commit containing the patch of the 
vulnerability as the commit merging PR #63 into the 
main branch. However, this approach is time consuming, 
tedious, and error prone.

Alternatively, one could use the first fixed release as 
the starting point for searching to determine which com-
mits fall in the interval between the last vulnerable release 
(4.7.0) and the first fixed (4.7.1 in this case). Each of these 
commits should be examined to identify which ones best 
match the vulnerability description. For CVE-2020-
1925, it is quite easy to identify that the merge commit 

of PR #63 is the (only) fix commit; all other commits 
either update project dependencies or address clearly 
unrelated issues (for example, OData-related improve-
ment). CVE-2020-1925 is a rather straightforward case; 
still, performing the manual tasks outlined previously 
requires browsing and analyzing four different webpages 
(from the NVD advisory to the fix commit) and five com-
mits, which also involves inspecting the files and classes 
changed by each of them. Note that for CVE-2020-1925, 
the NVD and OSV do not provide any fix commit, 
and Snyk [https://security.snyk.io/vuln/SNYK-JAVA 
-ORGAPACHEOLINGO-541532 (23  May 2023)]
points only to the GitHub PR page but not to individual 
commits.

Tool-Assisted Search
To find the fixing commit, Prospector must be given at 
least two input parameters: the vulnerability identifier 
(CVE-2020-1925) and the URL of the correspond-
ing source repository (https://github.com/apache/
olingo-odata4). During the advisory retrieval and pro-
cessing step, the NVD application programming inter-
face is queried to retrieve the advisory. The analysis of 
the vulnerability description results in the identifica-
tion of keywords, for example, header, client, and 
the relevant file, that is, AsyncRequestWrapperImpl. 
Then, from the NVD advisory page, Prospector ana-
lyzes the content of any relevant reference, that is, the 
Apache mailing-list message (https://lists.apache.org/
thread/6jfkh27wgdyq1w8ghq2qy3ggk27p74mx) in 
this case. Next, it parses the content of this message and 
extracts any valid URLs. Notably, during this process, 
the tool successfully identifies a hyperlink leading to the 
bug-tracking ticket labeled OLINGO-1416.

In the commit retrieval and processing step, Prospector 
retrieves 35 candidate commits, that is, those commit-
ted fewer than 60 days before or after the time stamp 
available in the advisory. Each one of these commits 
undergoes further processing to extract additional infor-
mation, such as the list of changed files and bug-tracking 
identifiers mentioned in the commit messages.

In the rule application step, Prospector applies the 
rules of Table 2 to each of the 35 candidate commits. 
Commits that do not modify any source code file are 
filtered out. Then, Prospector generates a report show-
ing, for each commit, the commit message, the relevance 
score, the commit ID, and the rules that matched (includ-
ing an explanation, in natural language, of the match).

Figure 2 shows the highest-ranked commit 
(9f9aebd) from the report for CVE-2020-1925. This 
commit has a relevance of 58 resulting from the sum of 
the weights of the rules that matched. The identifiers of 
these rules are in blue in Figure 2. The most important 
are as follows:
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 ■ XREF_BUG: The commit message and an advisory ref-
erence both mention the bug-tracking ticket with the 
identifier “OLINGO-1416.”

 ■ CHANGES_RELEVANT_CODE: The commit modifies 
code containing the class mentioned in the advisory 
description (AsyncRequestWrapperImpl).

 ■ ADV_KEYWORDS_IN_MSG: The commit message contains 
the keyword header, present in the advisory description.

Rule XREF_BUG mimics a human expert manually 
navigating and scrolling through four different webpages. 
Moreover, rules CHANGES_RELEVANT_CODE, CHANGES_
RELEVANT_FILES, and ADV_KEYWORDS_IN_FILES high-
light the commits that touch files/classes/methods whose 
names are likely to be related to the advisory. A manual 
search by a human would require browsing through and 
analyzing one-by-one the commits preceding the release 
of the fixed library; even using some ad hoc scripts for this 
task is cumbersome, time consuming, and error prone.

