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we prove that non-diagonal critical central sections of Qn

exist in all dimensions at least 4. The crux of both proofs 
is an estimate on the rate of decay of the Laplace-Pólya 
integral Jn(r) = 1

π

∫∞
−∞ sincn t · cos(rt) dt that is achieved by 

combinatorial means. This also yields improved bounds for 
Eulerian numbers of the first kind.
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1. Introduction

Let Qn =
[
− 1

2 , 
1
2
]n denote the centered n-dimensional unit cube. This paper is 

devoted to the study of the (n − 1)-dimensional volume of central hyperplane sections 
of Qn (that is, sections of the form Qn ∩ v⊥). Accordingly, for a given non-zero vector 
v ∈ Rn, we introduce the central section function

σ(v) = Voln−1

(
Qn ∩ v⊥

)
. (1.1)

Note that the quantity above is invariant under scalings of v by a non-zero factor, and 
by embeddings of v into Rm with m ≥ n and replacing Qn by Qm.

The function σ(v) has been studied intensively in the last 50 years. According to a 
natural conjecture, which had been popularized by Good [4], minimal central sections are 
parallel to a facet of Qn. This was proved by Hadwiger [13] in 1972, while Hensley [15]
gave an alternative proof a few years later. He also provided an upper bound on the 
volume of central hyperplane sections. Completing the characterization of global extrema, 
Ball [3] proved that the maximal central sections are orthogonal to the main diagonal of 
a 2-dimensional face of Qn.

Our main goal is to study critical points of the functional σ(v) on the unit sphere 
Sn−1 – these will be referred to as critical directions, and the corresponding sections as 
critical sections. The latter were recently characterized by Ivanov and Tsiutsiurupa [16]
and, independently, the first named author [2]. Locally extremal sections are also defined 
via the analogous property of their unit normal on Sn−1.

A central section is called k-diagonal if its normal vector is parallel to the main 
diagonal of a k-dimensional face of Qn, where 1 ≤ k ≤ n. Let 1n denote the n-dimensional 
vector (1, . . . , 1). The standard k-diagonal unit direction is given by

dn,k := 1√
k
·
(
1k,0n−k

)
(1.2)

for k = 1, . . . , n, where, naturally, 0n−k is the zero vector of Rn−k. Up to permuting coor-
dinates and changing signs, all k-diagonal directions are of the above form. Such normal 
vectors and the corresponding central sections of Qn will simply be called diagonal. For 
special values of k, we simplify the notation by writing

dn,1 =: e1 and dn,n =: dn.

In particular, dn = 1√
n
1n.

As a special case of a more general result, Pournin [26] proved by local optimization 
techniques that all the diagonal sections of Qn are strictly locally extremal whenever 
n ≥ 4. Our first result provides an alternative proof for this fact for main diagonal 
sections.
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Theorem 1.1. The main diagonal section Qn ∩ 1⊥
n has strictly locally maximal volume 

among central sections of Qn for each n ≥ 4.

It has been widely believed that all critical central sections of Qn need to be diagonal. 
This was verified for n = 2, 3 but disproved for n = 4 in [2]. Note that appending 0’s 
to a lower dimensional critical direction yields critical directions for Qn. Thus, it is only 
of interest to ask for the existence of non-diagonal critical sections whose normal vector 
does not have any 0 coordinates – equivalently, sections which are not parallel to any of 
the coordinate axes.

We prove the existence of such non-diagonal critical central sections in all dimensions 
exceeding 3.

Theorem 1.2. For all n ≥ 4 there exist non-diagonal critical central sections of Qn whose 
normal vector has only non-zero coordinates.

Furthermore, in Section 6 we demonstrate that the critical directions constructed for 
the proof of Theorem 1.2 are saddle points of σ(v) on Sd−1. This leaves open the question 
of existence of non-diagonal critical sections which are locally extremal with respect to 
the central section function σ(v). Based on numerical evidence, we suspect that there 
are no such examples.

Conjecture 1.3. All locally extremal central sections of Qn are diagonal for each n ≥ 2.

The protagonist of the subsequent arguments is the Laplace-Pólya integral

Jn(r) := 1
π

∞∫
−∞

sincn t · cos(rt) dt, (1.3)

where n is a positive integer, r ∈ R, and sinc denotes the unnormalized sine cardinal 
function, that is

sincx :=

⎧⎪⎨⎪⎩
sin x

x
if x �= 0,

1 if x = 0.

The integral (1.3) appears in a number of diverse problems. In particular, Laplace [20]
studied it in connection with probability theory, while Pólya [28] focused on its impor-
tance in statistical mechanics.

For n ≥ 2, or n = 1 and r �= ±1, Jn(r) may also be expressed as the density of the 
following Irwin-Hall distribution:

Jn(r) = 2 · f∑n Xi
(r) (1.4)
i=1
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where X1, . . . , Xn are independent random variables uniformly distributed on [−1, 1], 
and fX(.) denotes the probability density function of a continuous random variable X. 
This stochastic interpretation, which is discussed in detail in Section 2, also implies that 
Jn(r) = 0 for |r| ≥ n when n ≥ 2.

The crux of the subsequent arguments is a precise estimate on the rate of decay of 
Jn(r), which will be proved by entirely combinatorial means in Section 3.

Theorem 1.4. Let n ≥ 4 and r be integers satisfying −1 ≤ r ≤ n − 2. Then

Jn(r + 2)
Jn(r) ≤ cn,r, (1.5)

where

cn,r = (n− r − 2)(n− r)(n− r + 2)
(n + r)(n + r + 2)(n + r + 4) . (1.6)

As an immediate corollary we derive the following bound.

Corollary 1.5. For each n ≥ 2,

(n + 3)Jn+2(0) < (n + 2)Jn(0). (1.7)

We note that for even values of n, Lesieur and Nicolas [21] proved the slightly stronger 
estimate1

(n + 2)Jn+2(0) < (n + 1)Jn(0) (1.8)

(also see (3.11)) by an intricate argument involving fine estimates for the power series 
expansion of Eulerian numbers of the first kind.

Further history of the problem and related results, in particular, the study of non-
central and lower dimensional sections, are excellently surveyed in [24].

