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ABSTRACT

Extensive use of carbapenems may lead to selection pressure for Stenotrophomonas maltophilia (SM) in
hospital environments. The aim of our study was to assess the possible association between systemic
antibiotic use and the incidence of SM. A retrospective, observational study was carried out in a tertiary-
care hospital in Hungary, between January 1st 2010 and December 31st 2019. Incidence-density for SM
and SM resistant to trimethoprim-sulfamethoxazole (SXT) was standardized for 1000 patient-days,
while systemic antibiotic use was expressed as defined daily doses (DDDs) per 100 patient-days. Mean
incidence density for SM infections was 0.42/1000 patient-days; 11.08% were were resistant to SXT, the
mean incidence density for SXT-resistant SM was 0.047/1000 patient-days. Consumption rate for
colistin, glycopeptides and carbapenems increased by 258.82, 278.94 and 372.72% from 2010 to 2019,
respectively. Strong and significant positive correlations were observed with the consumption of
carbapenems (r: 0.8759; P < 0.001 and r: 0.8968; P < 0.001), SXT (r: 0.7552; P 5 0.011 and r: 0.7004;
P5 0.024), and glycopeptides (r: 0.7542; P5 0.012 and r: 0.8138; P < 0.001) with SM and SXT-resistant
SM incidence-density/1000 patient-days, respectively. Implementation of institutional carbapenem-
sparing strategies are critical in preserving these life-saving drugs, and may affect the microbial spec-
trum of infections in clinical settings.
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INTRODUCTION

Non-fermenting Gram-negative bacteria are a heterogenous group of Gram-negative rods in
the Pseudomonadota phylum [1]; they are characterized by the lack of enzymes needed to
ferment sugars, and their omnipresence in aquatic habitats, soil, and in healthcare-associated
environments [2]. Following Pseudomonas aeruginosa, Acinetobacter baumannii complex
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and Burkholderia cepacia complex, Stenotrophomonas mal-
tophilia (SM) is the fourth most commonly isolated species
from clinical specimens among non-fermenters [3]. SM has
been described as a low-grade pathogen with limited inva-
siveness: natural host defences must be circumvented for
this microorganism to cause an infection, thus, these in-
fections are often described in immunocompromised pa-
tients [4]. On the other hand, they are potent producers of
biofilm, outer membrane vesicles and siderophores, they
have a charged cell surface, and they possess tissue-
degrading enzymes, a variety of efflux pumps, nonfimbrial
adhesins and protein secretion systems (i.e. a type II [Xps]
and a type IV [VirB/D4] secretion system) [2, 3, 5, 6]. These
virulence factors allow for the survival and persistence of
SM in harsh environmental conditions in hospital settings,
and shield the microorganism from the immune system and
antimicrobials in vivo [2, 3, 7].

Before the 1980s, the isolation of SM from true infections
was rare [8]; however, since then, SM is increasingly being
recognized as an important etiological agent in healthcare-
associated infections (HAIs), with an incidence of 0.70–3.77
cases/1000 discharges, according to literature sources [9, 10].
This may be explained by the higher number of patients at
risk, more advanced diagnostic methods in microbiology, in
additon to developments in invasive surgical interventions
and the therapy of malignant disorders [11]. In addition,
since the 2000s, reports of SM as a pathogen in community-
acquired infections have also emerged [12]. SM is an
important etiological agent in tracheobronchitis/pneumonia
and bacteremia/sepsis; both manifestations were associated
with a high overall mortality rate (25–75% and 20–60%,
respectively) [9, 13, 14]; a fulminant manifestation of fatal
hemorrhagic pneumonia has also been described [15].
Nevertheless, the clinical relevance of SM was also noted in
skin and soft tissue infections, invasive bone and joint in-
fections, ocular infections, meningitis, endocarditis and
urinary tract infections [16]. Risk factors for invasive SM
infections include severe immunosuppression (either due to
a human immunodeficiency virus [HIV] infection or cancer
treatments), neutropenia, admission to the intensive care
unit (ICU), mechanical ventilation, recent surgery or trau-
matic event, parenteral nutrition and history of broad-
spectrum antimicrobial therapy or colonization with SM
[17]. SM is also commonly associated with outbreaks at
ICUs, underscoring its importance as a critical concern for
infection prevention and control [18].