The report offers a consolidated view of the infor-
mation that users would need to look up manually 
across several resources. The straightforward ranking 
system of Prospector gives higher visibility to commits 
that match rules that, based on our experience, provide 
a stronger signal (for example, XREF_BUG).

Evaluation
To evaluate if Prospector could provide useful support 
to users and reduce the manual effort required to find 
fix commits, we tested it on the Tracer “depth dataset” 
by Xu et al.11 This dataset includes 1,319 vulnerabili-
ties affecting 723 open source projects developed in 
seven programming languages.

For the sake of conciseness, we provide only 
a brief overview of the evaluation here; a more 

comprehensive description will be the topic of a 
future article. After a preliminary manual review of 
the Tracer dataset (which resulted in several correc-
tions and additions of missing fixes), we executed 
Prospector in three distinct configurations: 1) by 
supplying no version interval (designated by NV); 
2) by supplying an automatically extracted version 
interval obtained by applying basic pattern matching 
to the text of the advisory (designated by AEV); and 
3) by supplying manually specified version intervals 
(designated by MEV).

When no version interval is provided or when the 
tool fails to match the versions provided as input to 
tags found in the source code repository, Prospector 
is instructed to fall back to a fixed time interval of 120 
days centered around the advisory reservation date 
(that is, the candidates are selected starting from 60 
days before the advisory reservation date, until 60 days 
after the same date). We set a 30-min execution time 
limit for each vulnerability, and we aborted execu-
tions that would retrieve more than 2,000 candidate 
commits. 

Fixing Commit Ranked Among the Top 10 in 
the Report
When a known fixing commit is found among the 
top-10 candidates, we distinguish the following 
cases.

 ■ High confidence: The commit is ranked first with at 
least a strong rule matching.

 ■ Medium confidence: The commit is ranked first with 
only weak rules matching.

 ■ Low confidence: The commit is ranked among the 
first 10 (but not in the first position).

Figure 2. A Prospector report.
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Fixing Commit Does Not Appear Among the 
Top 10 in the Report
When a known fixing commit is not found among the 
top-10 candidates, we distinguish the following cases.

 ■ Found with low relevance (rank > 10): The commit was 
found by Prospector, but its position in the ranking is 
not among the first 10

 ■ Not found: The commit does not appear in the report 
at all

 ■ False positive: A commit matches a strong rule but is 
not an actual fixing commit.

In the Tracer dataset, some vulnerabilities had 
more than one fixing commit (which could be com-
pletely different commits or replicas of the same com-
mit in multiple parallel branches). We considered a 
fixing commit for a vulnerability as found if Prospec-
tor could identify at least one of the commits listed in 
the Tracer dataset.

The results of the executions in the three conditions 
are reported in Table 3. Some executions were aborted 
when no versions were supplied (since, in this case, Pros-
pector is more likely to consider an excessive number of 
candidates, therefore hitting the 2,000 commit thresh-
old). Also, executions were aborted when the automati-
cally extracted versions were incorrect and could not be 
matched with tags in the Git repository. These aborted 
executions are the reason why the number of vulnerabili-
ties successfully analyzed in each condition differs.

Table 4 shows that when the tool is provided with 
accurate version intervals (that is, when such inter-
vals are provided manually), the actual fix commits 
are ranked among the top 10 candidates in 90.57% of 
the cases. (The percentage is 74.83% if one considers 
only high-confidence findings, for which one or more 
“strong” rules match.) When extracting version inter-
vals automatically from the advisory text, we observe 

a success ratio of 88.85% (74.56% when considering 
only the high-confidence matches). Finally, when ver-
sion intervals are not specified at all, the success rate 
drops to 78.94% (71.61% when considering only the 
high-confidence matches).

The execution mode we are more interested in is 
AEV because it constitutes the base accuracy for fully 
automated runs of Prospector. The results we observed 
are close to the manually supplied versions (MSVs) 
case, which is quite encouraging. In the cases where the 
references do not contain a link to a commit, the success 
ratio drops to 72.44%.