2. Preliminaries

In this section we review some of the necessary tools along the lines of the articles 
[2,3,18]. Pólya [28] proved that the central section function σ(v) of a unit vector v =
(v1, . . . , vn) ∈ Sn−1 may be evaluated by the classical integral formula

σ(v) = 1
π

∞∫
−∞

n∏
i=1

sinc (vit) dt. (2.1)

1 We note that this bound and further estimates on the Laplace-Pólya integral can also be obtained by a 
combinatorial method similar to the present proofs, which is to be published in a subsequent paper.
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One can shortly derive an extension for arbitrary non-zero normal vectors, and non-
central sections, via the probabilistic interpretation as follows.

Let now v ∈ Rn \ {0n} be an arbitrary non-zero vector, and define S(v, r) as the 
intersection of Qn and a hyperplane orthogonal to v at distance r

|v| from the origin, that 
is

S(v, r) :=
{
q ∈ Qn : 〈q,v〉 = r

}
. (2.2)

Introduce the parallel section function

s(v, r) := Voln−1
(
S(v, r)

)
; (2.3)

then σ(v) = s(v, 0).
For a continuous random variable X, let ϕX(.) denote its characteristic function. 

Let now X1, . . . , Xn be independent random variables distributed uniformly on [−1, 1]. 
The joint distribution of (X1, . . . , Xn) induces the normalized Lebesgue measure on 
2Qn = [−1, 1]n. Accordingly, for arbitrary v = (v1, . . . , vn) ∈ Rn and r ∈ R

P

(∣∣∣∣∣∣
n∑

i=1
viXi − r

∣∣∣∣∣∣ ≤ ε

)
= 1

2nVoln
(
q ∈ 2Qn :

∣∣〈q,v〉 − r
∣∣ ≤ ε

)
= ε

|v|s
(
v, r2

)
+ o(ε)

provided that S
(
v, r2

)
is not a facet of Qn. Dividing by ε and letting ε → 0 leads to

2f∑n
i=1 viXi

(r) = 1
|v|s

(
v, r2

)
(2.4)

which holds whenever the left hand side exists. As is well known, the characteristic 
function of 

∑n
i=1 viXi is

ϕ∑n
i=1 viXi

(t) =
n∏

i=1
sinc (vit), (2.5)

hence by taking the inverse Fourier transform one derives that

f∑n
i=1 viXi

(r) = 1
2π

∞∫
−∞

n∏
i=1

sinc (vit) · cos (rt) dt. (2.6)

Therefore by (2.4) and (2.6) we obtain the following integral formula for s(v, r):

s
(
v, r2

)
= |v|

π

∞∫ n∏
i=1

sinc (vit) · cos (rt) dt. (2.7)

−∞



6 G. Ambrus, B. Gárgyán / Advances in Mathematics 441 (2024) 109524
In particular,2

σ(v) = |v|
π

∞∫
−∞

n∏
i=1

sinc (vit) dt (2.8)

which implies (2.1).
As a special case of (2.7) one also obtains that the volume of sections orthogonal to 

the main diagonal can be expressed as

s
(
1n,

r

2

)
=

√
nJn(r). (2.9)

In particular, central main diagonal sections are given by

σ(1n) =
√
nJn(0). (2.10)

Returning to (2.1), we derive that for unit vectors v

∂

∂vk
σ(v) = 1

π

∞∫
−∞

∏
i�=k

sinc (vit) ·
cos(vkt) − sinc (vkt)

vk
dt (2.11)

(the differentiability property of the function σ(v) is rigorously proven in the works of L. 
Pournin [27,26]). Based on the Lagrange multiplier method, the following characteriza-
tion was given in [2] for critical points of σ(v) on Sn−1 (note that in the present article 
we normalize σ(v) differently):

Proposition 2.1 ([2], Formula (2.12)). The unit vector v = (v1, . . . , vn) ∈ Sn−1 is a 
critical direction with respect to the central section function σ(v) if and only if up to 
permuting coordinates and changing signs3 v = e1, or

σ(v) = 1
π(1 − v2

j )

∞∫
−∞

∏
i�=j

sinc (vit) · cos (vjt) dt (2.12)

holds for each j = 1, . . . , n.

The argument also yields that at critical directions v ∈ Sn−1,

∂

σvi
σ(v) = −σ(v) · vi, (2.13)

2 Note that the factor |v| is missing in [2, formula (2.8)].
3 In [2], the trivial case v = e1 was erroneously omitted.
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Table 1
The value of Jn(0) in the cases 1 ≤ n ≤ 10.

n 1 2 3 4 5 6 7 8 9 10
Jn(0) 1 1 3

4
2
3

115
192

11
20

5887
11520

151
315

259723
573440

15619
36288

see [2, Proof of Theorem 1]. Accordingly, the Lagrange function

Λ(v) = σ(v) + λ̃ · (|v|2 − 1) (2.14)

defined on Rn has a stationary point at v with the Lagrange multiplier

λ̃ = σ(v)
2 . (2.15)

We remark that, introducing the notation ṽj = (v1, . . . , vj−1, vj+1, . . . , vn) ∈ Rn−1

and using (2.7), equation (2.12) translates to

σ(v) = 1
(1 − v2

j )
3
2
s
(
ṽj ,

vj
2

)
. (2.16)

3. Properties of the Laplace-Pólya integral

In this section we study the integral formula Jn(r) defined in (1.2) which is connected 
to various mathematical topics, see [6,14,22,28,30]. To us, its most prominent feature is 
the connection to diagonal sections provided by (2.10).

The following explicit formula for Jn(r) is well known, see [20, pp. 165–170]:

Jn(r) = 1
2n−1(n− 1)!

�n+r
2 �∑

i=0
(−1)i

(
n

i

)
(n + r − 2i)n−1 (3.1)

which holds for |r| < n. Moreover, Jn(r) can be expressed by the recursion

Jn(r) = n + r

2(n− 1)Jn−1(r + 1) + n− r

2(n− 1)Jn−1(r − 1) (3.2)

which was proved by Thompson [31]. Though this formula is valid for all r ∈ R, we will 
only use it for integer values of r. Since Jn(r) is even in r, we specifically derive that

Jn(0) = n

n− 1Jn−1(1) (3.3)

for n ≥ 3. Combined with (3.2) this provides a simple way for computing the central 
values Jn(0) for small n’s, see Table 1.