The treatment of SM infections is a considerable chal-
lenge for clinicians, as these microorganisms possess
intrinsic resistance mechanisms against many of the
currently available antimicrobials in everyday use: they are
non-susceptible to most of the β-lactam antibiotics, ami-
noglycosides and fosfomycin [19, 20]. Most notably, SM are
resistant to carbapenems – which are often the last safe
and effective treatment option in against Gram-negative
infections – due to the possession of chromosomally-enco-
ded carbapenemases (i.e. a class A serine β-lactamase [blaL2]
and a class B metallo β-lactamase [blaL1]) [21]. At present,
the drug of choice to treat these infections is

sulfamethoxazole/trimetoprim (co-trimoxazole; SXT) at 15
mg/kg/day, divided into 3–4 doses [22]. SM infections are
often treated empirically (especially in the severely immu-
nocompromised), during which, the first-line drug is com-
bined with fluoroquinolones (ciprofloxacin, levofloxacin and
moxifloxacin), minocycline, colistin, ceftazidime, cefepime,
ticarcillin/clavulanate, rifampin or chloramphenicol,
although established breakpoints for antimicrobial suscep-
tibility testing are only available for SXT [23]. Nevertheless,
due to the possession of class 1 integrons (sul1, sul2 and dfrA
genes) and/or the overexpression of resistance-nodulation-
division (RND)-type efflux pumps, resistance to SXT in SM
(or a history of hypersensitivity in the patient) is a serious
challenge for treating physicians [24]. Although a systematic
review and meta-analysis by Ko et al. – which included
retrospective cohort and case-control studies – demon-
strated that fluoroquinolone therapy was non-inferior to
SXT in SM infections (in fact, in some instances, fluo-
roquinolones were associated with survival benefit over
SXT), further studies are needed to establish reliable evi-
dence in this field [25]. SXT-resistance rates show consid-
erable variation worldwide: based on a recent systematic
review and meta-analysis by Dadashi et al., the highest
pooled resistance rates were reported in Asia (19.29%), fol-
lowed by Europe (10.52%), and the Americas (7.01%) [26];
nevertheless, individual prevalence studies from various
geographical regions (e.g., Turkey: 10–15%, Spain >25%,
China: 30–48%) and patient-groups (e.g., in cystic fibrosis
patients: as high as 80%) may report considerably higher
rates of resistance [27, 28]. HAIs caused by SXT-resistant
SM are notifiable diseases under the framework of the
National Nosocomial Infections Surveillance Network in
Hungary (NNSzR); according to recent reports, the inci-
dence-density of SXT-resistant SM nationally were 0.0014/
1000 patient-days and 0.002/1000 patient-days in 2019
and 2020, respectively [29].

Due to the emergence and rapid global spread of
extended-spectrum β-lactamases (ESBLs) in members of the
Enterobacterales order, and the high rate of associated in-
fections, there has been a considerable shift towards the
more frequent use of drugs that were previously considered
as „last-resort” antibiotics [19, 30]. One such group are the
carbapenems (i.e. imipenem, meropenem, ertapenem and
doripenem), which are often the last safe and effective
therapeutic choices in these infections. The correlation be-
tween antibiotic use (especially if injudicious) and the
prevalence of antimicrobial resistance has been described by
numerous studies [31, 32]. In addition, shifts in systemic
antibiotic consumption may have considerable effects on the
epidemiology of infectious agents, both locally and globally
[33]. It has been suggested that the extensive use of carba-
penems (due to the omnipresence of ESBLs) may lead to
selection pressure for SM – as these bacteria are intrinsically
resistant – in hospital environments [34, 35]. Furthermore,
previous treatment with carbapenems is a notable risk
factor for colonization with SM [19, 36]. These studies may
be relevant from the standpoint of aiding antimicrobial
stewardship, carbapenem-sparing strategies, and infection
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control interventions [37]; however, no similar studies were
carried out in Hungary. Thus, the aim of the present study
was to assess the possible association between systemic
antibiotic use (with special focus on carbapenems) and the
incidence of SM over a 10-year period, preceding the
coronavirus disease 2019 (COVID-19) pandemic period, in
the context of a Hungarian health centre.

