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Abstract: Psoriasis is a chronic immune-mediated skin disease in which the symptom-free, unin-
volved skin carries alterations in gene expression, serving as a basis for lesion formation. Histones
and histone acetylation-related processes are key regulators of gene expression, controlling cell
proliferation and immune responses. Dysregulation of these processes is likely to play an important
role in the pathogenesis of psoriasis. To gain a complete overview of these potential alterations, we
performed a meta-analysis of a psoriatic uninvolved skin dataset containing differentially expressed
transcripts from nearly 300 individuals and screened for histones and histone acetylation-related
molecules. We identified altered expression of the replication-dependent histones HIST2H2AA3
and HIST2H4A and the replication-independent histones H2AFY, H2AFZ, and H3F3A/B. Eight
histone chaperones were also identified. Among the histone acetyltransferases, ELP3 and KAT5 and
members of the ATAC, NSL, and SAGA acetyltransferase complexes are affected in uninvolved skin.
Histone deacetylation-related alterations were found to affect eight HDACs and members of the
NCOR/SMRT, NURD, SIN3, and SHIP HDAC complexes. In this article, we discuss how histone and
histone acetylation-related expression changes may affect proliferation and differentiation, as well as
innate, macrophage-mediated, and T cell-mediated pro- and anti-inflammatory responses, which are
known to play a central role in the development of psoriasis.

Keywords: psoriasis; uninvolved skin; histone; histone acetylation and deacetylation; proliferation;
immune responses

1. Introduction

Psoriasis is an inflammatory skin disease with an exaggerated response to exter-
nal and internal stress reactions, resulting in keratinocyte hyperproliferation, abnormal
differentiation, and massive immune cell infiltration [1,2]. The combined interaction of
abnormal genetic, epigenetic, environmental, and microbiome-related factors is believed
to be responsible for the development of psoriasis [3]. In this disease, the macroscopically
healthy, uninvolved skin carries multiple molecular changes that lead to the appearance of
symptoms [4,5]. Large-scale analyses comparing healthy, uninvolved, and psoriatic skin
samples have found that the expression levels of many genes differ [6]. Epigenetic changes
related to histones through their post-translational modification are partly behind these
processes [7].

Chromatin is composed of DNA and histones, of which two main types can be dis-
tinguished: the gene-poor, transcriptionally less active heterochromatin and the gene-rich
euchromatin, which is accessible for transcription [8]. The basic unit of chromatin is the
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nucleosome, composed of DNA and a core histone octamer [9], while the higher-order
chromatin structures are promoted by the H1 linker histone [10]. On the basis of their
role in replication, replication-dependent canonical [11] and replication-independent non-
canonical histone variants [12] have been distinguished, encoded by 75 and 20 genes,
respectively [13].

There are four classes of histone chaperones. Class I contains single chaperones,
class II is a multichaperone complex, class III is enzymatic, and class IV is a multiclass
chaperone complex [14]. These chaperones regulate the assembly, deposition, removal,
exchange, and transport of histones, thereby modulating proliferation [15] and inflam-
matory responses [16,17].

Histone acetylation, carried out by histone acetyltransferases (HATs), leads to tran-
scriptional activation [18,19]. There are two major types of HATs, A- and B-type [20]. A-type
HATs acetylate chromatin-incorporated histones, whereas B-type HATs acetylate newly
synthesized histones [21,22]. By contrast, histone deacetylation by histone deacetylases
(HDACs) results in transcriptional repression [23].

Regarding psoriasis pathogenesis, histone acetylation in general and H3K27Ac in
particular show a different pattern in lesional skin compared with healthy skin, as seen
in heat images [7]. Histone H3 acetylation plays a role in Th17 cell differentiation and
keratinocyte proliferation, both of which are known to play a central role in the pathogenesis
of psoriasis [24]. Elevated expression of the epigenetic modifier CREMα has been detected
in psoriatic T cells [25], which has been suggested to be partially responsible for the
development of the abnormal expression of IL2 and IL17 [26].

On the one hand, histone variants can replace and substitute each other. On the other
hand, they differ in the number and position of post-transcription modification sites at
their globular core and N-terminal tail, allowing them to carry out distinct and specialized
roles, including the regulation of tissue- and cell-type-specific functions. These functions
include the regulation of proliferation [27,28], cell fate commitment [29], hematopoiesis [30],
differentiation [31], macrophage [32] and T cell immune responses, and mutagenesis of
immunoglobins [33,34].

