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ABSTRACT

The clinical role of Acinetobacter baumannii has been highlighted in numerous infectious syndromes with a
high mortality rate, due to the high prevalence of multidrug-resistant (MDR) isolates. The treatment and
eradication of this pathogen is hindered by biofilm-formation, providing protection from noxious envi-
ronmental factors and antimicrobials. The aim of this study was to assess the antibiotic susceptibility,
antiseptic susceptibility and biofilm-forming capacity using phenotypic methods in environmental
A. baumannii isolates. One hundred and fourteen (n5 114) isolates were collected, originating from various
environmental sources and geographical regions. Antimicrobial susceptibility testing was carried out using
the disk diffusion method, while antiseptic susceptibility was performed using the agar dilution method.
Determination of biofilm-forming capacity was carried out using a microtiter-plate based method. Resis-
tance in environmental A. baumannii isolates were highest for ciprofloxacin (64.03%, n 5 73), levofloxacin
(62.18%, n 5 71) and trimethoprim-sulfamethoxazole (61.40%, n 5 70), while lowest for colistin (1.75%,
n5 2). Efflux pump overexpression was seen in 48.25% of isolates (n5 55), 49.12% (n5 56) were classified
as MDR. 6.14% (n5 7), 9.65% (n5 11), 24.65% (n5 28) and 59.65% (n5 68) of isolates were non-biofilm
producers, weak, medium, and strong biofilm producers, respectively. No significant differences were
observed between non-MDR vs. MDR isolates regarding their distribution of biofilm-producers (P5 0.655).
The MIC ranges for the tested antiseptics were as follows: benzalkonium chloride 16–128 μg mL�1,
chlorhexidine digluconate 4–128 μg mL�1, formaldehyde 64–256 μg mL�1 and triclosan 2–16 μg mL�1,
respectively. The conscientious use of antiseptics, together with periodic surveillance, is essential to curb the
spread of these bacteria, and to maintain current infection prevention capabilities.
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INTRODUCTION

Despite the systemic implementation of infection prevention
and control (IPC) strategies, non-fermenting Gram-negative
bacteria (NFGNB) remain as common colonizers an as
etiological agents of healthcare-associated infections (HAIs)
in patients affected by immunosuppression, invasive medical
interventions or other chronic conditions [1, 2]. Among
NFGNB, the Acinetobacter baumannii-calcoaceticus com-
plex contains some of the most frequently isolated species
from clinical specimens, but they are also commonly found
in environmental sources, as these bacteria may survive for
several months on abiotic surfaces [3, 4]. The clinical role of
A. baumannii has been previously described in ventilator-
associated pneumonia (VAP), bacteremia, urinary tract
infections, exposure keratitis and wound infections, among
others [5, 6]. According to recent reports, invasive A. bau-
mannii infections are associated with considerable overall
mortality rates, both in the case of community-acquired
infections (0–64%) and for HAIs (23–68%) [7]. Additionally,
the meta-analysis of Lim et al. – involving 114 studies –
reported an overall mortality rate for A. baumannii VAP at
42.6%, however, this may be as high as 84.0% in patients
treated in intensive care units (ICUs) [8].

Antimicrobial resistance (AMR) has become one of the
major issues for global health, as the available number of
antibiotics left, useful for the treatment of difficult-to-treat
infections is alarmingly low [9]. A. baumannii possesses a
combination of intrinsic resistance resistance mechanisms,
in addition to the remarkable ability of this pathogen to
acquire resistance determinants [10, 11]. Multidrug-resistant
(MDR) and extensively drug-resistant (XDR) strains of
A. baumannii are some of the most concerning pathogens in
clinical practice [12]. According to the European Centre for
Disease Prevention and Control “Surveillance Atlas of
Infectious Diseases”, resistance rates of Acinetobacter spp.
for aminoglycosides, fluoroquinolones and carbapenems in
Hungary were 68.8, 78.1 and 48.1% in 2012, while 47.2, 63.8
and 57.9% in 2022, respectively [13]. Furthermore, carba-
penem-resistant A. baumannii was designated by the World
Health Organization (WHO) as a “Priority 1: Critical”
pathogen, on their “Priority Pathogens List”, for which novel
antimicrobials are desperately needed [14]. In addition
to antibiotics, effective healthcare heavily relies on the
availability of effective antiseptics and disinfectants (e.g.,
benzalkonium chloride, chlorhexidine digluconate, ethyl-
alcohol, formaldehyde, hydrogen-peroxide, povidone iodine,
quaternary ammonium compounds (QACs), triclosan) [15];
these compounds are essential for antisepsis, hand hygiene,
and the elimination of bacterial reservoirs [16]. While many
epidemiological studies report on the resistance rates of
these pathogens globally, the data on rising rates of anti-
septic and disinfectant resistance is scarce, however, these
resistance mechanisms should be appreciated during IPC
initiatives [17]. For example, it was shown that hands
heavily contaminated (106 colony-forming units [CFU]/
fingertip) with A. baumannii could survive the effects of