The sequence (Jn(0))∞n=1 possesses several monotonicity properties. Ball [3, Lemma 3]
proved that Jn(0) is monotone decreasing and converges to zero as n → ∞. On the other 
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hand, Aliev [1] showed that nJn(0) is monotone increasing. According to (2.10), the 
value 

√
nJn(0) is equal to the volume of the main diagonal section of Qn. Therefore, it 

is essential that

lim
n→∞

√
nJn(0) =

√
6π,

see [20,28]. Based on Laplace’s method for calculating the asymptotic expansion for 
Jn(0), Bartha, Fodor and González Merino [5] proved that the convergence is strictly 
monotone increasing for n ≥ 3, and noted that their method also implies that the 
sequence 

√
nJn(0) is eventually concave. The asymptotic expansion up to order 3 reads 

as

Jn(0) =
√

6
πn

(
1 − 3

20n − 13
1120n2 + 27

3200n3 + O
( 1
n4

))
(3.4)

where the correct coefficients had been found (and subsequently corrected) in a series of 
papers [30,8,12,11,25,22]). Even finer estimates were proved in [17,29].

A combinatorial interpretation of Jn(r) stems from the connection with Eulerian 
numbers of the first kind A(m, l) (which will simply be referred to as Eulerian numbers). 
These are recursively defined [10, pp. 240–243] for integers m, l ≥ 0 by

A(0, 0) := 1, A(m, 0) := 0 for m > 0, A(0, l) := 0 for l > 0,

A(m, l) = (m− l + 1)A(m− 1, l − 1) + lA(m− 1, l) for m > 0, l > 0.
(3.5)

Moreover they may be evaluated explicitly as

A(m, l) =
l∑

i=0
(−1)i

(
m + 1

i

)
(l − i)m, (3.6)

see e.g. [9,21]. Eulerian numbers can also be defined combinatorially [10] as the number 
of permutations of {1, . . . , n} in which exactly l−1 elements are greater than the previous 
element. This also shows the symmetry property

A(m, l) = A(m,m− l + 1). (3.7)

According to formulae (3.1) and (3.6), the following connection holds between the 
Laplace-Pólya integral and the Eulerian numbers:

Jn(r) = 1
(n− 1)! A

(
n− 1, n + r

2

)
(3.8)

where n ≥ 2 and r is an integer s.t. n +r is even. Due to this relation, Theorem 1.4 leads 
to an estimate on the ratio between consecutive Eulerian numbers.
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Table 2
Two sides of the inequality (1.5)
for n = 4 and r = −1, . . . , 2.
r -1 0 1 2
J4(r+2)
J4(r)

1 1
4

1
23 0

c4,r 1 1
4

1
21 0

Proposition 3.1. For integers l ≥ 2 and m ≥ 2l − 1

A(m, l − 1) ≤ cm+1,m−2l+1A(m, l), (3.9)

where cn,r is defined by formula (1.6).

This strengthens the bound proved by Lesieur and Nicolas [21, Section 2.3, Theorem 3]
stating that for every l ≥ 2 and m ≥ 2l − 1,

A(m, l − 1) <
( m− l

m− l + 2

)m−2l+2
A(m, l). (3.10)

The authors also showed that [21, Section 3.5, Theorem 2]

m + 1
m + 2 <

m!
(m + 2)! ·

max1≤l≤m+2 A(m + 2, l)
max1≤l≤m A(m, l) <

m + 2
m + 3 (3.11)

for any odd m. Notice that

1
m! max

1≤l≤m
A(m, l) = 1

m!A
(
m,
⌊m

2

⌋
+ 1

)
=

⎧⎨⎩Jm+1(1), if m is even
Jm+1(0), if m is odd.

Therefore, by introducing n = m + 1 and using (3.3), inequality (3.11) takes the form

n(n− 2)
(n + 2)2 <

Jn(2)
Jn(0) <

n(n2 − 2)
(n + 2)3 (3.12)

which holds for any even n greater than 3. Based on numerical calculations we do believe 
that these estimates are valid for every n ≥ 3. Note that the upper bound is slightly 
stronger than (1.5) for r = 0 and n even – yet, (3.12) provides no estimate for odd values 
of n, or r �= 0, in contrast with Theorem 1.4.

Next, we establish the bound on the rate of decay of Jn(r).

Proof of Theorem 1.4. Suppose that r is an integer satisfying r ≥ −1. We will proceed 
by induction on n, with n = 4 being the base case.

The values of J4(r) for r = −1, . . . , 4 can be calculated by formula (3.1). Based on 
these, the n = 4 case of (1.5) is easy to check, see Table 2.
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Suppose now that for some n ≥ 4, (1.5) holds for each −1 ≤ r ≤ n − 2. We need to 
show that

Jn+1(r + 2) ≤ cn+1,rJn+1(r) (3.13)

for each r with −1 ≤ r ≤ n − 1.
For r = −1 or r = n − 1, equality holds above: in the former case cn+1,−1 = 1 and 

Jn+1(−1) = Jn+1(1), while in the latter cn+1,n−1 = 0 and Jn+1(n + 1) = 0.
Assume that 0 ≤ r ≤ n − 3. By (3.2),

Jn+1(r + 2) = n + r + 3
2n Jn(r + 3) + n− r − 1

2n Jn(r + 1), (3.14)

Jn+1(r) = n + r + 1
2n Jn(r + 1) + n− r + 1

2n Jn(r − 1).

Applying the induction hypothesis for the pairs (n, r + 1) and (n, r − 1) shows that

Jn(r + 3) ≤ cn,r+1Jn(r + 1),
1

cn,r−1
Jn(r + 1) ≤ Jn(r − 1).

Thus, (3.13) follows from the inequality

n + r + 3
2n cn,r+1 + n− r − 1

2n ≤ cn+1,r

(n + r + 1
2n + n− r + 1

2n · 1
cn,r−1

)
.

Using (1.6), this simplifies to

(n− r − 3)(n− r − 1)(n− r + 1)
(n + r + 5)(n + r + 1) + (n− r − 1) ≤

≤ (n− r − 1)(n− r + 1)(n− r + 3)
(n + r + 5)(n + r + 3) + (n− r + 1)(n + r − 1)

(n + r + 5) .

After combining the fractions, this takes the form

0 ≤ 16r3 + 48r2 + 32r

which clearly holds.
Finally, when r = n − 2, then due to Jn(r + 3) being 0, (3.14) reduces to

Jn+1(n) = 1
2nJn(n− 1).

Therefore, using (3.2) for the term Jn+1(n − 2), (3.13) is seen to be equivalent to
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1
2nJn(n− 1) ≤ cn+1,n−2

(2n− 1
2n Jn(n− 1) + 3

2nJn(n− 3)
)
. (3.15)

The induction hypothesis for the pair (n, n − 3) implies that

1
cn,n−3

Jn(n− 1) ≤ Jn(n− 3).

