
2 Month/Month 2024 Copublished by the IEEE Computer and Reliability Societies

This work is licensed under a Creative Commons
Attribution 4.0 License. For more information,

see https://creativecommons.org/licenses/by/4.0/

Every day, developers have the daunting task of tracing vulnerabilities back in a morass of commits. In this
article, we report the experience of the industrial open source tool, Prospector, to support developers in
this task.

D etailed code-level vulnerability data are essen-
tial to fuel software composition analysis (SCA)

tools that are used to detect known vulnerabilities in
open source software (OSS) dependencies. However,
such data are scarce; advisories rarely contain infor-
mation about the code changes that fix the flaws they
describe. Finding such code changes (for example, in
source code repositories such as Git) manually is time
consuming and error prone as it involves the analysis of
multiple unstructured resources.

Introduction
To help security experts map vulnerability adviso-
ries onto the corresponding fix in the source code,
we developed a tool called Prospector that employs a
set of heuristics that mimics and automates the strat-
egies inspired by those employed by human security
experts. Given an advisory expressed in natural lan-
guage, Prospector processes the commits found in the

target source code repository, ranks them based on a
set of predefined rules, and produces a report that the
user can inspect to determine which commits consti-
tute the fix. The tool, which is freely available under
the Apache 2.0 license, has been tested on a dataset of
1,300+ vulnerabilities, and with minimal user input, it
can successfully rank the candidate commits so that the
actual fix is among the top 10 candidates in more than
90% of the cases.

OSS has undergone a remarkable evolution over
the years, transforming from a spontaneous niche
movement into a cornerstone of today’s software
industry and a critical component of modern technol-
ogy stacks. The collaborative nature of open source
development brings about undeniable benefits, such
as considerable cost savings and faster innovation
cycles achieved by integrating community-developed
reusable building blocks.

In the last decade or so, however, the industry’s ini-
tial enthusiasm for open source has given way to a sober-
ing realization and a more realistic stance; incorporating
open source components may speed up development

Known Vulnerabilities of Open Source
Projects: Where Are the Fixes?
Antonino Sabetta , Serena Elisa Ponta , Rocio Cabrera Lozoya , and Michele Bezzi | SAP Security Research
Tommaso Sacchetti | Eurecom Biot
Matteo Greco | Be-Innova Trento
Gergő Balogh , Péter Hegedűs , and Rudolf Ferenc | FrontEndART Ltd. and University of Szeged
Ranindya Paramitha | University of Trento
Ivan Pashchenko | TomTom
Aurora Papotti | Vrije Universiteit Amsterdam
Ákos Milánkovich | SEARCH-LAB
Fabio Massacci | University of Trento and Vrije Universiteit Amsterdam

Digital Object Identifier 10.1109/MSEC.2023.3343836
Date of current version: 5 January 2024

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0003-3506-8374
https://orcid.org/0000-0002-6208-4743
https://orcid.org/0000-0001-8911-7392
https://orcid.org/0000-0003-2084-0675
https://orcid.org/0000-0002-6781-5453
https://orcid.org/0000-0003-4592-6504
https://orcid.org/0000-0001-8897-7403
https://orcid.org/0000-0002-6682-4243
https://orcid.org/0000-0001-8202-576X
https://orcid.org/0000-0003-3207-7662
https://orcid.org/0000-0002-1091-8486

www.computer.org/security 3

(coding), but it comes with significant maintenance costs
due to complex dependency structures that can be hard
to reason about and to manage. A vulnerability in one
component can have dramatic cascading effects. Devel-
opers and organizations must grapple with challenges
such as version compatibility, conflicting dependencies,
and the need to ensure that security updates are applied
in a timely manner across all interconnected components.

A concrete effect of this realization is a growing
awareness of the need for effective automated security
analysis of open source components used within soft-
ware projects. It is now imperative to understand and
manage the complex web of dependencies that underlie
modern software applications and that make up a large
part of their attack surface. This realization led to the
emergence of a thriving market of SCA tools. These
tools, employing diverse techniques, become crucial as
they offer a structured approach to deal with the com-
plexity of open source dependencies.

The growing awareness of the security implications
of open source has led to the development of a growing
market for tools specifically designed to mitigate these
challenges. One such category of tools is SCA tools.
SCA tools serve as a crucial bridge between OSS and
secure software development practices. They provide
a systematic approach to identifying and managing
OSS components within a software project, help-
ing developers and organizations track their depen-
dencies, vulnerabilities, and licensing requirements.
Despite the technical differences in the methods they
employ under the hood, their common foundation is
constituted by some form of vulnerability databases.
These databases act as vital repositories of knowledge,
constantly updated with information on vulnerabili-
ties discovered in open source components. Obvi-
ously, the analysis provided by SCA tools is only as
robust as the quality and timeliness of the data they
draw from these databases.

The National Vulnerability Database (NVD) stands
as a de facto standard repository of security advisories,
but it is not without its shortcomings; it is well docu-
mented that the NVD contains inconsistent or incom-
plete data related to vulnerability publication dates and
to applications affected by the vulnerability, their sever-
ity scores, and their high-level type categorization.1
Furthermore, NVD advisories that refer to OSS do
not systematically link the code-level details about the
vulnerability and its correction. This lack of code-level
information has significant practical consequences. If
the code changes that implement the fix to a given vul-
nerability are known, SCA can use this information to
determine whether a particular artifact contains that
code (and is therefore safe because it was fixed) or if it
contains the code as it was before the fix (and hence, it

is vulnerable). Without this information, the remaining
alternative is to match artifact filenames (or maybe the
contents of some metadata file included in the depen-
dency package) against the contents of the advisory. For
a discussion of the reasons why this method is less reli-
able and inadequate for industrial use, see the work of
Ponta et al.6,7

The lack of comprehensive databases of code-level
vulnerability fixes is also an obstacle to researchers who
seek to study how vulnerabilities are introduced and cor-
rected, and it hinders the development of more effective
methods to detect, correct, and possibly prevent vulner-
abilities. Finally, the availability of code patch data is
essential for the development and training of machine
learning (ML) applications that can improve the process
of detecting and addressing vulnerabilities. It turns out
that, in the process of building datasets that were instru-
mental to training ML models, researchers developed ad
hoc tools that apply simple Common Vulnerabilities and
Exposures (CVE)-to-commit mapping criteria to collect
just enough fix commits to train an ML model.