To gain insight into how these processes are affected in uninvolved psoriatic skin,
we screened for gene expression alterations in histones, histone chaperones, and histone
acetylation-related molecules. We used a psoriatic transcriptome dataset containing nearly
300 published individual patient data (99 psoriatic lesional, 27 uninvolved psoriatic, and
172 healthy samples) to determine how these alterations may affect key processes in the
pathogenesis of this common skin disease, as well as proliferation and immune responses.

2. Results and Discussion
2.1. Histones

To the best of our knowledge, there are no studies on the role of histones regarding
the development of psoriasis. Among the canonical histones, we found that H2AC18
(also known as HIST2H2AA3) and H4C14 (also known asHIST2H4A) showed different
expression in psoriatic uninvolved skin compared with the skin of healthy individuals
(Figure 1 and Supplementary Table S2).

In non-dividing cells, HIST2H2AA3 participates in the terminal differentiation pro-
gram [31] (Figure 2). HIST2H4A is commonly used as a marker for proliferation [27,28]
(Figure 2). Therefore, differential expression of these histones may contribute to prolifera-
tion and differentiation-related alterations in psoriasis.
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Figure 1. Heatmap of histone and histone acetylation-related molecules with altered expression in 
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Among the replication-independent histones that modulate nucleosome plasticity 
[12,35], MACROH2A1 (also known as H2AFY), H2AZ1 (also known as H2AFZ), and 
H3F3A/B show altered expression in uninvolved skin (Figure 1). 

H2AFY plays a role in transcriptional repression [36] by regulating the transition be-
tween activating and inhibitory chromatin remodeling complexes [37]. It is also involved 
in the repression of pluripotent and bivalent developmental genes, thereby maintaining 
cell faith commitment [29] (Figure 2). 

The H2AFY-PARP1 axis determines the cellular stress responses to DNA damage, 
heat shock, and aging [38]. H2AFY can suppress IFNB1 [39] and the proinflammatory cy-
tokine IL-8 (CXCL8) [40], as well as CCL2 [41] transcription [42]. IFNB1 regulates the Th17 
immune response [33], and IL-17A induces the production of IL-8 [43], while CCL2 pro-
motes inflammatory processes in psoriasis [44]. Through the canonical JAK/STAT signal-
ing pathway, the IFNB1-initiated response regulates cell proliferation [45], which is 
known to be dysregulated in psoriasis. Therefore, the differential expression of H2AFY in 
uninvolved psoriatic skin is likely to play a massive role in triggering psoriasis-related 
dysregulation in innate immune and proliferation-related responses (Figure 2). 

H2AFZ ubiquitination regulates the transition between eu- and facultative hetero-
chromatin, distinguishing constitutive from facultative heterochromatin [46] during the 
cell cycle (G1/S phase cMYC, Ki67) [47], and influencing lineage commitment [48,49] 

Figure 1. Heatmap of histone and histone acetylation-related molecules with altered expression
in uninvolved psoriatic skin (NL) and their expression in lesional skin (L) compared with healthy
skin (H).

Among the replication-independent histones that modulate nucleosome plastic-
ity [12,35], MACROH2A1 (also known as H2AFY), H2AZ1 (also known as H2AFZ), and
H3F3A/B show altered expression in uninvolved skin (Figure 1).

H2AFY plays a role in transcriptional repression [36] by regulating the transition
between activating and inhibitory chromatin remodeling complexes [37]. It is also involved
in the repression of pluripotent and bivalent developmental genes, thereby maintaining
cell faith commitment [29] (Figure 2).

The H2AFY-PARP1 axis determines the cellular stress responses to DNA damage,
heat shock, and aging [38]. H2AFY can suppress IFNB1 [39] and the proinflammatory
cytokine IL-8 (CXCL8) [40], as well as CCL2 [41] transcription [42]. IFNB1 regulates the
Th17 immune response [33], and IL-17A induces the production of IL-8 [43], while CCL2
promotes inflammatory processes in psoriasis [44]. Through the canonical JAK/STAT
signaling pathway, the IFNB1-initiated response regulates cell proliferation [45], which is
known to be dysregulated in psoriasis. Therefore, the differential expression of H2AFY
in uninvolved psoriatic skin is likely to play a massive role in triggering psoriasis-related
dysregulation in innate immune and proliferation-related responses (Figure 2).
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NPM1 is an H1 and H3/H4 chaperone that participates in heterochromatin (re)ar-

rangement [57]. NPM1 promotes cell proliferation [15] and is required for the mainte-
nance of cell identity by maintaining a cell type-specific gene expression pattern [57]. The 
expression of NPM1 is elevated in proliferating keratinocytes of psoriatic lesions [58] and 
activates inflammatory responses when released into the extracellular space [16] (Figure 
3). 