Therefore, (3.15) follows from the inequality

1 ≤ cn+1,n−2

(
2n− 1 + 3

cn,n−3

)
,

which, after substituting (1.6), simplifies to

0 ≤ 8n2 − 20n + 3.

As this holds for every n ≥ 3, the proof is complete. �
Proof of Corollary 1.5. The inequality can be easily confirmed in the cases of n = 2, 3
based on Table 1. Henceforth we suppose that n ≥ 4. Due to (3.3), (3.2) and (1.5) we 
have

Jn+2(0) = n + 2
n + 1Jn+1(1) =

= (n + 2)2

2n(n + 1)Jn(2) + n + 2
2(n + 1)Jn(0) ≤

≤
(

(n + 2)2

2n(n + 1) · cn,0 + n + 2
2(n + 1)

)
Jn(0) =

= (n + 2)(n2 + 2n− 2)
n(n + 1)(n + 4) Jn(0).

(3.16)

Therefore, (1.7) is implied by the inequality

(n + 2)(n2 + 2n− 2)
n(n + 1)(n + 4) <

n + 2
n + 3

which holds for every n ≥ 1. �
Finally, we prove the corresponding estimate for Eulerian numbers.

Proof of Proposition 3.1. Suppose that r is an integer s.t. r ≥ −1 and n + r is even. 
According to equation (3.8) and Theorem 1.4 we have

A
(
n− 1, n + r + 1

)
≤ cn,rA

(
n− 1, n + r)

.
2 2
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The symmetry property (3.7) leads to the inequality

A
(
n− 1, n− r

2 − 1
)
≤ cn,rA

(
n− 1, n− r

2

)
.

Letting m = n − 1 and l = n− r

2 implies (3.9). �
In order to demonstrate that (3.9) is indeed stronger than (3.10) one has to prove 

that

(l − 1)l(l + 1)
(m− l + 1)(m− l + 2)(m− l + 3) <

( m− l

m− l + 2

)m−2l+2

holds for each l ≥ 2 and m ≥ 2l− 1. By introducing μ = m − l+ 2 (note that μ ≥ l+ 1), 
this transforms to

(l − 1)l(l + 1)
(μ− 1)μ(μ + 1) ·

(μ− 2
μ

)l
<
(μ− 2

μ

)μ
. (3.17)

Note that the right hand side is strictly monotone increasing in μ.
We will prove that for any fixed l ≥ 2, the left hand side of (3.17) is strictly monotone 

decreasing in μ for μ ≥ l + 2. Indeed, its derivative in μ is given by

− (l − 1)l(l + 1)
(μ− 2)(μ− 1)2μ2(μ + 1)2 ·

(μ− 2
μ

)l
· (3μ3 − 2lμ2 − 6μ2 − μ + 2l + 2)

which is easily checked to be negative in the specified domain.
Therefore, it suffices to verify (3.17) for the cases μ = l + 1, l + 2. These lead to the 

trivial inequalities l−1
l+2 < l−1

l+1 and l−1
l+3 < l

l+2 , respectively.

4. Main diagonal sections are strictly locally maximal

By utilizing our combinatorial estimate on Jn(r) stated in Theorem 1.4, we prove one 
of the core results of the paper stating that main diagonal sections of Qn are strictly 
locally maximal, except for the 3-dimensional case.

Proof of Theorem 1.1. To start with, note that Proposition 2.1 and (3.3) imply that dn

is a critical direction, hence we may apply the properties listed after Proposition 2.1.
We will show that the function σ(v) has a strict local maximum at v = dn subject 

to the constraint |v| = 1. This is a constrained local optimization problem which can 
be solved by studying the bordered Hessian matrix, i.e. the Hessian of the Lagrange 
function Λ(v) defined by (2.14).

Since Λ(v) = σ(v) + σ(v)
2 · (|v|2−1) because of (2.14) and (2.15), the bordered Hessian 

matrix is given by
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H(Λ(v)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 2v1 2v2 . . . 2vn
2v1

∂2σ

∂vj∂vk
(v) + σ(v) ·

⎧⎨⎩0, if j �= k

1, if j = k

2v2
...

2vn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.1)

Based on (2.11), the entries of H(Λ(v)) apart from the first row and column may be 
calculated by

βk(v) = 1
π

∞∫
−∞

∏
i�=k

sinc(vit) ·
(

2
v2
k

(
sinc(vkt)− cos(vkt)

)
− (vkt)2

v2
k

sinc(vkt)+ sinc(vkt)
)

dt

(4.2)
along the diagonal j = k, and

γj,k(v) = 1
π

∞∫
−∞

∏
i�=j,k

sinc(vit) ·
cos(vjt) − sinc(vjt)

vj
· cos(vkt) − sinc(vkt)

vk
dt (4.3)

for the off-diagonal entries, i.e. j �= k.
Consider now the main diagonal direction dn = 1√

n
1n, and let Hm denote the principal 

minor of H(Λ(dn)) of order m for m = 3, . . . , n. According to [23, Theorem 3.9.14]), if 
(−1)m−1Hm > 0 for all m = 3, . . . , n, then σ(.) has a strict local maximum on the 
constraint set Sn−1 at dn.

Substituting v = dn in (4.2) and (4.3), integrating by substitution for vkt, applying 
the identity sin2 t = 1−cos(2t)

2 and employing (3.2) repeatedly results in the formulae

βk(dn) =
√
n

π
·

∞∫
−∞

(
sincn−1 t

)
·
(
2n(sinc t− cos t) − nt2 sinc t + sinc t

)
dt =

=
√
n ·
(

(2n + 1)Jn(0) − 2nJn−1(1) − n

2 Jn−2(0) + n

2 Jn−2(2)
)

=

=
√
n ·
(
Jn−2(0) ·

( (2n + 1)n
2(n− 1) − n− n

2

)
+ Jn−2(2) ·

( (2n + 1)n2

2(n− 2)(n− 1) − n2

(n− 2) + n

2

))
=

= n
3
2

2(n− 1) ·
(
(4 − n)Jn−2(0) + n2 + 2

n− 2 Jn−2(2)
)
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for any k = 1, . . . , n, and

γj,k(dn) = n
3
2

π
·

∞∫
−∞

(
sincn−2 t

)
·
(

cos2 t− 2 sinc t · cos t + sinc2 t
)

dt =

= n
3
2 ·
(
Jn(0) − 2Jn−1(1) + 1

2Jn−2(0) + 1
2Jn−2(2)

)
=

= n
3
2 ·
(
Jn−2(2) ·

( n2

2(n− 2)(n− 1) − n

n− 2 + 1
2

)
+ Jn−2(0) ·

( n

2(n− 1) − 1 + 1
2

))
=

= n
3
2

2(n− 1) ·
(
Jn−2(0) − Jn−2(2)

)
for j �= k, 1 ≤ j, k ≤ n. Therefore, (4.1) yields that H(Λ(dn)) is of the form

H(Λ(dn)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 α α · · · α
α β γ · · · γ
α γ β · · · γ
...