Issues like inconsistencies and the absence of ref-
erences to detailed code-level fixes in the NVD have
spurred SCA vendors to build and maintain their own
proprietary vulnerability databases. While these data-
bases may enhance the accuracy of vulnerability informa-
tion, they present a somewhat paradoxical situation; the
data concerning vulnerabilities within OSS are not open
themselves. By their proprietary nature, not only do these
vulnerability databases hinder the further development
of SCA tools (particularly of open source tools) that
could push the state of the art in vulnerability detection
and mitigation, but they also have the same scalability
and coverage issues that we have experienced ourselves.

This paradox could be interpreted as a sign of a
market that is still immature; therefore, vendors lever-
age their knowledge bases as differentiators rather than
focusing on the unique analysis capabilities of their
tools. Arguably, a community-driven approach would
be more beneficial for the industry at large, including
the vendors of SCA products themselves, who could
concentrate their efforts on the differentiating capa-
bilities of their tools rather than on the endless effort
of building yet another vulnerability database (which is
bound to be incomplete, no matter the amount of effort
put into maintaining it).

How Do SCA Tools Work? The Case
of Eclipse Steady and the Need for
Accurate Code-Level Data About OSS
Vulnerabilities
At an abstract level, the basic operation of an SCA tool
consists of collecting the set of (third-party open source)
dependencies that are imported by the application

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE Security & Privacy Month/Month 2024

under analysis and then querying a vulnerability data-
base to obtain, for each such dependency, a list of vulner-
abilities that affect it. The method to determine the set of
dependencies is crucial. The open source tool OWASP
Dependency Check relies on the name and version of
the package as extracted from its metadata (that is, the
name of the package archive, the contents of the meta-
data included in the archive, etc.), allowing it to readily
query the NVD to obtain a list of relevant CVEs—an
approach that has the advantage of being straightforward
and lightweight but that comes with important short-
comings (see Ponta et al.7 for more details). It bases its
vulnerability-package mapping on metadata (package
names and versions), but these metadata are known to
be unreliable since they may be inconsistently reported
in NVD records.2 As a result, it can produce inaccurate
results (both false positives and false negatives).

Furthermore, in several practical scenarios, devel-
opers may include “customized” versions of some
dependencies (for example, through practices such as
“repackaging” and “rebundling”) that may alter file-
names and metadata, making the task of correctly iden-
tifying the resulting packages nontrivial. To discern
accurately whether such a dependency is affected by
some vulnerability, one needs to consider the actual
(byte-)code contained in the package.

For these reasons, accurate SCA relies on code-based
analysis (as opposed to a purely metadata-based one),
and this explains why code-level vulnerability data are
so critical for SCA tools to work. But how are such
code-level vulnerability data used in practice by SCA
tools? Very little information is available on the inter-
nals of modern SCA tools, with a notable exception.
Originally developed by SAP Security Research, Eclipse
Steady (simply referred to as Steady in the following)
was used at SAP between late 2016 and April 2021 to
scan the open source dependencies of all SAP prod-
ucts developed in Java (later, some limited support for
Python was added). At the peak of its utilization, the
Steady instance deployed at SAP served thousands of
distinct development teams, and by being integrated
into the corporate continuous integration and continu-
ous delivery pipelines, it performed more than 250,000
scans a month.

In a nutshell, Steady is used to 1) detect whether a
given application depends on open source components
that are affected by known vulnerabilities; 2) collect
evidence regarding the execution of vulnerable code in
the context of the application at hand, through a com-
bination of static and dynamic analysis techniques;
and 3) support developers in replacing the vulnerable
dependency artifacts with alternative versions that are
not vulnerable. For all these three functions, Steady
relies on code-level knowledge of the vulnerability and

of its correction. To detect if a dependency is affected
by a particular vulnerability, the package for that vulner-
ability is searched to find the functions that are touched
by the fix; if they are found, Steady checks whether the
code of those functions in the dependency artifact at
hand corresponds to the version before the fix (vulner-
able) or after the fix (safe) found in the source code
repository of that dependency. Analogously, know-
ing the functions that are related to a given vulnerabil-
ity, Steady enables an impact assessment based on the
reachability of those functions from the code of the
application under analysis.

Vulnerability Datasets and Mining Tools
Given the code-based approach on which Steady relies,
having a rich knowledge base of code-level vulnerabil-
ity data to rely upon is a priority when operating the
tool productively in an enterprise context. Collecting
and curating vulnerability information, however, is
difficult and time consuming—as the team that oper-
ated Steady at SAP learned the hard way by commit-
ting considerable effort to the mining of source code
repositories and the curation of a knowledge base of
fix commits. Given the increasing size of open source
ecosystems and the pace at which new vulnerabilities
affecting OSS are discovered at a continuous pace, a
manual approach to creating and maintaining such a
knowledge base cannot scale.