many antiseptics and disinfectants, or that these bacteria
could survive in soap dispensers [18, 19].

For Acinetobacter spp., biofilm-formation is one of the
main virulence factors in vivo, providing protection against
the immune system and antimicrobials, and furthermore, it
also allows for survival in harsh environmental conditions
[20]. Therefore, biofilm-formation is often termed as a ter-
tiary form of “adaptive” resistance against antimicrobial
drugs [21]. Since the availability of laboratory methods to
study the biofilm-forming capacity of bacterial isolates, there
has been substantial interest in assessing whether co-regu-
lation exists between biofilm formation, the expression of
resistance genes and the MDR phenotype [22, 23]. In a
previous study, we aimed to assess the possible relationship
between biofilm-formation and antibiotic resistance in a
large selection of clinical A. baumannii isolates [24]; our
experiments showed no significant associations between the
MDR status of the isolates and biofilm-forming capacity.
To corroborate and confirm our previous results, the aim of
the present study was to investigate the relationship between
biofilm-forming capacity and antibiotic resistance in
A. baumannii isolates originating from various environmental
sources and geographical regions, in addition, to study the
disinfectant susceptibility levels of biofilm-forming isolates.

MATERIALS AND METHODS

Sample size determination

The initial sample size required from environmental
A. baumannii isolates was determined using formula (1)
shown below, based on the recommendations of Thrusfield
et al. [25], where n was the calculated sample size, z was the
desired confidence level (1.96), i was the standard sampling
error (5%), while p was the estimated prevalence set at
5% [26]. Based on the calculation, the required sample size
of n 5 114 isolates was determined.

n ¼ z2pð1� pÞ
i2

(1)

Collection of isolates

A total of one hundred and fourteen (n 5 114) isolates were
included in the study, which were obtained from strain
collections of various geographical regions and environ-
mental origins (i.e. Karachi [Pakistan], Olbia [Italy] and
Szeged [Hungary]), sourced from areas of high rates of
anthropogenic presence. Environmental sampling pro-
cedures were performed based on previously described
protocols [27]. As a general rule, only one A. baumannii
isolate per source was included [24]. During the experi-
ments, A. baumannii clinical isolate no. 59738 (a MDR
isolate, weak biofilm producer) and A. baumannii ATCC
19606 (susceptible isolate, strong biofilm producer) were
used as control strains (the latter was obtained from the
American Type Culture Collection, Manassas, VI, USA)
[28]. Stock cultures were stored at �80 8C in a
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cryopreservation medium (700 μL trypticase soy broth
þ 300 μL 50% glycerol) until further use.

Identification of A. baumannii isolates

Before further analysis, A. baumannii isolates were re-
identified by matrix-assisted laser desorption/ionization–
time-of-flight mass spectrometry (MALDI–TOF MS;
MicroFlex MALDI Biotyper, Bruker Daltonics, Bremen,
Germany), according to methodologies previously described
[24]. Reliable species-level identification was accepted in the
case of a log(score) value ≥ 2.30 [29].