...
...

. . .
...

α γ γ · · · β

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(n+1)×(n+1)

where

α = 2√
n
, β =

( n
3
2

2(n− 1)

)n−1
·
(
(4 − n)Jn−2(0) + n2 + 2

n− 2 Jn−2(2)
)
,

and γ =
( n

3
2

2(n− 1)

)n−1
·
(
Jn−2(0) − Jn−2(2)

)
.

(4.4)

Thus, all principal minors Hm of H(Λ(dn)) have the same form, namely

Hm =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 α α · · · α
α β γ · · · γ
α γ β · · · γ
...

...
...

. . .
...

α γ γ · · · β

∣∣∣∣∣∣∣∣∣∣∣∣∣
m×m

. (4.5)

Subtracting the second row from the ones below, expanding the resulting determinant 
along the first column, and finally adding the sum of all other columns of the remaining 
determinant to the first one results in an upper triangular matrix, hence
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Hm = (−α) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

(m− 1)α α α · · · α
0 δ 0 · · · 0
0 0 δ · · · 0
...

...
...

. . .
...

0 0 0 · · · δ

∣∣∣∣∣∣∣∣∣∣∣∣∣
(m−1)×(m−1)

= −(m− 1)α2δm−2

with δ = β − γ. Therefore it suffices to show that δ < 0. For n = 4 and n = 5, a direct 
calculation based on (4.4) yields that δ = −1 and δ = −1

4 , respectively (we also remark 
that in the n = 3 case one obtains δ = 0). For n ≥ 6, note that according to Theorem 1.4,

Jn−2(2) ≤ n− 4
n + 2Jn−2(0),

hence, by (4.4),

δ = β − γ =

=
( n

3
2

2(n− 1)

)n−1
·
(
(3 − n)Jn−2(0) + n(n + 1)

n− 2 Jn−2(2)
)
≤

≤
( n

3
2

2(n− 1)

)n−1
·
(
− 12

n2 − 4Jn−2(0)
)
< 0. �

5. Existence of non-diagonal critical sections

This section is devoted to the proof of Theorem 1.2, for which we present two ap-
proaches. The first one is only sketched below.

Consider the function σ(v) on Sn−1. Theorem 1.1 states that σ(v) has a strict local 
maximum at v = dn. On the other hand, the result of Ball [3] shows that σ(v) has a 
strict global maximum at v = dn,2 with σ(dn,2) > σ(dn). Let Γ be the shorter great arc 
of Sn−1 connecting dn and dn,2 – then Γ consists of vectors of the form

vn,2(a) := (a, a, b, . . . , b) ∈ Sn−1 (5.1)

where a ∈
[ 1√

n
, 1√

2

]
. Let

σ̂(a) := σ
(
vn,2(a)

)
(5.2)

be the restriction of σ onto Γ. On the interval 
[ 1√

n
, 1√

2

]
, the function σ̂(a) has a strict 

maximum at 1√
2 , while at 1√

n
it has a strict local maximum. Because of (2.11), σ̂(a) is 

differentiable on the interval, hence it must have a local minimum at some ξn ∈
( 1√

n
, 1√

2

)
. 

Using that Qn is symmetric with respect to the reflection over the line spanned by dn,2
in Rn, one may show that v(ξn) is a critical point of σ on Sn−1.
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We decided to present the second proof below as it provides information about a 
wider class of normal vectors, it allows for the numerical calculation of the value of ξn, 
moreover, it is independent of the proof of maximality of 2-diagonal sections by Ball [3]. 
The approach is based on the characterization result of [2], see Proposition 2.1.

Proof of Theorem 1.2. As a generalization of (5.1), we are going to study a special class 
of unit vectors which may be written in the form

vn,k(a) :=
(
a, . . . . . . , a,︸ ︷︷ ︸

k

b, . . . . . . , b︸ ︷︷ ︸
n−k

)
∈ Sn−1

where 2 ≤ k ≤ n − 2 and a ∈ Ik :=
[ 1√

n
, 1√

k

]
, furthermore b is defined by

b := bn,k(a) =

√
1 − ka2

n− k
. (5.3)

Here and later on we will always interpret b as a function of a, n and k, unless stated 
otherwise.

Since vn,k(a) has at most two different coordinates, Proposition 2.1 implies that 
vn,k(a) is a critical direction if and only if Fn,k(a) = 0, where

Fn,k(a) : = 1
π(1 − a2)

∞∫
−∞

sincn−k (bt) · sinck−1 (at) · cos (at) dt−

− 1
π(1 − b2)

∞∫
−∞

sincn−k−1 (bt) · sinck (at) · cos(bt) dt,

(5.4)

defined on Ik. We will show the existence of ξn ∈
( 1√

n
, 1√

2

)
for which Fn,2(ξn) = 0. This 

suffices as vn,2(ξn) cannot be diagonal, neither can it have any 0 coordinates.
The argument is divided to the following three lemmata whose proof is postponed to 

the end of the section.

Lemma 5.1. For each 2 ≤ k ≤ n − 2, 1√
k

and 
1√
n

are both zeros of Fn,k.

In the next lemma we will consider the right-hand derivative of Fn,k(.) at 1√
n
. In order 

to ease notation, this will be denoted by F ′
n,k

(
1√
n

)
. We note that there is no difficulty 

in extending the domain of Fn,k(.) hence this simplification is well justified.

Lemma 5.2. For each 4 ≤ k ≤ n − 2, Fn,k is differentiable on the interval Ik. In the case 
of k = 2, 3, Fn,k is differentiable on every compact subinterval of Ik \

{ 1√
k

}
. Moreover 

in both cases F ′
n,k

(
1√
)
< 0.
n



G. Ambrus, B. Gárgyán / Advances in Mathematics 441 (2024) 109524 17
Fig. 1. Difference between the behavior of F6,2(a) and F6,3(a).