The problem of mining source code repositories to
build datasets of vulnerability data received attention
in the scientific literature, too, resulting in several use-
ful datasets and mining techniques (see Table 1). Tool
availability, however, is severely lacking. As shown in
Table 1, scientific articles that present repository min-
ing approaches to find vulnerability-fixing commits are
rarely (virtually never) accompanied by a publicly avail-
able tool that implements the approach that the article
describes. This makes it hard to reconstruct and extend
those datasets.

Building a Vulnerability Database
for Eclipse Steady: Project KB
and Prospector
To fill this gap, SAP published Project KB, an initiative
to support the creation and maintenance of a collabora-
tive knowledge base of vulnerability data about open
source projects. Project KB consists of a vulnerability
dataset (a collection of plain-text files, each containing
information about a vulnerability, including the refer-
ences to the fixing commits) as well as a tool, named
Prospector, whose goal is to assist security experts in
searching open source code repositories to locate the
commits that address a given known vulnerability. Pros-
pector aims to significantly reduce the effort that is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 5

necessary to search open source code repositories for
commits that correct a given vulnerability and thus con-
tribute to the construction and maintenance of compre-
hensive datasets of code-level vulnerability fixes.

To do so, the tool employs a set of heuristics to
search for commits that match predefined criteria that
indicate the presence of vulnerability fixes. By analyz-
ing the advisory given as input and by scanning com-
mit messages, code changes, and related metadata,
the tool aims to rank and pinpoint the commits that
address the vulnerability described in the advisory
while providing a plain English explanation of the rea-
sons why the selected commits are considered a vul-
nerability fixing commit.

Prospector is released under the Apache 2.0 license
terms as part of SAP’s Project KB (https://github.com/
sap/project-kb). To the best of our knowledge, it is the
only tool of its kind that can provide a clear explanation
for its outputs, is open source, and has been validated on
a large scale in an industrial context.

Figure 1 illustrates the workflow of Prospector. The
tool takes as input a vulnerability identifier, a repository
URL, and (optionally) a version interval and produces
a report that lists commits found in the repository likely
to fix the vulnerability. The report presents the commits
ranked by relevance, which is computed by applying a
set of rules to each candidate. The steps of the workflow
in Figure 1 are as follows.

Advisory Retrieval and Processing
Given the vulnerability identifier in input, Prospector
retrieves the advisory from the NVD and processes it
to extract information for the later steps. (Note that
sources other than the NVD could also be used.) In
particular, it retrieves the advisory description, time
stamps, and references. From the description, Prospec-
tor extracts keywords characterizing the vulnerability
by using natural language processing techniques, the
presence of security-relevant keywords by matching a
static list, and mentioned file/classes/method names
by using pattern matching. For relevant references, for
example, GitHub pages and bug-tracking tickets, Pros-
pector employs parsing techniques to extract hyperlinks
therein present. The identified keywords, files, classes,
methods, and hyperlinks are later used during the rule
application step and are key for the ranking of the can-
didate commits.

Commit Retrieval and Processing
Besides building and analyzing the advisory record,
Prospector retrieves a set of candidate commits from
the source code repository. The commit retrieval step
relies on Git to streamline the cloning of repositories
and enable the efficient selection of commit subsets. If a

Input

Git
Raw Commits

Commit Cache

Report
(HTML, JSON)

Rule
Application

Report
Generation

Candidate
Commits

Advisory
Record

Advisory Processing Commit Processing

Commit RetrievalAdvisory Retrieval

– VULN ID
– Repository URL
– [Version Interval]

Figure 1. A high-level overview of Prospector’s workflow. JSON: JavaScript
Object Notation; VULN: vulnerability identifier.

Table 1. Other works on mapping advisories to vulnerability fixing
commits in source code repositories.

Authors Method summary Tool availability

Perl
et al.5

Mapped CVE to Git commits using
direct references in both directions

No publicly available
implementation

Xu
et al.11

Tracer: finds patches from multiple
knowledge sources

Tool not available from
the URL indicated in
the article*

Hong
et al.4

xVDB: finds patches by analyzing
code repositories, bug trackers, and
Q&A sites; by doing so, it discovers
more patches than those

Not available

Tan
et al.10

PatchScout: a ranking-based
approach that computes a
correlation score between the
commits in a repository and a
given vulnerability; the approach
is demonstrated on a set of five
popular open source projects

Not available

Dunlap
et al.3

Vfcfinder: a recently published tool
with limited documentation; uses
CodeBERT and similarity measures
to match commits and advisories

Open source tool
available on GitHub

Wang
et al.12

PatchDB: collects patches obtained
from NVD references as well as other
sources on the web; focuses on C/
C++ only

Not available

*https://patch-tracer.github.io (23 May 2023).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://github.com/sap/project-kb
https://github.com/sap/project-kb
https://patch-tracer.github.io

6 IEEE Security & Privacy Month/Month 2024

version interval is provided in input, Prospector uses it
to retrieve commits whose time stamp falls in between
the release dates; otherwise, commits in the time win-
dow of 60 days before and after the advisory reservation
date are retrieved.

Once the candidate retrieval process is completed,
each commit undergoes further processing to extract
additional information to be used in the rule application
step (unless already available in the commit cache). This
includes metrics such as the number of hunks, changed
files, code changes, and references to bug-tracking iden-
tifiers and GitHub issues in the commit message. Pro-
cessed commits are stored in the cache.

Rule Application
Given a processed advisory and a candidate commit,
Prospector applies a set of rules to establish whether
there is a match, that is, whether the input satisfies the
rule definition. The rules currently implemented in
Prospector are summarized in Table 2. For example,

rule CVE_ID_IN_MESSAGE reads the attribute of the
advisory record that contains the vulnerability identifier
and checks whether that identifier appears in the log
message of the candidate commit at hand. As another
example, the rule XREF_BUG is satisfied if the candidate
commit in the input contains in its commit message a
bug-tracking ticket identifier extracted during the pro-
cessing of the advisory (that is, mentioned in the advi-
sory itself or in any of the referenced pages).