The false positives are the cases in which a strong 
rule matches incorrectly and the report does not con-
tain any of the fixing commits. These cases represent 
only 0.91% of the total and were mostly due to wrong 
references to fix commits being present in the advisory 
itself or to corner cases where the advisory contained a 
link to bug-tracking tickets that were related to the actual 
ticket with which the vulnerability was discussed and 
corrected. (This kind of indirection could be handled in 
future versions of the tool but is not correctly dealt with 
at present.)

T he evaluation we conducted is encouraging as it 
shows that with relatively simple human-crafted 

rules, it is possible to considerably simplify the task 

Table 3. A summary of the experiment results.

Result
Manually supplied 
versions (MSVs) %

Automatically extracted 
versions (AEVs) %

No versions 
provided (NV) %

High confidence 984 74.83% 976 74.56% 928 71.61%

Medium confidence 109 8.29% 97 7.41% 50 3.86%

Low confidence 98 7.45% 90 6.88% 45 3.47%

Low relevance (rank > 10) 39 2.97% 35 2.67% 27 2.08%

Not found 73 5.55% 97 7.41% 232 17.9%

False positives 12 0.91% 14 1.07% 14 1.08%

Total 1,315 1,309 1,296

Table 4. The summary of results.

Result MSV AEV NV

Fix commit found 
in the top 10

1,191 (90.57%) 1,163 (88.85%) 1,023 (78.94%)

Fix commit not 
found in the top 10

124 (9.43%) 146 (11.15%) 273 (21.06%)
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of security experts. With minimal human interven-
tion, the tool can be made to produce reports that a 
human expert can examine and understand, thanks to 
the plain English explanations that are generated for 
each rule match.

After our experience with mining source code 
repositories to find vulnerability-fixing commits (with 
and without Prospector), we are left with a fundamen-
tal question: “Why does it have to be so difficult?” To 
answer this question, one needs to consider several 
factors combined. The practices adopted across the 
open source community vary considerably. Even in 
the scope of a single project, the vulnerability man-
agement processes are often executed in an inconsis-
tent manner. More broadly, the community still hasn’t 
reached a broadly shared consensus as to how to iden-
tify, maintain, and share the link between a vulnerabil-
ity description, the content of bug-tracking systems, 
and ultimately, the correction in the source code. Some 
project maintainers seem to be worried about the risk 
of giving attackers an advantage by explicitly annotating 
security fixes in their source code repositories. 

In many projects, however, vulnerability fixing 
commits are occasionally annotated, but not always, 
and not consistently, giving the impression that the link 
between a security issue (for example, as described in a 
bug-tracking ticket) and its fix in the source code is just 
not deemed worth preserving by many project main-
tainers and contributors. More generally, it seems that 
the importance of commit quality is often disregarded, 
which, among other undesirable effects, results in secu-
rity fixes being mixed with other kinds of changes.

What to expect from the future? Vulnerability man-
agement processes seem to be improving, and we hope 
that with them, developer awareness will increase as 
well, leading maintainers to pay more attention to the 
importance of sharing detailed fix information with 
their security advisories. This would make the task of 
Prospector much easier; eventually, it could even make 
a tool like Prospector completely unnecessary, which is 
precisely our wish. In the meantime, the problem of effi-
ciently and effectively mining repositories for accurate 
code-level vulnerability data will remain open, and tool 
support will remain crucial. The introduction of rules 
that use large language models is the obvious next step 
in the evolution of the tool, and it is part of our plans. 
Also, further evaluation of the effectiveness of the tool 
when used by real users is ongoing and will be the sub-
ject of another article.

Prospector is released under the Apache 2.0 license 
terms as part of SAP’s project KB, and it can be down-
loaded from the Project KB repository at https://github.
com/sap/project-kb. Two datasets that were obtained 
using Prospector are publicly available as open data.8,9 

Acknowledgment
This work was partially supported by EU-funded 
 projects  Sec4AI4Sec (Grant 101120393) and Assure-
Moss (Grant 952647) and NWO-funded project The-
seus (Grant NWA.121518006). Antonino Sabetta would 
like to thank Henrik Plate, Bonaventura Coppola, Daan 
Hommersom, Damian A. Tamburri, and Dario Di Nucci 
for insightful discussions.