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing (AST) for A. baumannii
isolates was carried out according to the standard disk
diffusion method (Oxoid, Basingstoke, UK) on Mueller-
Hinton agar plates (bioMérieux, Marcy-l’Étoile, France),
during which, the following antibiotics were tested: amino-
glycosides (gentamicin [10 μg disk], amikacin [30 μg disk]),
carbapenems (imipenem [10 μg disk], meropenem [10 μg
disk]), fluoroquinolones (ciprofloxacin [5 μg disk], levo-
floxacin [5 μg disk]), trimethoprim-sulfamethoxazole [23.75/
1.25 μg disk] and colistin [10 μg disk]. With the exception of
colistin, interpretation of the results was carried out ac-
cording to the standards and breakpoints of the European
Committee on Antimicrobial Susceptibility Testing
(EUCAST) v. 11.0 [30]. Results indicating “susceptible,
increased exposure (I)” were grouped with and reported as
susceptible (S) [31]. Susceptibility to colistin was assessed
according to the provisional breakpoints, as advised by
Galani et al. [32]. Classification of the isolates as MDR (i.e.
resistant to at least one agent in ≥3 antibiotic groups) was
based on the recommendations of Magiorakos et al. [33].

Phenotypic detection of efflux pump overexpression

The overexpression of resistance-nodulation-division-type
(RND) efflux pumps was assessed if ciprofloxacin-resistance
was noted based on the disk diffusion test, described pre-
viously. The assay was carried out using a phenylalanine-
arginine β-naphthylamide (PAβN)-based agar dilution
method, as recommended by Khalili et al. [34]. An isolate
was considered positive for efflux pump overexpression, if a
two-fold decrease in ciprofloxacin minimum inhibitory
concentrations (MICs) was noted by E-tests (Liofilchem,
Roseto degli Abruzzi, Italy) in the presence of PAβN,
compared to the MIC values without the inhibitor [35].

Biofilm-formation assay

Determination of biofilm-forming capacity of environ-
mental A. baumannii was carried out using a microtiter-
plate based method, as previously described by Ramos-Vivas
et al. [36]. Briefly, overnight A. baumannii cultures, grown
on Luria–Bertani (LB) agar, were inoculated into 5 mL of
LB-broth and incubated overnight at 37 8C. The next day, a
20 μL of bacterial suspension (set at 106 CFU mL�1 density)
and 180 μL of LB-broth were transferred onto 96-well flat-

bottomed microtiter plates to a final volume of 200 μL.
Following a 24 h incubation period at 37 8C, supernatants
were discarded, and the wells were washed three times using
200 μL of phosphate-buffered saline (pH set at 7.2) to
remove planktonic cells. The wells were then fixed with
250 μL of methanol (Sigma-Aldrich, St. Louis, MO, USA) for
10 min, and stained with a 1.0% crystal violet solution for 15
min (CV; Sigma-Aldrich, St. Louis, MO, USA). The CV dye
was then discarded, and the wells were washed three times
with purified water to remove excess stain. The wells’ con-
tents were solubilized in 250 μL of 33% v/v% glacial acetic
acid (Sigma-Aldrich, St. Louis, MO, USA), and a microtiter
plate reader was used to measure and record absorbance
values at 570 nm (OD570) as mean ± standard deviation
(SD). Isolates were then classified according to their biofilm-
forming capacity, based on the recommendations of Stepa-
novic et al. [37]; a cut-off value of optical density (ODc) was
calculated using the following formula: ODc 5 average OD
of the negative control þ (33 standard deviations of
negative control). Subsequently, isolates were classified into
the following categories, based on their OD570 measure-
ments: strong biofilm producer (OD > 43ODc); medium
biofilm producer (43ODc ≥ OD > 23ODc); weak biofilm
producer (23ODc ≥ OD > ODc); and non-biofilm pro-
ducer (OD ≤ ODc), respectively [37].

Disinfectant susceptibility testing

The MICs of antimicrobial disinfectant agents in medium
and strong biofilm-producers were determined according
to the agar dilution method, based on the Clinical and
Laboratory Standards Institute (CLSI) recommendations.
The following disinfectants were tested in our experiments:
benzalkonium chloride (95%), chlorhexidine digluconate
(20%), formaldehyde (38%) and triclosan (98%) (all pur-
chased from Sigma-Aldrich, St. Louis, MO, USA). Serial
2-fold dilutions of disinfectants were prepared in Mueller-
Hinton agar (bioMérieux, Marcy-l’Étoile, France) in the
concentration range between 0.125 and 1,024 μg mL�1

[38]; then, 1–2 μL of bacterial suspension was spotted on
the agar surfaces. Incubation of the plates was carried out
in a 37 8C air thermostat for 18–24h. The MIC was
recorded as the lowest concentration of disinfectant to
inhibit the growth of the organisms [38]. MIC50 and MIC90

were defined as the as the lowest concentrations of com-
pounds to inhibit the growth of 50 and 90% of isolates,
respectively.