MATERIALS AND METHODS

Study design and location

The present retrospective, observational study was carried
out at the Albert Szent-Györgyi Health Centre (HC), which
is a 1820-bed primary- and tertiary-care teaching hospital,
situated in Szeged, in the Southern Great Plain of Hungary.
The bed capacity of the hospital at the time of the study
included 1465 acute and 355 chronic beds, serving over
400,000 patients in the region annually, based on the Na-
tional Health Insurance Fund of Hungary (NEAK) [38].

Data collection, studied variables

Data collection has been carried out for the 10-year period
between the 1st of January 2010 and 31st of December 2019,
corresponding to the following variables at the HC:
a) isolation frequency and sample type of clinically-relevant
SM isolates, b) frequency of resistance to first-line treatment
(SXT) in clinically-relevant SM isolates, c) patient turnover
rates, d) systemic antibiotic use at the HC-level. Case defi-
nitions for clinically-relevant SM isolates were used as
described previously [39]. Data on patient turnover rates at
the HC and for individual departments was collected from
the public database of the NEAK [38].

Isolation, identification and antimicrobial susceptibility
testing of SM isolates

Microbiological sampling and laboratory processing of the
samples were carried out according to the current clinical
recommendations relevant to each individual sample type.
The following sample types were considered during our
analysis: respiratory samples (including bronchoalveolar
lavage, mini bronchoalveolar lavage [miniBAL] and tracheal
aspirates), invasive samples (including blood culture sam-
ples, drains, biopsies and surgical samples), and urine
samples (including midstream, catheter-specimen urine and
suprapubic bladder aspirates). Identification of SM was
based on VITEK 2 ID cards (bioMérieux, Marcy-l’Étoile,
France) and matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS; Bruker
Daltonics, Bremen, Germany). Sample preparation protocols
and the technical details of the MALDI-TOF measurements
were described elsewhere [40]. The MALDI Biotyper RTC
3.1 software (Bruker Daltonics, Bremen, Germany) and the
MALDI Biotyper Library 3.1 were used for spectra analysis.
Antimicrobial susceptibility testing for SXT was performed
using the disk diffusion method (Oxoid, Basingstoke, UK)

on Mueller-Hinton agar plates (bioMérieux, Marcy-l’Étoile,
France); the interpretative criteria was based on the Euro-
pean Committee on Antimicrobial Susceptibility Testing
(EUCAST) breakpoints relevant at the time of processing
[41]. Microbiological data was collected from the MedBakter
laboratory information system. Isolates considered as colo-
nizers or noted as contaminants were excluded from data
analysis. Incidence-density (i.e. number of observed events
divided by population-time at risk) for the isolation of SM
was expressed per 1000 patient-days, in addition, frequency
(n, %) and incidence-density of SXT-resistant isolates
(per 1000 patient-days) were also recorded [42].

Systemic antibiotic use

Antibiotic use data for the HC was collected from the Central
Pharmacy Department, University of Szeged. Based on pre-
vious studies [34, 35], data for the following antibacterial
groups was retrieved: antibacterials for systemic use (overall)
(J01), penicillins with extended spectrum (J01CA), penicillin
combinations including β-lactamase inhibitors (J01CR), sec-
ond-generation cephalosporins (J01DC), third-generation
cephalosporins (J01DD; including ceftazidime [J01DD02]
alone), carbapenems (J01DH), SXT (J01EE01), aminoglyco-
sides (J01G), glycopeptide antibacterials (J01XA), relevant
fluoroquinolones (i.e. the summized consumption of cipro-
floxacin (J01MA02), levofloxacin (J01MA12) and moxi-
floxacin (J01MA14)), colistin (J01XB01), and overall
consumption of all other antibacterial groups (i.e. subtracting
all above listed antibiotic subgroups from J01). Antibiotic use
was calculated based on the World Health Organization
(WHO) Collaborating Centre for Drug Statistics Methodol-
ogy, and expressed as defined daily doses (DDDs) per 100
patient-days [43].