References
1. A. Anwar, A. Abusnaina, S.Chen, F. Li, and D. Mohaisen, 

“Cleaning the NVD: Comprehensive quality assess-
ment, improvements, and analyses,” in Proc. 51st Annu. 
IEEE/IFIP Int. Conf. Dependable Syst. Netw., Supple-
mental Volume (DSN-S), 2021, pp. 1–2, doi: 10.1109/
DSN-S52858.2021.00011.

2. Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang, 
“Towards the detection of inconsistencies in public security 
vulnerability reports,” in Proc. 28th USENIX Conf. Secur. 
Symp. (SEC), Berkeley, CA, USA: USENIX Association, 
2019, pp. 869–885, doi: 10.5555/3361338.3361399.

3. T. Dunlap et al., “VFCFinder: Seamlessly pairing security 
advisories and patches,” 2023, arXiv:2311.01532.

4. H. Hong, S. Woo, E. Choi, J. Choi and H. Lee, “xVDB: 
A high-coverage approach for constructing a vulnerability 
database,” IEEE Access, vol. 10, pp. 85,050–85,063, Aug. 
2022, doi: 10.1109/ACCESS.2022.3197786. 

5. H. Perl et al., “VCCFinder: Finding potential vulnerabili-
ties in open-source projects to assist code audits,” in Proc. 
22nd ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 
New York, NY, USA: Association for Computing Machin-
ery, 2015, pp. 426–437, doi: 10.1145/2810103.2813604.

6. S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: 
Code-centric and usage-based analysis of known vulner-
abilities in open-source software,” in Proc. IEEE Int. Conf. 
Softw. Maintenance Evolution (ICSME), 2018, pp. 449–
460, doi: 10.1109/ICSME.2018.00054.

7. S. E. Ponta, H. Plate, and A. Sabetta, “Detection, assess-
ment and mitigation of vulnerabilities in open source 
dependencies,” Empirical Softw. Eng., vol. 25, pp. 3175–
3215 Jun. 2020, doi: 10.1007/s10664-020-09830-x.

8. A. Sabetta, S. E. Ponta, M. Greco, T. Sacchetti, and M. 
Bezzi, 2023, “AssureMOSS Vulnerability Statements 
Dataset (Tracer) (1.0) [Data set],” Zenodo, doi: 10.5281/
zenodo.8173990.

9. A. Sabetta, S. E. Ponta, M. Greco, and T. Sacchetti, 2023, 
“AssureMOSS Vulnerability Statements Dataset (Steady) 
(1.0) [Data set],” Zenodo, doi: 10.5281/zenodo.8163119.

10. X. Tan, Y. Zhang, C. Mi, J. Cao, K. Sun, Y. Lin, and M. Yang, 
“Locating the security patches for disclosed OSS vulner-
abilities with vulnerability-commit correlation ranking,” In 
Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 
New York, NY, USA: Association for Computing Machin-
ery, 2021, pp. 3282–3299, doi: 10.1145/3460120.3484593.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://github.com/sap/project-kb
https://github.com/sap/project-kb


www.computer.org/security 11

11. C. Xu, B. Chen, C. Lu, K. Huang, X. Peng, and Y. Liu, 
“Tracking patches for open source software vulnerabili-
ties,” in Proc. 30th ACM Joint Eur. Softw. Eng. Conf. Symp. 
Found. Softw. Eng. (ESEC/FSE), New York, NY, USA: 
Association for Computing Machinery, Nov. 2022, pp. 
860–871, doi: 10.1145/3540250.3549125. 