When a match is determined, the candidate commit
is annotated with the rule identifier and a plain Eng-
lish explanation of the match. This explanation and the
annotations are used when producing the final report
that the user will inspect.

Ranking and Report Generation
After the rule application step, the annotations associ-
ated with each candidate commit are leveraged to rank
the commits. Rules are associated with a relevance
weight (weight W in Table 2) that is assigned following

Table 2. A summary of the rules.

Rule identifier Weight Rule description

VULN_ID_IN_MESSAGE 64 The commit message mentions the vulnerability identifier.

COMMIT_IN_REFERENCE 64 The commit is mentioned directly by the advisory or in any of the pages
referenced by the advisory.

XREF_BUG 32 The commit message contains the identifier of a bug-tracking ticket that is
mentioned in the advisory or in any of the pages referenced by the advisory.

XREF_GH 32 The commit message contains the identifier of a GitHub issue that is mentioned
in the advisory or in any of the pages referenced by the advisory.

VULN_ID_IN_LINKED_ISSUE 32 The commit message mentions a GitHub issue or bug-tracking ticket containing
the vulnerability ID.

CHANGES_RELEVANT_FILES 8 The commit modifies files mentioned in the advisory description.

CHANGES_RELEVANT_CODE 8 The commit modifies code containing a filename or method mentioned in the
advisory description.

RELEVANT_WORDS_IN_MESSAGE 8 The commit message contains a filename or method mentioned in the advisory
description.

ADV_KEYWORDS_IN_FILES 4 The commit modifies files whose names contain keywords extracted from the
advisory description.

ADV_KEYWORDS_IN_MSG 4 The commit message contains one or more keywords extracted from the
advisory description.

SEC_KEYWORDS_IN_MESSAGE 4 The commit message contains one or more predefined security-related keywords.

SEC_KEYWORDS_IN_LINKED_GH 4 The commit points to a GitHub issue containing one or more predefined
security-related keywords.

SEC_KEYWORDS_IN_LINKED_BUG 4 The commit points to a bug-tracking ticket containing one or more predefined
security-related keywords.

GITHUB_ISSUE_IN_MESSAGE 2 The commit message mentions a GitHub issue.

BUG_IN_MESSAGE 2 The commit message mentions a bug-tracking ticket.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 7

a logarithmic scale, where a higher value implies a
higher confidence in identifying the commit as the
vulnerability patch. This logarithmic scale enables
differentiating between strong (that is,)W 32$ and
weak rules, ensuring that the application of multiple
weak rules cannot outweigh a single strong rule during
the ranking process. The current values are based on
expert knowledge and need to be validated empirically
in future work. To rank each candidate, a relevance
score is calculated by summing the weights of all the
matched rules. The results are saved in a report that
displays the list of candidate commits in descending
order of relevance. By presenting the commits in this
manner, the report effectively highlights at the top the
commits that have the highest likelihood of fixing the
given vulnerability.

An Illustrative Example
To illustrate how Prospector works, but also to explain
the kinds of tasks that a human expert would have to
perform to find the fix commits corresponding to a
given advisory, we examine a sample vulnerability.
CVE-2020-1925 (https://nvd.nist.gov/vuln/detail/
CVE-2020-1925) refers to a server-side request forgery
vulnerability in Apache Olingo (https://olingo.apache.
org). The vulnerability description (from the NVD)
indicates that an attacker could exploit a bug in the
implementation of class AsyncRequestWrapperImpl
in versions 4.0.0 to 4.7.0.

Manual Search
To find the fix commit manually, one could rely on the
list of references provided by the NVD advisory. For
CVE-2020-1925, one of the references points to a mes-
sage in the mailing list archive of the project (https://
lists.apache.org/thread/6jfkh27wgdyq1w8ghq2qy3ggk2
7p74mx). The e-mail message does not point to the patch
itself; however, it mentions a bug-tracking ticket where
the issue is discussed (https://issues.apache.org/jira/
browse/OLINGO-1416), and that, in turn, points to
a GitHub pull request (PR) (https://github.com/
apache/olingo-odata4/pull/63) used to merge the patch
into Apache Olingo. Following this chain of links, it is pos-
sible to identify the commit containing the patch of the
vulnerability as the commit merging PR #63 into the
main branch. However, this approach is time consuming,
tedious, and error prone.

Alternatively, one could use the first fixed release as
the starting point for searching to determine which com-
mits fall in the interval between the last vulnerable release
(4.7.0) and the first fixed (4.7.1 in this case). Each of these
commits should be examined to identify which ones best
match the vulnerability description. For CVE-2020-
1925, it is quite easy to identify that the merge commit

of PR #63 is the (only) fix commit; all other commits
either update project dependencies or address clearly
unrelated issues (for example, OData-related improve-
ment). CVE-2020-1925 is a rather straightforward case;
still, performing the manual tasks outlined previously
requires browsing and analyzing four different webpages
(from the NVD advisory to the fix commit) and five com-
mits, which also involves inspecting the files and classes
changed by each of them. Note that for CVE-2020-1925,
the NVD and OSV do not provide any fix commit,
and Snyk [https://security.snyk.io/vuln/SNYK-JAVA
-ORGAPACHEOLINGO-541532 (23 May 2023)]
points only to the GitHub PR page but not to individual
commits.