Statistical analysis

Database creation and descriptive statistical analysis
(quantities (n) and percentages (%) for categorical variables,
while means with standard deviations [SD] and ranges for
continuous variables) was carried out using Microsoft Excel
2013 (Redmond, WA, USA, Microsoft Corp.). Statistical
analyses were performed with SPSS software version 22
(IBM SPSS Statistics for Windows 22.0, Armonk, NY, USA,
IBM Corp.). Normality of variables was tested using the
Shapiro-Wilk tests (data not shown). The relationship be-
tween studied variables was tested using Pearson-correla-
tion; correlation coefficients (r) were evaluated as follows: |r|
<0.3 weak or no correlation, 0.3≤|r|<0.5 moderate correla-
tion, 0.5≤|r|<0.85 strong correlation, |r|>0.85 very strong
correlation. During trend analysis, the slope (b) was deter-
mined, and the coefficient of determination (R2) was shown
to assess goodness of fit. Statistical significance for all ana-
lyses was set at P < 0.05.

Ethical considerations

The study was conducted in accordance with the Declaration
of Helsinki and national and institutional ethical standards.
As the study used aggregated data only – individual patient
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data was not collected and data anonymity was maintained –
it was not subject to ethics review. Informed consent was not
relevant as data anonymity was maintained.

RESULTS

Epidemiology of SM and SXT-resistant SM

Our data analysis covered a total of n 5 1769 (mean ± SD:
176.90 ± 68.88/year; range: 85–303) clinically-relevant
SM isolates during the 10-year study period; the mean
incidence density for SM was 0.42/1000 patient-days (range:
0.19–0.73) (Fig. 1). The distribution of SM according to
sample types was the following: 56.53% (n 5 1000) from
respiratory samples, 35.21% (n 5 623) from invasive sam-
ples, n 5 72 (4.07%) from urine samples, and n 5 74 from
other sources (4.19%).

Out of the above SM isolates, n5 196 (mean ± SD: 19.60
± 11.96/year; range: 2–39) SM isolates were resistant to SXT,
which corresponds to 11.08% (range: 1.90–18.93%) of
isolates overall (Fig. 1); the mean incidence density for
SXT-resistant SM was 0.047/1000 patient-days (range:
0.004–0.069). Both the incidence of SM and SXT-resistant
SM showed a significantly increasing trend throughout
the study period (b 5 15.739, P 5 0.027, R2 5 0.4786 and
b 5 3.649, P < 0.001, R2 5 0.8537, respectively), with peaks
in 2015 and 2019, respectively; the secular trends in the

epidemiology of SM and SXT-resistant SM throughout the
study are presented in Fig. 1.

Antibiotic use, correlation analysis

From 2010 to 2019, systemic antibiotic use (J01) has
increased by 34.39%; with the exception of the relevant
fluoroquinolones for the treatment of SM ([J01MA02 þ
J01MA12 þ J01MA14] consumption decreased by 12.57%)
and aminoglycosides ([J01G] consumption decreased by
13.02%), consumption of all other antibiotic groups
increased during the 10-year period. The relative hike in
antibiotic use was highest for third-generation cephalospo-
rins ([J01DD] 100.09%), colistin ([J01XB01] 258.82%),
glycopeptide antibacterials ([J01XA] 278.94%) and carba-
penems ([J01DH] 372.72%), respectively.

The relationship between systemic antibiotic use and the
epidemiology of SM and SXT-resistant SM at the HC during
the study period – expressed as correlation coefficients (r) –
is presented in Table 1. Overall consumption of antibacte-
rials for systemic use (J01) showed strong and significant
positive correlations with the incidence-density of SM, and
SXT-resistant SM, respectively (Table 1). When considering
the incidence-density for SM/1000 patient-days, strong and
significant positive correlations were observed with the
consumption of carbapenems, SXT, glycopeptides and the
overall consumption of all other antimicrobials (Table 1).
Beta-lactam antibiotics – other than carbapenems – showed

Fig. 1. Epidemiology of SM and SXT-resistant SM isolates at the Albert Szent-Györgyi Health Centre during the study period, 2010–2019
SM: Stenotrophomonas maltophilia; SXT: sulfamethoxazole/trimetoprim; y: regression equation; R2: coefficient of determination.

4 European Journal of Microbiology and Immunology

Unauthenticated | Downloaded 03/05/24 03:10 PM UTC



moderate, non-significant correlation with the epidemiology
of SM (Table 1). With the exception of penicillins with
extended spectrum and aminoglycosides, correlation was
positive in respect to all other antibiotic groups studied
(Table 1). When analyzed separately, ceftazidime use or
fluoroquinolones (ciprofloxacin, levofloxacin, moxifloxacin)
did not show significant correlations with SM incidence-
density (Table 1).