The histone chaperone SET inhibits nucleosome acetylation and regulates p53-medi-
ated cell cycle arrest [59]. SET regulates the G1/S and G2/M transition [60] via E-CDK2 

Figure 2. Replication-dependent and -independent histones with altered expression in psoriatic
uninvolved skin and their effects on cell proliferation and immune system-related processes.

H2AFZ ubiquitination regulates the transition between eu- and facultative heterochro-
matin, distinguishing constitutive from facultative heterochromatin [46] during the cell
cycle (G1/S phase cMYC, Ki67) [47], and influencing lineage commitment [48,49] (Figure 2).
Elevated expression of Ki67 and cMYC has been detected in psoriatic lesions, contributing
to keratinocyte hyperproliferation [50]. Therefore, H2AFZ may contribute to the devel-
opment of the disease by regulating stress response and proliferation, both of which are
known to be involved in the pathogenesis of psoriasis.

H3F3A/B encodes histone H3.3, which is located at the euchromatin borders [51,52]
and maintains heterochromatin structures [53]. As bifunctional histones, they can act as
both transcriptional activators and repressors [54]. H3F3A/B is required in somatic cells to
maintain their identity, for normal chromosome segregation [55], to maintain the balance
of hematopoiesis [30], to activate macrophages [32], and to regulate the mutagenesis in the
variable regions of immunoglobins [34] (Figure 2). In line with our results, an increased
(hyper)mutation rate of IgE was detected in psoriasis patients [56].

In the development of abnormal differentiation, pluripotency, cell line commitment,
and the differential expression of histones involved in terminal differentiation (H2AFY,
H2AFZ, and HIST2H2AA3, respectively) may play a role during the development of
the disease.

2.2. Histone Chaperones

Among the class I single chaperones, abnormal expression of the NPM1 and SET was
identified in the non-lesioned skin (Figure 1).

NPM1 is an H1 and H3/H4 chaperone that participates in heterochromatin (re)ar-
rangement [57]. NPM1 promotes cell proliferation [15] and is required for the maintenance
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of cell identity by maintaining a cell type-specific gene expression pattern [57]. The ex-
pression of NPM1 is elevated in proliferating keratinocytes of psoriatic lesions [58] and
activates inflammatory responses when released into the extracellular space [16] (Figure 3).
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Figure 3. Altered expression of histone chaperones in uninvolved skin (depicted in blue) and their
role in cell proliferation and immune system-related processes.

The histone chaperone SET inhibits nucleosome acetylation and regulates p53-mediated
cell cycle arrest [59]. SET regulates the G1/S and G2/M transition [60] via E-CDK2 and
B-CDK1 [61], respectively (Figure 3), and inhibits cytotoxic T-cell-mediated apoptosis
(www.genecards.org (accessed on 24 June 2023.)). These changes, characteristic of non-
lesional skin, may be important in the development of the disease, as previous studies have
shown increased activity of CDK1 and CDK2 in the psoriatic epidermis [62,63].

Among the class II. multi-chaperone complex members, CHAF1A, RBBP4, and UBN1
showed alterations in the non-lesioned skin (Figure 1).

CHAF1A is a component of the CAF1 complex that maintains Cd4 silencing in cyto-
toxic T cells [17]. The CAF1 complex is linked to DNA replication [64] and determines the
proliferation–differentiation switch in stem cells [65], which is known to be abnormally
regulated in psoriasis.

RBBP4 levels are upregulated in psoriasis by skin-derived mesenchymal stem cells,
contributing to epidermal hyperplasia [66].

UBN1 is part of the bifunctional chaperone HIRA complex and participates in both
transcriptional activation and inhibition [67]. By repressing proliferation-promoting genes,
UBN1 regulates tissue aging-associated cellular senescence [68]. Consistent with our
results, middle and upper epidermal keratinocytes of psoriatic plaques are characterized
by a special state of aging, which is manifested by cell cycle arrest, as well as the release of
inflammatory effectors and other molecules characteristic of aging [69].

Class III enzymatic complex members ANP32E and VPS72 also show altered expres-
sion. As part of the INO80 family, they regulate histone exchange [70]. ANP32E can remove

www.genecards.org
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H2AFZ from the nucleosome [71], while VPS72 deposits H2AFZ during mitosis [72], and
immune cell infiltration [73,74] (Figure 3) that are known to be affected in the disease.

2.3. Histone Acetylation

Only type A HATs or their modulators showed abnormal expression in uninvolved
psoriatic skin. Type A HATs can be classified into three subfamilies: the CBP/CREBBP,
GNAT, and MYST families.