Tool-Assisted Search
To find the fixing commit, Prospector must be given at
least two input parameters: the vulnerability identifier
(CVE-2020-1925) and the URL of the correspond-
ing source repository (https://github.com/apache/
olingo-odata4). During the advisory retrieval and pro-
cessing step, the NVD application programming inter-
face is queried to retrieve the advisory. The analysis of
the vulnerability description results in the identifica-
tion of keywords, for example, header, client, and
the relevant file, that is, AsyncRequestWrapperImpl.
Then, from the NVD advisory page, Prospector ana-
lyzes the content of any relevant reference, that is, the
Apache mailing-list message (https://lists.apache.org/
thread/6jfkh27wgdyq1w8ghq2qy3ggk27p74mx) in
this case. Next, it parses the content of this message and
extracts any valid URLs. Notably, during this process,
the tool successfully identifies a hyperlink leading to the
bug-tracking ticket labeled OLINGO-1416.

In the commit retrieval and processing step, Prospector
retrieves 35 candidate commits, that is, those commit-
ted fewer than 60 days before or after the time stamp
available in the advisory. Each one of these commits
undergoes further processing to extract additional infor-
mation, such as the list of changed files and bug-tracking
identifiers mentioned in the commit messages.

In the rule application step, Prospector applies the
rules of Table 2 to each of the 35 candidate commits.
Commits that do not modify any source code file are
filtered out. Then, Prospector generates a report show-
ing, for each commit, the commit message, the relevance
score, the commit ID, and the rules that matched (includ-
ing an explanation, in natural language, of the match).

Figure 2 shows the highest-ranked commit
(9f9aebd) from the report for CVE-2020-1925. This
commit has a relevance of 58 resulting from the sum of
the weights of the rules that matched. The identifiers of
these rules are in blue in Figure 2. The most important
are as follows:

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://nvd.nist.gov/vuln/detail/CVE-2020-1925
https://nvd.nist.gov/vuln/detail/CVE-2020-1925
https://olingo.apache.org
https://olingo.apache.org
https://lists.apache.org/thread/6jfkh27wgdyq1w8ghq2qy3ggk27p74mx
https://lists.apache.org/thread/6jfkh27wgdyq1w8ghq2qy3ggk27p74mx
https://lists.apache.org/thread/6jfkh27wgdyq1w8ghq2qy3ggk27p74mx
https://issues.apache.org/jira/browse/OLINGO-1416
https://issues.apache.org/jira/browse/OLINGO-1416
https://github.com/apache/olingo-odata4/pull/63
https://github.com/apache/olingo-odata4/pull/63
https://security.snyk.io/vuln/SNYK-JAVA-ORGAPACHEOLINGO-541532
https://security.snyk.io/vuln/SNYK-JAVA-ORGAPACHEOLINGO-541532
https://github.com/apache/olingo-odata4
https://github.com/apache/olingo-odata4
https://lists.apache.org/thread/6jfkh27wgdyq1w8ghq2qy3ggk27p74mx
https://lists.apache.org/thread/6jfkh27wgdyq1w8ghq2qy3ggk27p74mx

8 IEEE Security & Privacy Month/Month 2024

 ■ XREF_BUG: The commit message and an advisory ref-
erence both mention the bug-tracking ticket with the
identifier “OLINGO-1416.”

 ■ CHANGES_RELEVANT_CODE: The commit modifies
code containing the class mentioned in the advisory
description (AsyncRequestWrapperImpl).

 ■ ADV_KEYWORDS_IN_MSG: The commit message contains
the keyword header, present in the advisory description.

Rule XREF_BUG mimics a human expert manually
navigating and scrolling through four different webpages.
Moreover, rules CHANGES_RELEVANT_CODE, CHANGES_
RELEVANT_FILES, and ADV_KEYWORDS_IN_FILES high-
light the commits that touch files/classes/methods whose
names are likely to be related to the advisory. A manual
search by a human would require browsing through and
analyzing one-by-one the commits preceding the release
of the fixed library; even using some ad hoc scripts for this
task is cumbersome, time consuming, and error prone.

The report offers a consolidated view of the infor-
mation that users would need to look up manually
across several resources. The straightforward ranking
system of Prospector gives higher visibility to commits
that match rules that, based on our experience, provide
a stronger signal (for example, XREF_BUG).

Evaluation
To evaluate if Prospector could provide useful support
to users and reduce the manual effort required to find
fix commits, we tested it on the Tracer “depth dataset”
by Xu et al.11 This dataset includes 1,319 vulnerabili-
ties affecting 723 open source projects developed in
seven programming languages.

For the sake of conciseness, we provide only
a brief overview of the evaluation here; a more

comprehensive description will be the topic of a
future article. After a preliminary manual review of
the Tracer dataset (which resulted in several correc-
tions and additions of missing fixes), we executed
Prospector in three distinct configurations: 1) by
supplying no version interval (designated by NV);
2) by supplying an automatically extracted version
interval obtained by applying basic pattern matching
to the text of the advisory (designated by AEV); and
3) by supplying manually specified version intervals
(designated by MEV).

When no version interval is provided or when the
tool fails to match the versions provided as input to
tags found in the source code repository, Prospector
is instructed to fall back to a fixed time interval of 120
days centered around the advisory reservation date
(that is, the candidates are selected starting from 60
days before the advisory reservation date, until 60 days
after the same date). We set a 30-min execution time
limit for each vulnerability, and we aborted execu-
tions that would retrieve more than 2,000 candidate
commits.

Fixing Commit Ranked Among the Top 10 in
the Report
When a known fixing commit is found among the
top-10 candidates, we distinguish the following
cases.

 ■ High confidence: The commit is ranked first with at
least a strong rule matching.

 ■ Medium confidence: The commit is ranked first with
only weak rules matching.

 ■ Low confidence: The commit is ranked among the
first 10 (but not in the first position).