When considering the incidence-density for SXT-resistant
SM/1000 patient-days, strong and significant positive corre-
lations were observed with the consumption of carbapenems,
glycopeptides, third-generation cephalosporins, second-gen-
eration cephalosporins, penicillin-combinations, including
beta-lactamase inhibitors, SXT and the overall consumption
of all other antimicrobials (Table 1). With the exception of
penicillins with extended spectrum and aminoglycosides,
correlation was positive in respect to all other antibiotic
groups studied (Table 1). When analyzed separately, ceftazi-
dime use showed strong and significant correlation, while
fluoroquinolones did not show significant correlations with
SXT-resistant SM incidence-density, respectively (Table 1).

DISCUSSION

The aim of our longitudinal study was to assess the possible
association between systemic antibiotic use (with special focus

on carbapenems) and the epidemiology of SM infections
(including SXT-resistance) in a tertiary-care hospital in
Hungary, over a 10-year period, preceding the COVID-19
pandemic. To the best of our knowledge, this is the first such
study, focusing on SM in Hungary. Infections caused by SM
were previously infrequently described in the literature,
however, it is reasonable to expect that the relevance of SM –
both in HAIs and in community settings – will continue to
increase, due to population aging, higher number of in-
dividuals affected by malignancy, and more invasive medical
procedures being performed with the advances in medical
technologies [44, 45]. On the other hand, as a result of the
COVID-19 pandemic, sharp increases in the prevalence of all
MDR pathogens were noted worldwide, which will un-
doubtedly affect the rate of ESBL-producers as well, leading to
additional pressures to use carbapenems in the clinical
practice [46, 47]. As data from observational studies is scarce
in Hungary (which limits reliable comparisons), our results
provide novel insights into the epidemiology of SM infections.

Overall, an increasing trend was observed for the inci-
dence-density of SM and SM resistant to the first-line drug
(with peaks in 2015 and 2019, respectively). Overall systemic
antibiotic consumption (J01G), and the consumption of
carbapenems (J01DH), SXT (J01EE01) and glycopeptide
antibiotics (J01XA) showed strong and significant correla-
tions with both SM and SXT-resistant SM, respectively.
As broad-spectrum antimicrobial therapy in the patient’s

Table 1. Correlations between systemic antibiotic use and incidence-density for SM, and SXT-resistant SM at the Albert Szent-Györgyi
Health Centre during the study period, 2010–2019

Incidence-density for SM/1000
patient-days

Incidence-density for SXT-resistant
SM/1000 patient-days

J01: Antibacterials for systemic use r: 0.7244 r: 0.8372
P 5 0.018 P 5 0.005

J01CA: Penicillins with extended spectrum r: �0.5617 r: �0.1767
P 5 0.087 P 5 0.625

J01CR: Penicillin combinations including β-lactamase inhibitors r: 0.5334 r: 0.7411
P 5 0.158 P 5 0.014

J01DC: Second-generation cephalosporins r: 0.4283 r: 0.7482
P 5 0.304 P 5 0.007

J01DD: Third-generation cephalosporins r: 0.5717 r: 0.7786
P 5 0.128 P 5 0.013

J01DH: Carbapenems r: 0.8759 r: 0.8968
P < 0.001 P < 0.001

J01EE01: Sulfamethoxazole and trimethoprim r: 0.7552 r: 0.7004
P 5 0.011 P 5 0.024

J01G: Aminoglycosides r: �0.2408 r: �0.2927
P 5 0.508 P 5 0.401

J01XA: Glycopeptide antibacterials r: 0.7542 r: 0.8138
P 5 0.012 P < 0.001

Relevant fluoroquinolones (J01MA02: ciprofloxacin þ J01MA12:
levofloxacin þ J01MA14: moxifloxacin)

r: 0.4319 r: 0.037
P 5 0.185 P 5 0.911

J01XB01: Colistin r: 0.4329 r: 0.4002
P 5 0.144 P 5 0.181

Overall consumption of all other antibiotic groups r: 0.7989 r: 0.7644
P < 0.001 P 5 0.010

SM: Stenotrophomonas maltophilia; SXT: sulfamethoxazole/trimetoprim; Pearson correlation coefficients (r) with P-values <0.05 are
presented in boldface.
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history is a known risk factor for SM infections, it is
reasonable to assume a possible correlation between carba-
penem use with the increasing frequency of SM and
SXT-resistant SM. However, the relationship between
glycopeptide antibiotic use and SM epidemiology is a
curious finding, as these drugs are only effective in the
treatment of Gram-positive bacteria; on the other hand,
their increasing use may serve as a proxy measure for the
epidemiology of HAIs caused by Gram-positives (especially
for methicillin-resistant Staphylococcus aureus and Clos-
tridioides difficile), individuals in particularly severe condi-
tion or in advanced disease stages, or antibiotic combination
therapy in our healthcare setting [48, 49].