12. X. Wang, S. Wang, P. Feng, K. Sun, and S. Jajodia, 
“PatchDB: A large-scale security patch dataset,” in Proc. 
51st Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. 
(DSN), Taipei, Taiwan, 2021, pp. 149–160, doi: 10.1109/
DSN48987.2021.00030.

Antonino Sabetta is a principal research scientist at 
SAP Security Research, 06254 Mougins, France. His 
research interests include software security, open 
source software, and applications of machine learn-
ing to software development and analysis. Sabetta 
received a Ph.D. from Università degli Studi di Roma 
“Tor Vergata.” Contact him at antonino.sabetta@ 
sap.com.

Serena Elisa Ponta is a principal research scientist at 
SAP Security Research, 06254 Mougins, France. 
Her research interests include open source software 
(OSS) security, the security of OSS supply chains, the 
analysis and management of known vulnerabilities, 
and the detection of malicious code in OSS libraries. 
Ponta received a Ph.D. in mathematical engineering 
and simulation from the University of Genova. Con-
tact her at serena.ponta@sap.com.

Rocio Cabrera Lozoya is a senior data scientist with 
SAP Security Research, 06254 Mougins, France. Her 
research interests include the use of machine learning 
algorithms for security applications. Lozoya received 
a Ph.D. in 2015 on modeling and classification of car-
diac electrophysiology signals from her work done at 
the Asclepios Research team in INRIA Sophia Anti-
polis. Contact her at rocio.cabrera.lozoya@sap.com.

Michele Bezzi is the research manager at SAP Secu-
rity Research, 06254, Mougins, France. His research 
interests include software security and artificial intel-
ligence. Bezzi received a Ph.D. in physics from the 
University of Bologna. He coordinated the EU project 
ASSERT4SOA on security certification. Contact him 
at michele.bezzi@sap.com.

Tommaso Sacchetti is currently a Ph.D. candidate 
in the S3 research group at Eurecom, 06410 Biot, 
France, working on Bluetooth and Internet of 
Things security. Sacchetti received a master’s degree 
at the University of Trento. Contact him at tommaso.
sacchetti@eurecom.fr.

Matteo Greco is a network and security system engineer 
at Be-Innova, 38123 Trento, Italy. Within the Security 
Operation Center, he is responsible for analyzing and 
managing security incidents. Additionally, he actively 
conducts vulnerability assessments and penetration 
testing. Greco received a master’s degree in cyber-
security at the University of Trento. Contact him at  
matteo.greco@be-innova.eu.

Gergő Balogh is a researcher and software developer at 
the Department of Software Engineering, University 
of Szeged, 6720 Szeged, Hungary. His research inter-
ests include human-centric aspects of software engi-
neering, focusing on methodologies from psychology 
and social sciences to enhance empirical studies in 
development environments, algorithm usability, and 
developer productivity. Contact him at geryxyz@
inf.u-szeged.hu.

Péter Hegedűs currently works both as an assistant pro-
fessor at the Department of Software Engineering, 
University of Szeged and as a researcher at Front-
EndART Ltd., 6720 Szeged, Hungary. His research 
interests include software maintainability models, 
deep learning applications, source code analysis, 
and vulnerability detection and prediction. Hegedűs 
received a Ph.D. in computer science from the Uni-
versity of Szeged in 2015. He was a program commit-
tee member in the CSMR, MSR, QUATIC, ESEM, 
and SCAM conferences and received various awards 
and scholarships during his career, like the presti-
gious Bolyai János research scholarship. Contact him 
at peter.hegedus@frontendart.com.

Rudolf Ferenc is currently an associate professor, act-
ing as the head of the Department of Software Engi-
neering, University of Szeged, 6720 Szeged, Hungary. 
He leads the Static Code Analysis Group, which 
develops tools for analyzing the source code of vari-
ous languages. His research interests include static 
code analysis, metrics, quality assurance, design pat-
tern and antipattern mining, and bug detection. 
Ferenc received a Ph.D. in computer science from the  
University of Szeged in 2005 and received a Habilita-
tion degree in 2015. Contact him at rudolf.ferenc@
frontendart.com.