Statistical analysis

All continuous variables were expressed as means and
standard deviations (mean ± SD), whereas categorical var-
iables were expressed as frequencies (n) and percentages
(%). The Fisher-exact test was used to detect associations
between biofilm-forming capacity and MDR-status (with
Cramér’s phi [φ] effect size measure). Statistical analysis
were performed using SPSS software version 22.0 (IBM
Corp., Armonk, NY, USA). P < 0.05 was considered statis-
tically significant.
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Ethical considerations

The study was conducted in accordance with the Declaration
of Helsinki and national and institutional ethical standards.
Ethical approval for the study protocol was obtained from
the Human Institutional and Regional Biomedical Research
Ethics Committee, University of Szeged (registration num-
ber: 140/2021-SZTE [5019]).

RESULTS

Antimicrobial resistance and efflux pump
overexpression in environmental A. baumannii

Resistance rates of environmental A. baumannii included in
our study was as follows (in decreasing order): ciprofloxacin
64.03% (n 5 73), levofloxacin 62.18% (n 5 71), trimetho-
prim-sulfamethoxazole 61.40% (n 5 70), imipenem 56.14%
(n 5 64), meropenem 56.14% (n 5 64), gentamicin
42.11% (n 5 48), amikacin 31.57% (n 5 36) and colistin
1.75% (n5 2). Out of these isolates 49.12% (n5 56) met the
criteria to be classified as MDR. Overexpression of RND-
type efflux pumps was assessed in ciprofloxacin-resistant
isolates, using a plate-based assay: 75.34% (n 5 55 out of 73
isolates; 48.25% overall) of isolates were positive.

Biofilm-forming capacity in environmental
A. baumannii

The measurement of biofilm-formation in environmental
A. baumannii was carried out in 96-well microtiter plates,

on the basis of CV staining and spectrophotometric mea-
surement. To calculate classification breakpoints, the OD570

values for the negative control (clinical isolate no. 59738)
and the positive control (ATCC 19606) were also measured,
which corresponded to 0.088 ± 0.016 and 0.507 ± 0.092,
respectively. Thus, the following breakpoints were set
during our analyses: ODc 5 0.136, non-biofilm producer:
OD ≤ 0.136, weak biofilm producer: 0.272 ≥ OD > 0.136,
medium biofilm producer: 0.544 ≥ OD > 0.272, and strong
biofilm producer: OD > 0.544. Accordingly, 6.14% (n 5 7),
9.65% (n 5 11), 24.65% (n 5 28) and 59.65% (n 5 68) of
isolates were non-biofilm producers, weak, medium, and
strong biofilm producers, respectively. The distribution
among biofilm-producers among non-MDR and MDR
A. baumannii isolates is shown in Table 1.; no significant
differences were observed between non-MDR vs. MDR
isolates regarding their distribution of biofilm-production
levels (P 5 0.655; φ: 0.123).

Disinfectant susceptibility in environmental
A. baumannii

Medium (n 5 28) and strong (n 5 68) biofilm-producing
A. baumannii isolates were subjected to disinfectant
susceptibility testing. Table 2 presents the MICs of disin-
fectants for the four agents tested. The MIC ranges for
the compounds were as follows: benzalkonium chloride
16–128 μg mL�1, chlorhexidine digluconate 4–128 μg mL�1,
formaldehyde 64–256 μg mL�1 and triclosan 2–16 μg mL�1,
respectively. The lowest MIC90 value was observed for
triclosan (4 μg mL�1), while the highest was shown in the
case of formaldehyde (128 μg mL�1).

Table 1. Distribution of environmental A. baumannii isolates in the context of biofilm-production

Non-biofilm
producer

Weak biofilm-
producer

Medium biofilm-
producer

Strong biofilm-
producer Overall

Non-MDR
isolates

5 (4.39%) 6 (5.36%) 15 (13.16%) 32 (27.97%) 58 (50.88%)

MDR isolates 2 (1.75%) 5 (4.39%) 13 (11.49%) 36 (31.49%) 56 (49.12%)
Overall 7 (6.14%) 11 (9.65%) 28 (24.65%) 68 (59.65%) 114 (100.00%)

Table 2. Minimum inhibitory concentrations (MICs) of disinfectants against environmental A. baumannii isolates