In the prospective study of Sanyal and Mokaddas [34],
the correlation between SM incidence, carbapenem-con-
sumption and patient turnover rates were assessed over a
5-year period in Kuwait: similarly to our results, they found
strong and significant (r: 0.97, P 5 0.004) correlation be-
tween SM and carbapenem use, while a similar relationship
was not noted for patient turnover rates. On the other hand,
those isolates were pan-susceptible to SXT and ciprofloxacin,
while a considerable number were declared resistant to
piperacillin and ceftazidime [34]. As a part of the SARI
(Surveillance of Antimicrobial Use and Antimicrobial
Resistance in German Intensive Care Units) project, Meyer
et al. assessed the factors affecting SM incidence, including
hospital structural parameters, patient parameters and anti-
biotic use in 39 participating ICUs: in their study, SM rep-
resented 1.7% of all ICU isolates, with a median incidence
density of 1.4 per 1000 patient-days. Length of hospital stay,
urinary-catheter-days, central venous catheter (CVC)-days
and ventilator-days per 100 patient-days all showed strong
and significant correlations with SM incidence-density, in
addition, in hospitals where there were >12 ICU beds, these
infections were also significantly more common. Regarding
systemic antibiotic use, their study demonstrated strong and
significant correlation between consumption of carbape-
nems, glycopeptides and total antibiotic use with SM inci-
dence-density; in contrast to our findings, however, they also
showed a significant relationship for ceftazidime and fluo-
roquinolone use, while this was not the case for SXT. Overall,
in their multivariate regression model, the study concluded
that carbapenem use and ICU bed numbers were indepen-
dent risk factors [35]. On the other hand, the relevance of
carbapenems in exerting the selection pressure for SM was
not verified by Carmeli and Samore [50], where SM acqui-
sition rates in patients treated with ceftazidime and imipe-
nem did not differ considerably, but was significantly higher
in patients receiving both drugs [50]. In addition, the study
of Ueda et al. [50] – where both non-fermenting Gram-
negatives and Enterobacterales were included in the analysis
– showed that not overall antibiotic use, but rather the low
heterogeneity in antibiotic use (expressed in the antibiotic
heterogeneity index [AHI]) is the driver for selective pressure
and increasing rates of resistance [51].

Our study has shown SXT-resistance rates of ∼11%,
which is similar to previous findings from Central and
Eastern European Countries, but higher than those from

Western Europe (2–10%) [26]. However, the continuous
increase in the number of non-susceptible isolates is cause
for concern. SXT-resistance may develop through a variety of
molecular mechanisms, in which case, other therapeutic
modalities need to be considered [52]. In the systematic re-
view and meta-analysis of Prawang et al., favourable out-
comes were noted for combination therapy, however, during
subgroup analysis, combination therapy was associated
with higher mortality risk in specific patient groups [53].
Nevertheless, SM may harbor other acquired resistance de-
terminants against the other antibiotics left for consideration,
thus, easily becoming extensively drug resistant (XDR) –
according to EUCAST guidelines – within one or two steps
[13, 14, 19, 26, 54]. However, no recommendation or
consensus exists to guide susceptibility testing and inter-
pretation for other possible antimicrobials, other than SXT.
For this reason, there is a scarcity of data to assess the
relevance of various other drugs and combination therapies.
In such studies, species-specific breakpoints for other
microorganisms (e.g., A. baumannii, P. aeruginosa) or non-
species specific (NSS) breakpoints are used for the inter-
pretation of results [55]. In a three-year study of Juhász et al.,
infective and colonizing SM isolates were subjected to sus-
ceptibility testing and clinical data collection: 99%/98%, 24%/
12%, 75%/84%, 87%/90%, 12%/35% and 9%/23% of infective
and colonizing isolates were susceptible to SXT, ciprofloxa-
cin, levofloxacin, moxifloxacin, tigecycline and colistin,
respectively. All-cause mortality rate was 45%, with CVCs
and vasopressor therapy identified as independent risk fac-
tors for mortality [39]. While in a previous laboratory-based
study at our HC, involving infective and colonizing SM
isolates, phenotypic susceptibility was highest for levo-
floxacin and colistin (92.2%), followed by tigecycline (90.5%),
SXT (87.4%) and amikacin (27.5%); 24.1% were susceptible
to all tested antimicrobials, while 2.2% of isolates were
classified as XDR [56]. On the other hand, a recent review
has described S. maltophilia as intrinsically resistant to all
aminoglycosides, including amikacin, kanamycin, neomycin
and tobramycin [19]. Furthermore, as described by the meta-
analysis of Dadashi et al., pooled resistance rates worldwide
are highest for levofloxacin (14.4%), SXT (9.2%) and mino-
cycline (1.4%), partly due to the fact that these drugs are the
most commonly reported by respective studies [26].