Ranindya (Nanin) Paramitha is a Ph.D. student at the 
University of Trento, 38123 Trento, Italy. Her research 
interests include software security, focusing on empiri-
cal analysis of secure software ecosystems, mining 
software repositories, and how developers can apply 
security. Paramitha received a master’s degree in 
informatics with distinction from Institut Teknologi 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

mailto:antonino.sabetta@sap.com
mailto:antonino.sabetta@sap.com
mailto:serena.ponta@sap.com
mailto:rocio.cabrera.lozoya@sap.com
mailto:michele.bezzi@sap.com
mailto:tommaso.sacchetti@eurecom.fr
mailto:tommaso.sacchetti@eurecom.fr
mailto:matteo.greco@be-innova.eu
mailto:geryxyz@inf.u-szeged.hu
mailto:geryxyz@inf.u-szeged.hu
mailto:peter.hegedus@frontendart.com
mailto:rudolf.ferenc@frontendart.com
mailto:rudolf.ferenc@frontendart.com


12 IEEE Security & Privacy Month/Month 2024

 

Bandung, Bandung, Indonesia. She participated in the 
H2020 Project AssureMOSS and is involved in the HE 
Project Sec4AI4Sec. She is on the program committee 
of ICSE SVM’23. She is a Graduate Student Member 
of IEEE. Contact her at ranindya.paramitha@unitn.it.

Ivan Pashchenko is an expert security engineer at Tom-
Tom, 1011 AC Amsterdam, The Netherlands. His 
research interests include software security, open 
source software security, and machine learning for 
security. Pashchenko received a Ph.D. from the Uni-
versity of Trento. In 2017, he was awarded a Second 
Place Silver Medal at the Association for Computing 
Machinery/Microsoft Student Research competition 
in the graduate category. He was the UniTrento main 
contact in the Continuous Analysis and Correction 
of Secure Code work package for the Horizon 2020 
Assurance and Certification in Secure Multi-Party 
Open Software and Services project. Contact him at 
ivan.pashchenko@tomtom.com.

Aurora Papotti is a Ph.D. student at Vrije Universiteit 
Amsterdam, 1081 HV Amsterdam, The Netherlands. 
Her research interests include the human usability of 
advanced software security technology from artificial 
intelligence to static analysis. Papotti received a dou-
ble master’s degree in computer science from the Uni-
versity of Trento, Italy, and the University of Turku. 

She participated in the NWO project Theseus and 
HEWSTI and is involved in the HE Project Sec4AI-
4Sec. Contact her at a.papotti@vu.nl.

Ákos Milánkovich is currently a security researcher at 
SEARCH-LAB, Budapest, H-2370 Dabas, Hungary, 
leading EU-funded research and penetration test-
ing activities. His research interests include wireless 
sensor networks, agricultural monitoring, ultrawide-
band localization, and security. Contact him at akos. 
milankovich@search-lab.hu.

Fabio Massacci is a professor at the University of Trento, 
38123 Trento, Italy, and Vrije Universiteit Amster-
dam, 1081 HV Amsterdam, The Netherlands. His 
research interests include empirical methods for the 
cybersecurity of sociotechnical systems. Massacci 
received a Ph.D. in computing from the Sapienza Uni-
versity of Rome. He participates in the Cyber Security 
for Europe pilot and the NWO Theseus project and 
leads the Horizon 2020 AssureMOSS project and the 
Horizon Europe Sec4AI4Sec. For his work on secu-
rity and trust in sociotechnical systems, he received 
the Ten Year Most Influential Paper Award at the 
2015 IEEE International Requirements Engineering 
Conference. He is a Member of IEEE. Contact him at 
fabio.massacci@ieee.org.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

mailto:ranindya.paramitha@unitn.it
mailto:ivan.pashchenko@tomtom.com
mailto:a.papotti@vu.nl
mailto:akos.milankovich@search-lab.hu
mailto:akos.milankovich@search-lab.hu
mailto:fabio.massacci@ieee.org