MICs (μg mL�1)

Disinfectant 2 4 8 16 32 64 128 256 MIC50 MIC90

Benzalkonium
chloride n 5 96
(100.00%)

– – – n 5 10
(10.42%)

n 5 22
(22.92%)

n 5 55
(57.29%)

n 5 9
(9.37%)

– 64 64

Chlorhexidine
digluconate n 5 96
(100.00%)

– n 5 3
(3.13%)

n 5 11
(11.46%)

n 5 18
(18.75%)

n 5 42
(43.75%)

n 5 18
(18.75%)

n 5 4
(4.16%)

– 32 64

Formaldehyde n 5 96
(100.00%)

– – – – – n 5 23
(23.96%)

n 5 65
(67.71%)

n 5 8
(8.33%)

128 128

Triclosan n 5 96
(100.00%)

n 5 80
(83.33%)

n 5 8
(8.33%)

n 5 5
(5.21%)

n 5 2
(3.13%)

– – – 2 4
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DISCUSSION

A. baumannii is an ubiquitous microorganism, which is
commonly isolated from nosocomial environments and
from the skin of hospitalized individuals [39]; furthermore,
it has emerged as one of the pathogens with highest levels
of MDR, leading to considerable difficulties in the treat-
ment of these infections [40, 41]. Additionally, during the
COVID-19 pandemic, HAIs with MDR Acinetobacter spp.
were a significant risk factor for worse outcomes in affected
patients [42]. The eradication of these pathogens is a serious
challenge, due to microbial biofilm-production, conferring
protection from noxious environmental factors and antimi-
crobials (MICs of drugs may increase 100–10,000-fold, due
to insufficient penetration into the deep layers of biofilm)
[43, 44]. In our current laboratory study, the biofilm-forming
capacity, antimicrobial and antiseptic resistance rates of
environmental A. baumannii were assessed. We have shown
that the majority of environmental isolates (84.30%) were
moderate or strong biofilm-producers, which was similar to
the rates (78.32%) detected from clinical isolates in our
previous study [24]. The propensity for biofilm-formation
was further highlighted by Zeighami et al., where all isolates
(100%) originating from ICUs were either moderate or
strong biofilm producers [45]. The meta-analysis of Gedefie
et al. – taking into account studies up to 2022 – reported a
pooled prevalence of 65.63% for biofilm-formation in clinical
A. baumannii; additionally, biofilm-forming isolates were
classified as “strong”, “mild”, and “weak” producers of bio-
film in 41.34%, 33.57% and 27.63% of cases [46].

Antibiotic resistance rates were highest against the tested
fluoroquinolones, followed by trimethoprim-sulfamethoxa-
zole, carbapenems and aminoglycosides. In contrast, in the
case of clinical isolates, carbapenem-resistance had a lower,
while aminoglycoside-resistance had a higher prevalence,
respectively [24]. Nonetheless, colistin had largely retained
its effectiveness in both isolate groups, which corresponds to
other reports in the literature [47]. Phenotypic expression of
efflux pumps was substantially higher in environmental
isolates (48.25% vs. 27.51%), while MDR rates were similar
(49.12% vs. 42.72%), although this could have been influ-
enced by the difference in the number of isolates involved in
the two studies [24]. In the experiments of Hassan et al., over
90% of A. baumannii isolates were resistant against most
antibiotics tested, although the genotyping of all genetic
determinants of resistance was not carried out. Moderate and
strong biofilm-producers constituted >64% of isolates char-
acterized [48]. The meta-analysis of Salmani et al. – taking
into account studies between 2000 and 2019 – reported
a combined biofilm-formation rate of 69.1% from clinical
A. baumannii, in addition to highlighting that the prevalence
of MDR in biofilm-forming isolates was 96.1% [49].