Carbapenem-resistant (CR) Gram-negative bacilli are a
daunting prospect for clinicians and for public health
worldwide, due to the scarce treatment options left for their
management [57]. The WHO has declared CR A. baumannii,
P. aeruginosa and Enterobacterales as „Priority 1: Critical”
for the development of novel antimicrobials [58]. After
the increasing prevalence of ESBLs, carbapenems have
become the treatment-of-choice for these infections, which
unfortunately has led to the inevitable occurrence of carba-
penem-resistant isolates, out of which, the acquired, plasmid-
borne carbapenem-resistance is the most concerning, as
these resistance genes may readily spread among different
species and geographical regions worldwide [59]. Further-
more – as demonstrated by our results – an additional
consequence or collateral effect of extensive carbapenem use
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may be the increased presence of SM, although more evidence
and additional studies are warranted in this field. Thus, the
design and implementation of carbapenem-focused antimi-
crobial stewardship programmes is a definite priority: on one
hand, carbapenem-sparing (i.e., the use of non β-lactam
drugs, especially in the context of ESBLs) and carbapenem-
restriction (especially for empiric therapy, via pre-approval
strategies and formulary restriction, according to specific
criteria) interventions may be introduced [60, 61]; on the
other other hand, if carbapenem use is unavoidable in the
clinical situation, culture (to allow for de-escalation), preci-
sion antibiotic prescribing, adjustments for dose and duration
with continuous laboratory support, and drug utilization
studies are needed ensure the most rational use of these drugs
[62, 63]. In addition, any and all interventions should be
complemented by strict infection control measures, to ensure
the prevention of HAIs.

Our study possesses some limitations that should be
acknowledged: in addition to the retrospective, single-center
study design, selection bias may affect our results, as our data
originates from a tertiary-care center, where patients with
more severe conditions or underlying illnesses are usually
found. Our analyses used aggregated data only, individual
patient data and turnover rates at specific wards were not
collected, therefore the change in the number of patients in
the relevant risk-populations for SM (e.g., cancer, immuno-
suppression, invasive surgery, ICU) was unknown. SXT
resistance was determined based on routine methods of sus-
ceptibility testing, while the molecular survey of the resistance
determinants was not performed in the isolates. During the
analysis of systemic antibiotic use, some antibiotic groups
(e.g., macrolides, imidazoles) were not analyzed individually,
but grouped together as the „overall consumption of all other
antimicrobial groups”, which was based on methodological
considerations from previous studies [34, 35]. Finally, data
from 2020 onwards was not included in our analyses, to
remedy the potential bias to be introduced following the onset
of the COVID-19 pandemic, and the extensive changes in
antibiotic consumption and patient turnover rates.

CONCLUSIONS

The present study reports on the epidemiology of SM, and
the possible relationship between systemic antibiotic use and
SM incidence at a tertiary-care teaching hospital over a
10-year surveillance period. Our results highlighted that
increasing consumption of systemic antibiotics was associ-
ated with increasing SM and SXT-resistant SM incidence,
with carbapenems, SXT, glycopeptides showing the strongest
correlations, for both cases. Thus, implementation of insti-
tutional carbapenem-sparing strategies has a pivotal role in
preserving these life-saving drugs, and may have major roles
in affecting the microbial spectrum of infections in clinical
settings.
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