Table 3
Numerical value of the zero ξn in the dimensions 4 ≤ n ≤ 10.

n 4 5 6 7 8 9 10
ξn 0.632455 0.634265 0.636071 0.636935 0.637520 0.637921 0.638219

Lemma 5.3. For each n ≥ 4, Fn,2(a) ≥ 0 for every a ∈
[
γn, 1√

2

]
where γn =

√
n−2
2n−3 .

Note that the first two statements hold for arbitrary k, while the third is proven only 
for k = 2. This is not merely a technical issue; based on numerical evidence we conjecture 
that there are no non-diagonal critical directions of the form vn,k(a) with 3 ≤ k ≤ n −2, 
see Fig. 1.

Once the above lemmata are established, the proof is immediate: Take γn provided 
by Lemma 5.3. Then Fn,2(γn) ≥ 0, and γn > 1√

n
as n ≥ 4. Moreover, according to 

Lemma 5.2, Fn,2 is differentiable on the interval 
[ 1√

n
, γn

]
and for its right-hand deriva-

tive, F ′
n,2
( 1√

n

)
< 0 holds. Lemma 5.1 yields that Fn,2

( 1√
n

)
= 0, thus there exists some 

ε > 0 with Fn,2
( 1√

n
+ ε

)
< 0 and 1√

n
+ ε < γn. Applying the mean value theorem 

on the interval 
[ 1√

n
+ ε, γn

]
yields the existence of ξn with the prescribed property 

Fn,2(ξn) = 0. �
Our proof only assures the existence of a nontrivial zero ξn. Based on numerical 

calculations we suspect that there is only one suitable zero in the prescribed interval 
for each n ≥ 4. Table 3 summarizes the numerical value of ξn for small dimensions. For 
n = 4, ξ4 =

√
2
5 , which yields a non-diagonal critical direction parallel to (1, 1, 2, 2) [2]; 

for larger dimensions, these values do not seem to follow such a nice pattern anymore.

Proof of Lemma 5.1. The statement follows from the fact that all diagonal sections are 
critical, which is implied by Proposition 2.1, formula (3.3), and the remark preceding 
Theorem 1.2. �
Proof of Lemma 5.2. For the integrand of Fn,k(a) we introduce the notation

fn,k(a, t) := 1
2 · sincn−k (bt) · sinck−1 (at) · cos (at)
1 − a
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− 1
1 − b2

· sincn−k−1 (bt) · sinck (at) · cos (bt) (5.5)

which is defined on Ik × R. Due to the properties of the sinc function, fn,k(a, t) is 
continuous in both of its variables. Furthermore the function

ψn,k(t) :=

⎧⎨⎩2 if |t| ≤ 1,
2

tn−1 if |t| ≥ 1
(5.6)

is an integrable majorant of fn,k(a, t) for all a ∈ Ik. We need to show that ∂fn,k(a,t)
∂a is 

also continuous and it has an integrable majorant. In order to calculate the derivative of 
fn,k(a, t) with respect to a on Ik we will apply the differentiation rules

(sincx)′ = 1
x

(cosx− sincx) and b′ = − kab

1 − ka2 .

These yield that

∂fn,k(a, t)
∂a

= 2a
(1 − a2)2 · sincn−k (bt) · sinck−1 (at) · cos (at)+

+ ka

1 − a2 · sincn−k−1 (bt) · sinc (bt) − cos (bt)
b2

· sinck−1 (at) · cos (at)+

+ k − 1
1 − a2 · sincn−k (bt) · sinck−2 (at) · cos (at) − sinc (at)

a
· cos (at)−

− 1
a(1 − a2) · sincn−k (bt) · sinck−2 (at) · sin2 (at)+

+ 2ka
(n− k)(1 − b2)2 · sincn−k−1 (bt) · sinck (at) · cos (bt)−

− (n− k − 1)ka
(n− k)(1 − b2) · sincn−k−2 (bt) · sinc (bt) − cos(bt)

b2
· sinck (at) · cos (bt)−

− k

1 − b2
· sincn−k−1 (bt) · sinck−1 (at) · sinc (at) − cos (at)

a
· cos (bt)−

− k

(n− k)(1 − b2)a · sincn−k−2 (bt) · sinck−2 (at) · sin2 (at).

Clearly ∂fn,k(a,t)
∂a is continuous on Ik ×R since

lim
a→1/

√
k

sinc (bt) − cos (bt)
b2

= t2

3 .

When 4 ≤ k ≤ n − 2, for each term above an integrable majorant may be given similarly 
to (5.6), which yields that ∂fn,k(a,t) has an integrable majorant on the whole Ik. However, 
∂a
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for k = 2, 3, this property only holds on any compact subinterval of Ik\
{ 1√

k

}
=
[ 1√

n
, 1√

k

)
, 

since in these cases the term

lim
a→1/

√
k

ka

1 − a2 · sincn−k−1(bt) · sinc(bt) − cos(bt)
b2

· sinck−1(at) · cos(at) =

= k
3
2

3(k − 1) t
2 · sinck−1 t√

k
· cos t√

k

is not integrable, neither is eliminated by the other summands.
The Leibniz integral rule (see [19, Theorem 3.2]) implies that Fn,k(.) is differentiable 

on Ik if k ≥ 4, and on every compact subinterval of Ik \
{ 1√

k

}
if k = 2, 3. The derivative 

is given by

F ′
n,k(a) = 1

π
· ∂

∂a

∞∫
−∞

fn,k(a, t) dt = 1
π

∞∫
−∞

∂fn,k(a, t)
∂a

dt. (5.7)

Moreover F ′
n,k(.) is continuous from the right at 1√

n
for every k (see [19, Theorem 3.1]). 

Accordingly, the value of the right-hand derivative F ′
n,k

(
1√
n

)
may be evaluated by the 

substitution a = 1√
n
. Note that this leads to b = a, hence products of the sinc terms 

may be combined together. Thus each term of the integral F ′
n,k

( 1√
n

)
is of the form

1
π

∞∫
−∞

α sincm t√
n
· cos β√

n
dt = α

√
nJm(β)

with some α, β ∈ R and some positive integer m (recall that Jm(β) is defined by (1.3)). 
Therefore, from (5.7) we obtain that

F ′
n,k

( 1√
n

)
= (k − 2)n2

2(n− 1) Jn−2(0) + k(n− k − 2)n2

2(n− k)(n− 1)Jn−2(0) − kn2

n− 1Jn−2(0)+

+ n2(n + 1)
(n− 1)2 Jn−1(1) − kn2(n + 1)

(n− 1)2(n− k)Jn−1(1)−

− kn2

n− 1Jn−2(2) − kn2

2(n− 1)Jn−2(2) + kn2

2(n− 1)Jn−2(2).