The association between the presence and extent of
biofilm-production, expression of various resistance genes
and the MDR phenotype has been subject to considerable
interest [50]. Nevertheless, based on the evidence currently
available, it is unclear if their co-occurence is simply due to

chance, or whether there is some underlying mechanism
present (e.g., adaptational changes to gene expression, fitness
costs) [51, 52]. Our results showed no significant differences
between biofilm-forming capacity of environmental
A. baumannii in the context of MDR; these findings
corroborate our previous findings on clinical isolates [24].
On the other hand, several studies found significant asso-
ciations (albeit in varying directions) between the two pro-
tective mechanisms. For example, a meta-analysis aiming to
collect evidence on clinical Pseudomonas aeruginosa isolates
by MirzaHosseini et al. – including published articles be-
tween 2000 and 2019 – showed higher rates of MDR in
strong biofilm-producing isolates, with over >50% of articles
in agreement [53]. The study Kasperski et al. also high-
lighted the high prevalence of strong biofilm-forming
A. baumannii among XDR isolates, originating from ICU
patients [54]. Some authors associate high-levels of biofilm-
formation to the presence or absence of specific factors; such
are the studies of Azizi et al. [55], which noted that
A. baumannii carrying the blaPER-1 beta-lactamase were
successful biofilm-producers (compared to non-carriers, as
those isolates were less efficient in adhering to epithelial
cells), and the study of Gallant et al. [56], noting that
P. aeruginosa isolates expressing the blaTEM-1 beta-lactamase
were limited biofilm-producers (compared to non-carriers,
due to loss of adhesive potential of these strains). Interest-
ingly, the experiments of Zeighami et al. showed that porin-
deficient mutants of A. baumannii – which showed
fenotypic resistance to numerous antibiotics – had signifi-
cantly lower biofilm-forming capacities, due to deficiencies
in bacterial attachment and aggregation [45]. Similarly, Qi
et al. showed that susceptible A. baumannii isolates were
more prolific biofilm-producers, compared to their MDR
counterparts [57].

Finally, the antiseptic susceptibility of biofilm-forming
A. baumannii isolates were assessed against four agents:
lowest overall MICs were measured for triclosan, while
highest concentrationst were needed from formaldehyde.
From the context of effective IPC measures (e.g., hand
hygiene, antiseptic showers, cleaning of hospital wards,
treatment of medical equipments), the availability of effec-
tive antiseptic and disinfectant agents is crucial, especially
against microorganisms that may persist in biofilm [58, 59].
The effectiveness of triclosan and high MICs for formalde-
hyde has been demonstrated in other studies for various
pathogens [60, 61]. The study of Kheljan et al. found similar
MIC50 and MIC90 values for the same antiseptics tested in
clinical A. baumannii. During the genetic characterization of
efflux pump genes in the isolates, the presence of the qacED1
gene affected the MICs of all antiseptics, while detection of
the qacE and aceI genes only affected MIC of chlorhexidine
digluconate and benzalkonium chloride [38]. The study of
Lanjri et al. compared the antiseptic and disinfectant sus-
ceptibilities of clinical and environmental A. baumannii
isolates using the broth microdilution method. 1:3 dilution
of povidone-iodine (4% solution), pure solution of 70%
ethyl-alcohol, 1:100 dilution of chlorhexidine digluconate
(0.5% solution) and 1:1000 dilution of N-(3-Aminopropyl)-
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N-dodecylpropane-1,3-diamine (51 mg g�1 and 25 mg g�1)
were effective against all tested isolates; interestingly, envi-
ronmental isolates were most susceptible to the tested
compounds than clinical isolates [17]. Furthermore, the
comprehensive study of Saperkin et al. assessed the disin-
fectant susceptibility rates of over 400 A. baumannii isolates
from hospital environments, against >40 disinfectants from
four different chemical classes. They found highest resis-
tance rates against oxygen-based compounds, while qua-
ternary ammonium compounds and amines remained the
most effective [62].

CONCLUSIONS

A. baumannii is a serious concern in healthcare-associated
infections of immunocompromised patients, due to the
increasing prevalence of extensively-resistant isolates. The
present study revealed that A. baumannii displayed high
levels of resistance to commonly used antibiotics in clinical
practice, with nearly half of the isolates being MDR.
The findings of this study also confirmed our previous ob-
servations with clinical isolates, that is, the MDR status of
the isolates did not influence their proclivity to biofilm-
formation. Additional studies are warranted to ascertain
the co-occurrence of antimicrobial resistance and potent
biofilm-formation in its full capacity. Furthermore, our
study demonstrated the retained effectiveness of several
disinfectants against A. baumannii. The conscientious use of
disinfectants and antiseptics, together with periodic sur-
veillance on susceptibility trends, is essential to curb the
spread of these bacteria, and to maintain current infection
prevention capabilities in healthcare settings.
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