Figure 2. A Prospector report.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 9

Fixing Commit Does Not Appear Among the
Top 10 in the Report
When a known fixing commit is not found among the
top-10 candidates, we distinguish the following cases.

 ■ Found with low relevance (rank > 10): The commit was
found by Prospector, but its position in the ranking is
not among the first 10

 ■ Not found: The commit does not appear in the report
at all

 ■ False positive: A commit matches a strong rule but is
not an actual fixing commit.

In the Tracer dataset, some vulnerabilities had
more than one fixing commit (which could be com-
pletely different commits or replicas of the same com-
mit in multiple parallel branches). We considered a
fixing commit for a vulnerability as found if Prospec-
tor could identify at least one of the commits listed in
the Tracer dataset.

The results of the executions in the three conditions
are reported in Table 3. Some executions were aborted
when no versions were supplied (since, in this case, Pros-
pector is more likely to consider an excessive number of
candidates, therefore hitting the 2,000 commit thresh-
old). Also, executions were aborted when the automati-
cally extracted versions were incorrect and could not be
matched with tags in the Git repository. These aborted
executions are the reason why the number of vulnerabili-
ties successfully analyzed in each condition differs.

Table 4 shows that when the tool is provided with
accurate version intervals (that is, when such inter-
vals are provided manually), the actual fix commits
are ranked among the top 10 candidates in 90.57% of
the cases. (The percentage is 74.83% if one considers
only high-confidence findings, for which one or more
“strong” rules match.) When extracting version inter-
vals automatically from the advisory text, we observe

a success ratio of 88.85% (74.56% when considering
only the high-confidence matches). Finally, when ver-
sion intervals are not specified at all, the success rate
drops to 78.94% (71.61% when considering only the
high-confidence matches).

The execution mode we are more interested in is
AEV because it constitutes the base accuracy for fully
automated runs of Prospector. The results we observed
are close to the manually supplied versions (MSVs)
case, which is quite encouraging. In the cases where the
references do not contain a link to a commit, the success
ratio drops to 72.44%.

The false positives are the cases in which a strong
rule matches incorrectly and the report does not con-
tain any of the fixing commits. These cases represent
only 0.91% of the total and were mostly due to wrong
references to fix commits being present in the advisory
itself or to corner cases where the advisory contained a
link to bug-tracking tickets that were related to the actual
ticket with which the vulnerability was discussed and
corrected. (This kind of indirection could be handled in
future versions of the tool but is not correctly dealt with
at present.)

T he evaluation we conducted is encouraging as it
shows that with relatively simple human-crafted

rules, it is possible to considerably simplify the task

Table 3. A summary of the experiment results.

Result
Manually supplied
versions (MSVs) %

Automatically extracted
versions (AEVs) %

No versions
provided (NV) %

High confidence 984 74.83% 976 74.56% 928 71.61%

Medium confidence 109 8.29% 97 7.41% 50 3.86%

Low confidence 98 7.45% 90 6.88% 45 3.47%

Low relevance (rank > 10) 39 2.97% 35 2.67% 27 2.08%

Not found 73 5.55% 97 7.41% 232 17.9%

False positives 12 0.91% 14 1.07% 14 1.08%

Total 1,315 1,309 1,296

Table 4. The summary of results.

Result MSV AEV NV

Fix commit found
in the top 10

1,191 (90.57%) 1,163 (88.85%) 1,023 (78.94%)

Fix commit not
found in the top 10

124 (9.43%) 146 (11.15%) 273 (21.06%)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE Security & Privacy Month/Month 2024

of security experts. With minimal human interven-
tion, the tool can be made to produce reports that a
human expert can examine and understand, thanks to
the plain English explanations that are generated for
each rule match.

After our experience with mining source code
repositories to find vulnerability-fixing commits (with
and without Prospector), we are left with a fundamen-
tal question: “Why does it have to be so difficult?” To
answer this question, one needs to consider several
factors combined. The practices adopted across the
open source community vary considerably. Even in
the scope of a single project, the vulnerability man-
agement processes are often executed in an inconsis-
tent manner. More broadly, the community still hasn’t
reached a broadly shared consensus as to how to iden-
tify, maintain, and share the link between a vulnerabil-
ity description, the content of bug-tracking systems,
and ultimately, the correction in the source code. Some
project maintainers seem to be worried about the risk
of giving attackers an advantage by explicitly annotating
security fixes in their source code repositories.

In many projects, however, vulnerability fixing
commits are occasionally annotated, but not always,
and not consistently, giving the impression that the link
between a security issue (for example, as described in a
bug-tracking ticket) and its fix in the source code is just
not deemed worth preserving by many project main-
tainers and contributors. More generally, it seems that
the importance of commit quality is often disregarded,
which, among other undesirable effects, results in secu-
rity fixes being mixed with other kinds of changes.

What to expect from the future? Vulnerability man-
agement processes seem to be improving, and we hope
that with them, developer awareness will increase as
well, leading maintainers to pay more attention to the
importance of sharing detailed fix information with
their security advisories. This would make the task of
Prospector much easier; eventually, it could even make
a tool like Prospector completely unnecessary, which is
precisely our wish. In the meantime, the problem of effi-
ciently and effectively mining repositories for accurate
code-level vulnerability data will remain open, and tool
support will remain crucial. The introduction of rules
that use large language models is the obvious next step
in the evolution of the tool, and it is part of our plans.
Also, further evaluation of the effectiveness of the tool
when used by real users is ongoing and will be the sub-
ject of another article.