This further simplifies to

F ′
n,k

( 1√
n

)
= n3

(n− k)(n− 1)

(n + 1
n− 1Jn−1(1) − Jn−2(0)

)
=

= n3

(n− k)(n− 1)

(n + 1
n

Jn(0) − Jn−2(0)
)
,
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where (3.3) is used in the second step. Due to the estimate of Corollary 1.5, this is indeed 
negative for every n ≥ 4 and 2 ≤ k ≤ n − 2. �

Next, we will apply a geometric argument in order to show the positivity of Fn,2 in a 
left neighborhood of 1√

2 . First we recall a standard useful volume formula. Let Hu and 
Hv be hyperplanes with normal unit vectors u and v, and denote by .|Hu

the orthogonal 
projection onto Hu. Then

Voln−1
(
A|Hu

)
=
∣∣〈u,v〉∣∣ · Voln−1 (A) (5.8)

for any measurable set A ⊂ Hv.

Proof of Lemma 5.3. Throughout the proof, we set k = 2. Accordingly, (5.3) simplifies 
to

b = bn,2(a) =
√

1 − 2a2

n− 2 . (5.9)

The constraint a ≥
√

n−2
2n−3 thus yields that

a

b
≥ n− 2. (5.10)

According to (5.4) and (2.7)

Fn,2(a) = 1
(1 − a2) 3

2
s
(
u1(a),

a

2

)
− 1

(1 − b2) 3
2
s
(
u2(a),

b

2

)
, (5.11)

where u1(a) = (a, b, . . . , b) and u2(a) = (a, a, b, . . . , b) are (n − 1)-dimensional non-unit 
vectors obtained from vn,2(a) by deleting the first and third coordinate, respectively. 
Denote the above parallel section functions by

s1(a) = s
(
u1(a),

a

2

)
, s2(a) = s

(
u2(a),

b

2

)
(5.12)

which, by (2.2), express the (n − 2)-dimensional volume of the intersection of Qn−1 with 
the cross-sections

S1(a) = S
(
u1(a),

a

2

)
, S2(a) = S

(
u2(a),

b

2

)
. (5.13)

We may determine the functions s1(a), s2(a) exactly in an appropriate left neighborhood
of a = 1√

2 by using suitably chosen orthogonal projections.
We first study s1(a), the volume of the section S1(a). Consider the facet F of Qn−1

defined by
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Fig. 2. Section S1(a) and facet F of Qn−1.

F =
{(1

2 ,y
)
∈ Qn−1 : y ∈ Qn−2

}
.

We will determine S1(a)|F , see Fig. 2.
Represent the points of Rn−1 in the form of (x, y), where x ∈ R and y ∈ Rn−2. Then, 

according to (2.2) and (5.13), the equation of the hyperplane in Rn−1 corresponding to 
S1(a) can be written as

x = 1
2 − b

a
〈y,1n−2〉.

Note that on this hyperplane, S1(a) is described by the criteria x ∈ [−1
2 , 

1
2 ] and y ∈ Qn−2. 

The first condition, by the equation above, transforms to 0 ≤ 〈y,1n−2〉 ≤ a
b . Since by 

(5.10), the upper limit is at least n −2, while maxy∈Qn−2〈y,1n−2〉 = n−2
2 , the orthogonal 

projection of S1(a) to F is specified by

S1(a)|F =
{(1

2 ,y
)
∈ F : 〈y,1n−2〉 ≥ 0

}
.

Note that this constitutes half of the facet F , hence

Voln−2
(
S1(a)|F

)
= 1

2 · Voln−2 (F ) = 1
2 . (5.14)

On the other hand, according to (5.8),

Voln−2
(
S1(a)|F

)
=

∣∣∣∣∣∣
〈

u1(a)∣∣u1(a)
∣∣ , e1

〉∣∣∣∣∣∣·Voln−2
(
S1(a)

)
= a√

1 − a2
·Voln−2

(
S1(a)

)
, (5.15)

thus from equations (5.12), (5.14) and (5.15) we obtain that

s1(a) =
√

1 − a2
. (5.16)
2a



22 G. Ambrus, B. Gárgyán / Advances in Mathematics 441 (2024) 109524
Fig. 3. Sections of S2(a) and y + L1 in Qn−1 and its diagonal section D.

Next, consider the quantity s2(a). Now represent the points of Rn−1 in the form of 
(x, y), where x ∈ R2 and y ∈ Rn−3. We will determine the orthogonal projection of 
S2(a) onto the central diagonal section of Qn−1 given as

D =
{
(x,y) ∈ Qn−1 : 〈x,12〉 = 0, y ∈ Qn−3

}
.

The equation of the hyperplane corresponding to S2(a) is, by (2.2) and (5.13),

〈x,12〉 = b

a

(1
2 − 〈y,1n−3〉

)
, (5.17)

and S2(a) is described by x ∈ Q2, y ∈ Qn−3 in addition to the above equation.
Consider S2(a)|D. We can calculate its volume as follows. Let L1 be the 2-dimensional 

linear subspace of Rn−1 which consists of vectors of the form (x, 0n−3) with x ∈ R2. 
Furthermore let L2 = L⊥

1 in Rn−1, an (n − 3)-dimensional linear subspace. Then

Voln−2
(
S2(a)|D

)
=

∫
L2∩Qn−1

Vol1
(
S2(a) ∩ (y + L1)

)
dy, (5.18)

since during the projection of S2(a), the length of S2(a) ∩ (y +L1) does not change, see 
Fig. 3.

Note that since by (5.10), b
a ≤ 1

n−2 , (5.17) yields that for n ≥ 3, S2(a) ∩ (y + L1) is 
non-empty for arbitrary y ∈ L2 ∩ Qn−1. Moreover, the length of S2(a) ∩ (y + L1) may 
be calculated from equation (5.17) using elementary plane geometry, resulting in

Vol1
(
S2(a) ∩ (y + L1)

)
=

√
2 −

√
2 · b

a

∣∣∣∣12 − 〈y,1n−3〉
∣∣∣∣ .