Prospector is released under the Apache 2.0 license
terms as part of SAP’s project KB, and it can be down-
loaded from the Project KB repository at https://github.
com/sap/project-kb. Two datasets that were obtained
using Prospector are publicly available as open data.8,9

Acknowledgment
This work was partially supported by EU-funded
 projects Sec4AI4Sec (Grant 101120393) and Assure-
Moss (Grant 952647) and NWO-funded project The-
seus (Grant NWA.121518006). Antonino Sabetta would
like to thank Henrik Plate, Bonaventura Coppola, Daan
Hommersom, Damian A. Tamburri, and Dario Di Nucci
for insightful discussions.

References
1. A. Anwar, A. Abusnaina, S.Chen, F. Li, and D. Mohaisen,

“Cleaning the NVD: Comprehensive quality assess-
ment, improvements, and analyses,” in Proc. 51st Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw., Supple-
mental Volume (DSN-S), 2021, pp. 1–2, doi: 10.1109/
DSN-S52858.2021.00011.

2. Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang,
“Towards the detection of inconsistencies in public security
vulnerability reports,” in Proc. 28th USENIX Conf. Secur.
Symp. (SEC), Berkeley, CA, USA: USENIX Association,
2019, pp. 869–885, doi: 10.5555/3361338.3361399.

3. T. Dunlap et al., “VFCFinder: Seamlessly pairing security
advisories and patches,” 2023, arXiv:2311.01532.

4. H. Hong, S. Woo, E. Choi, J. Choi and H. Lee, “xVDB:
A high-coverage approach for constructing a vulnerability
database,” IEEE Access, vol. 10, pp. 85,050–85,063, Aug.
2022, doi: 10.1109/ACCESS.2022.3197786.

5. H. Perl et al., “VCCFinder: Finding potential vulnerabili-
ties in open-source projects to assist code audits,” in Proc.
22nd ACM SIGSAC Conf. Comput. Commun. Secur. (CCS),
New York, NY, USA: Association for Computing Machin-
ery, 2015, pp. 426–437, doi: 10.1145/2810103.2813604.

6. S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata:
Code-centric and usage-based analysis of known vulner-
abilities in open-source software,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evolution (ICSME), 2018, pp. 449–
460, doi: 10.1109/ICSME.2018.00054.

7. S. E. Ponta, H. Plate, and A. Sabetta, “Detection, assess-
ment and mitigation of vulnerabilities in open source
dependencies,” Empirical Softw. Eng., vol. 25, pp. 3175–
3215 Jun. 2020, doi: 10.1007/s10664-020-09830-x.

8. A. Sabetta, S. E. Ponta, M. Greco, T. Sacchetti, and M.
Bezzi, 2023, “AssureMOSS Vulnerability Statements
Dataset (Tracer) (1.0) [Data set],” Zenodo, doi: 10.5281/
zenodo.8173990.

9. A. Sabetta, S. E. Ponta, M. Greco, and T. Sacchetti, 2023,
“AssureMOSS Vulnerability Statements Dataset (Steady)
(1.0) [Data set],” Zenodo, doi: 10.5281/zenodo.8163119.

10. X. Tan, Y. Zhang, C. Mi, J. Cao, K. Sun, Y. Lin, and M. Yang,
“Locating the security patches for disclosed OSS vulner-
abilities with vulnerability-commit correlation ranking,” In
Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS),
New York, NY, USA: Association for Computing Machin-
ery, 2021, pp. 3282–3299, doi: 10.1145/3460120.3484593.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://github.com/sap/project-kb
https://github.com/sap/project-kb

www.computer.org/security 11

11. C. Xu, B. Chen, C. Lu, K. Huang, X. Peng, and Y. Liu,
“Tracking patches for open source software vulnerabili-
ties,” in Proc. 30th ACM Joint Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng. (ESEC/FSE), New York, NY, USA:
Association for Computing Machinery, Nov. 2022, pp.
860–871, doi: 10.1145/3540250.3549125.

12. X. Wang, S. Wang, P. Feng, K. Sun, and S. Jajodia,
“PatchDB: A large-scale security patch dataset,” in Proc.
51st Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.
(DSN), Taipei, Taiwan, 2021, pp. 149–160, doi: 10.1109/
DSN48987.2021.00030.

Antonino Sabetta is a principal research scientist at
SAP Security Research, 06254 Mougins, France. His
research interests include software security, open
source software, and applications of machine learn-
ing to software development and analysis. Sabetta
received a Ph.D. from Università degli Studi di Roma
“Tor Vergata.” Contact him at antonino.sabetta@
sap.com.

Serena Elisa Ponta is a principal research scientist at
SAP Security Research, 06254 Mougins, France.
Her research interests include open source software
(OSS) security, the security of OSS supply chains, the
analysis and management of known vulnerabilities,
and the detection of malicious code in OSS libraries.
Ponta received a Ph.D. in mathematical engineering
and simulation from the University of Genova. Con-
tact her at serena.ponta@sap.com.

Rocio Cabrera Lozoya is a senior data scientist with
SAP Security Research, 06254 Mougins, France. Her
research interests include the use of machine learning
algorithms for security applications. Lozoya received
a Ph.D. in 2015 on modeling and classification of car-
diac electrophysiology signals from her work done at
the Asclepios Research team in INRIA Sophia Anti-
polis. Contact her at rocio.cabrera.lozoya@sap.com.

Michele Bezzi is the research manager at SAP Secu-
rity Research, 06254, Mougins, France. His research
interests include software security and artificial intel-
ligence. Bezzi received a Ph.D. in physics from the
University of Bologna. He coordinated the EU project
ASSERT4SOA on security certification. Contact him
at michele.bezzi@sap.com.

Tommaso Sacchetti is currently a Ph.D. candidate
in the S3 research group at Eurecom, 06410 Biot,
France, working on Bluetooth and Internet of
Things security. Sacchetti received a master’s degree
at the University of Trento. Contact him at tommaso.
sacchetti@eurecom.fr.

Matteo Greco is a network and security system engineer
at Be-Innova, 38123 Trento, Italy. Within the Security
Operation Center, he is responsible for analyzing and
managing security incidents. Additionally, he actively
conducts vulnerability assessments and penetration
testing. Greco received a master’s degree in cyber-
security at the University of Trento. Contact him at
matteo.greco@be-innova.eu.

Gergő Balogh is a researcher and software developer at
the Department of Software Engineering, University
of Szeged, 6720 Szeged, Hungary. His research inter-
ests include human-centric aspects of software engi-
neering, focusing on methodologies from psychology
and social sciences to enhance empirical studies in
development environments, algorithm usability, and
developer productivity. Contact him at geryxyz@
inf.u-szeged.hu.

Péter Hegedűs currently works both as an assistant pro-
fessor at the Department of Software Engineering,
University of Szeged and as a researcher at Front-
EndART Ltd., 6720 Szeged, Hungary. His research
interests include software maintainability models,
deep learning applications, source code analysis,
and vulnerability detection and prediction. Hegedűs
received a Ph.D. in computer science from the Uni-
versity of Szeged in 2015. He was a program commit-
tee member in the CSMR, MSR, QUATIC, ESEM,
and SCAM conferences and received various awards
and scholarships during his career, like the presti-
gious Bolyai János research scholarship. Contact him
at peter.hegedus@frontendart.com.

Rudolf Ferenc is currently an associate professor, act-
ing as the head of the Department of Software Engi-
neering, University of Szeged, 6720 Szeged, Hungary.
He leads the Static Code Analysis Group, which
develops tools for analyzing the source code of vari-
ous languages. His research interests include static
code analysis, metrics, quality assurance, design pat-
tern and antipattern mining, and bug detection.
Ferenc received a Ph.D. in computer science from the
University of Szeged in 2005 and received a Habilita-
tion degree in 2015. Contact him at rudolf.ferenc@
frontendart.com.

Ranindya (Nanin) Paramitha is a Ph.D. student at the
University of Trento, 38123 Trento, Italy. Her research
interests include software security, focusing on empiri-
cal analysis of secure software ecosystems, mining
software repositories, and how developers can apply
security. Paramitha received a master’s degree in
informatics with distinction from Institut Teknologi

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

mailto:antonino.sabetta@sap.com
mailto:antonino.sabetta@sap.com
mailto:serena.ponta@sap.com
mailto:rocio.cabrera.lozoya@sap.com
mailto:michele.bezzi@sap.com
mailto:tommaso.sacchetti@eurecom.fr
mailto:tommaso.sacchetti@eurecom.fr
mailto:matteo.greco@be-innova.eu
mailto:geryxyz@inf.u-szeged.hu
mailto:geryxyz@inf.u-szeged.hu
mailto:peter.hegedus@frontendart.com
mailto:rudolf.ferenc@frontendart.com
mailto:rudolf.ferenc@frontendart.com

12 IEEE Security & Privacy Month/Month 2024

Bandung, Bandung, Indonesia. She participated in the
H2020 Project AssureMOSS and is involved in the HE
Project Sec4AI4Sec. She is on the program committee
of ICSE SVM’23. She is a Graduate Student Member
of IEEE. Contact her at ranindya.paramitha@unitn.it.

Ivan Pashchenko is an expert security engineer at Tom-
Tom, 1011 AC Amsterdam, The Netherlands. His
research interests include software security, open
source software security, and machine learning for
security. Pashchenko received a Ph.D. from the Uni-
versity of Trento. In 2017, he was awarded a Second
Place Silver Medal at the Association for Computing
Machinery/Microsoft Student Research competition
in the graduate category. He was the UniTrento main
contact in the Continuous Analysis and Correction
of Secure Code work package for the Horizon 2020
Assurance and Certification in Secure Multi-Party
Open Software and Services project. Contact him at
ivan.pashchenko@tomtom.com.

Aurora Papotti is a Ph.D. student at Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, The Netherlands.
Her research interests include the human usability of
advanced software security technology from artificial
intelligence to static analysis. Papotti received a dou-
ble master’s degree in computer science from the Uni-
versity of Trento, Italy, and the University of Turku.

She participated in the NWO project Theseus and
HEWSTI and is involved in the HE Project Sec4AI-
4Sec. Contact her at a.papotti@vu.nl.

Ákos Milánkovich is currently a security researcher at
SEARCH-LAB, Budapest, H-2370 Dabas, Hungary,
leading EU-funded research and penetration test-
ing activities. His research interests include wireless
sensor networks, agricultural monitoring, ultrawide-
band localization, and security. Contact him at akos.
milankovich@search-lab.hu.

Fabio Massacci is a professor at the University of Trento,
38123 Trento, Italy, and Vrije Universiteit Amster-
dam, 1081 HV Amsterdam, The Netherlands. His
research interests include empirical methods for the
cybersecurity of sociotechnical systems. Massacci
received a Ph.D. in computing from the Sapienza Uni-
versity of Rome. He participates in the Cyber Security
for Europe pilot and the NWO Theseus project and
leads the Horizon 2020 AssureMOSS project and the
Horizon Europe Sec4AI4Sec. For his work on secu-
rity and trust in sociotechnical systems, he received
the Ten Year Most Influential Paper Award at the
2015 IEEE International Requirements Engineering
Conference. He is a Member of IEEE. Contact him at
fabio.massacci@ieee.org.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

mailto:ranindya.paramitha@unitn.it
mailto:ivan.pashchenko@tomtom.com
mailto:a.papotti@vu.nl
mailto:akos.milankovich@search-lab.hu
mailto:akos.milankovich@search-lab.hu
mailto:fabio.massacci@ieee.org