Substituting this back to (5.18), and considering the fact that L2 ∩Qn−1 = Qn−3, we 
obtain that
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Voln−2
(
S2(a)|D

)
=

∫
Qn−3

(√
2 −

√
2 · b

a
·
∣∣∣∣12 − 〈y,1n−3〉

∣∣∣∣ )dy. (5.19)

According to formula (5.8),

Voln−2
(
S2(a)|D

)
=

∣∣∣∣∣∣
〈

u2(a)∣∣u2(a)
∣∣ ,dn−1,2

〉∣∣∣∣∣∣ · Voln−2
(
S2(a)

)
=

√
2a√

1 − b2
· Voln−2

(
S2(a)

)
,

therefore, by (5.19),

s2(a) =
√

1 − b2

a
·
(

1 − b

a
·
∫

Qn−3

∣∣∣∣12 − 〈y,1n−3〉
∣∣∣∣ dy

)
. (5.20)

Thus, by substituting (5.16) and (5.20) back to (5.11), we derive that

Fn,2(a) = 1
2a(1 − a2) − 1

a(1 − b2) ·
(

1 − b

a
·
∫

Qn−3

∣∣∣∣12 − 〈y,1n−3〉
∣∣∣∣ dy

)
≥

≥ 1
2a(1 − a2) − 1

a(1 − b2) ·
(

1 − b

a
·
∫

Qn−3

(1
2 − 〈y,1n−3〉

)
dy
)

=

= 1
2a(1 − a2) − 1

a(1 − b2) ·
(
1 − b

a
· 1
2

)
=

=
√

1 − 2a2

2a2(1 − a2)(n− 3 + 2a2) ·
(√

n− 2(1 − a2) − (n− 1)a
√

1 − 2a2
)

by (5.9). Since n ≥ 4 and a ≤ 1√
2 , this is guaranteed to be non-negative if

(n− 2)
(
1 − a2)2 ≥ (n− 1)2a2(1 − 2a2)

which holds when a2 ≤ 1
n or a2 ≥ n−2

2n−3 = γ2
n. The latter condition implies that Fn,2(a) ≥

0 for every a ∈
[
γn, 1√

2

]
. �

6. On the question of local extremality

Supporting Conjecture 1.3, in the concluding section we demonstrate that for any 
n ≥ 4, the critical direction constructed for the proof of Theorem 1.2 is not locally 
extremal on Sn−1 with respect to the central section function σ(v) on Sd−1. Magically, 
this will also prove to be a consequence of Corollary 1.5.

More precisely, let ξn be the location of the first (and, as conjectured in Section 5, 
only) local minimum of σ̂(a) defined by (5.2) on the interval 

( 1√ , 1√
)
. According to the 
n 2
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argument at the beginning of Section 5, w = vn,2(ξn) is a non-diagonal critical direction, 
in fact, this is a zero of Fn,2(.) defined by (5.4).

We will prove that w is not locally extremal. By the choice of w, we only have to 
exclude the possibility of w being a local minimum. According to [7, Proposition 3.2.1], 
it suffices to demonstrate that the Hessian H̃ of the Lagrange function (2.14) at w is 
not positive definite. To that end, let q = (1, −1, 0, . . . , 0) and consider the value qH̃qT . 
The proof of its negativity, by (2.15), (4.1), (4.2) and (4.3), amounts to showing that

q ·

⎡⎢⎢⎢⎢⎣
β1(w) γ1,2(w) · · · γ1,n(w)
γ2,1(w) β2(w) · · · γ2,n(w)

...
...

. . .
...

γn,1(w) γn,2(w) · · · βn(w)

⎤⎥⎥⎥⎥⎦ · qT < 0, (6.1)

equivalently, since β1(w) = β2(w) and γ1,2(w) = γ2,1(w),

β1(w) + β2(w) − γ1,2(w) − γ2,1(w) = 2
(
β1(w) − γ1,2(w)

)
< 0. (6.2)

Based on formulae (4.2) and (4.3),

β1(w) = 1
π

∞∫
−∞

sincn−2(ηnt) · sinc(ξnt)

·
( 2
ξ2
n

(sinc(ξnt) − cos(ξnt)) − t2 sinc(ξnt) + sinc(ξnt)
)

dt

γ1,2(w) = 1
π

∞∫
−∞

sincn−2(ηnt) ·
(cos(ξnt) − sinc(ξnt)

ξn

)2
dt,

where

ηn =
√

1 − 2ξ2
n

n− 2 .

Hence on the left hand side of (6.2),

β1(w) − γ1,2(w) =

= 1
πξ2

n

∞∫
−∞

sincn−2(ηnt) ·
(
(1 + ξ2

n) sinc2(ξnt) − 1
)

dt =

= 1
ξ2
n

(
(1 + ξ2

n)σ(w) −
√

1
1 − 2ξ2

n

σ(dn−2)
)
.

(6.3)

By the choice of ξn, Theorem 1.1 implies that σ(w) < σ(dn). Hence (6.3) is bounded 
from above by
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1
ξ2
n

(
(1 + ξ2

n)σ(w) −
√

1
1 − 2ξ2

n

σ(dn−2)
)
<

<
1
ξ2
n

(
(1 + ξ2

n)σ(dn) −
√

1
1 − 2ξ2

n

σ(dn−2)
)

=

= 1
ξ2
n

(
(1 + ξ2

n)
√
nJn(0) −

√
n− 2

1 − 2ξ2
n

Jn−2(0)
)
,

where (2.10) is used in the last step. Due to Corollary 1.5, this is bounded from above 
by

1
ξ2
n

(
(1 + ξ2

n)
√
n · n

n + 1 −
√

n− 2
1 − 2ξ2

n

)
Jn−2(0) =

= 1
ξ2
n

· 1√
1 − 2ξ2

n

· n3/2

n + 1 · Jn−2(0) ·
(√

1 − 2ξ2
n · (1 + ξ2

n) −
√
n− 2 · (n + 1)

n3/2

)
.

(6.4)

Note that since ξn < 1√
2 , the first terms are positive, while the function 

√
1 − 2ξ2 ·(1 +ξ2)

is strictly monotone decreasing on the interval ξ ∈
[ 1√

n
, 1√

2

]
. Hence, (6.4) is maximal at 

ξ = 1√
n
, where its value is precisely 0. As ξn > 1√

n
, this implies that (6.1) indeed holds.
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