Members of the CBP/CREBBP family did not show transcriptional changes in unin-
volved psoriatic skin. However, abnormal expression of EP300 modulators, such as the
sequence-specific DNA binding protein MYBBP1A, the EP300 coactivator WBP2, and the
EP300 corepressor CTBP1, was observed in the same samples (Figure 1). Elevated levels of
CTBP1 have been demonstrated in psoriatic plaques, and mice overexpressing CTBP1 in epi-
dermal keratinocytes show severe skin inflammation with increased expression of Th1 and
Th17 cytokines [75], while WBP2 regulates epidermal [76] and T cell proliferation [77,78].

Abnormal expression of the GNAT family member ELP3 was also observed in unin-
volved skin (Figure 1). ELP3 inhibits M1 and promotes M2 macrophage polarization [79].

We identified that the MYST family member KAT5 had altered expression in unin-
volved skin (Figure 1). KAT5 modulates the differentiation and tissue infiltration of Th17
and Treg cells via FOXP3 [80]. As a cofactor of STAT3, KAT5 regulates IL-9 signaling [81]
and hematopoietic stem cell maintenance [82] (Figure 4). KAT5 is also a catalytic subunit of
the Tip60 histone acetyltransferase complex.
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The H4 and H2A histone-specific acetyltransferase [83] and the lipid synthesis regula-
tor [84,85] NAA40 are also differentially expressed in uninvolved psoriatic skin (Figure 1).

Type A histone acetyltransferases are components of several complexes that exert
specific or universal effects [86]. As a result of their analysis, we found differential tran-
scriptional expression of individual subunits of the NSL acetyltransferase complex and the
SAGA deubiquitinase and histone acetyltransferase multicomplex with various transcrip-
tion factor-interacting proteins [87,88], including TRRAP [88] (Figure 1).

The NSL complex regulates many mitochondrial processes, as well as transcription,
RNA splicing, and telomere elongation [89]. As components of this complex, KANSL1 and
MCRS1 show transcriptional alterations in uninvolved psoriatic skin (Figure 1).

KANSL1 is a master regulator of immune gene expression [90] (Figure 4), whereas
MCRS1 protects chromosome-associated microtubules from depolymerization during
mitosis [91] (Figure 4).

We identified a change in the expression of TADA2B in uninvolved skin. This is a part
of the HAT module of the SAGA complex (Figure 1), which regulates p53 responses [92],
stem cell pluripotency, and viability [93] (Figure 4).

TRRAP, which is responsible for recruiting transcription factors and histone acetyl-
transferases to chromatin, is required for transcriptional activation [94]. TRRAP [95]
regulates the entry from the G0 to G1 phase and transitions between the different phases
throughout the cell cycle [96], and by regulating critical differentiation markers, it maintains
stem cells self-renewal and prevents their differentiation, both of which are known to be af-
fected in psoriasis [97]. TRRAP represses the master regulator of interferon genes, IRF9 [95],
whose expression is elevated in psoriasis [98]. TRRAP is also a component of the Tip60
complex, which promotes histone acetyltransferase activity [95]. Among Tip60 complex
members, we identified abnormal expression of ACTB, BRD8, ING3, and KAT5 (discussed
above) in uninvolved psoriatic skin (Figure 1). The TIP60 complex coactivators BRD8 and
ING3 regulate p53-dependent gene suppression and the cell cycle [99,100] (Figure 4).

Members of the inhibitor of histone acetyltransferases (INHAT) complex ANP32A and
SET inhibit p300/CBP (CREBBP)- and KAT2B (PCAF)-mediated histone acetylation [101]
resulting in the silencing of HAT-dependent transcription. The SET protein (described
above among histone chaperones) can inhibit histone H4 and H1 acetylation-dependent
transcription [102].

The HAT module of the SAGA complex shares several components with the large
acetyltransferase ATAC complex [103], which is one of the main regulators of mitosis
through the acetylation of histone H3 and H4 [104]. The ATAC complex component
MBIP shows altered expression in non-lesioned skin. Splice variations of this gene have
been described in psoriasis [105] pathogenesis, in which they contribute to immune cell
infiltration [106] and/or keratinocyte hyperproliferation.

2.4. Histone Deacetylation

Among the members of the HDACI histone deacetylase family, HDAC3 and HDAC8
showed altered expression in uninvolved skin (Figure 1). HDAC3 inhibition results in
the reduced expression of AQP3 [107], contributing to skin dryness in uninvolved and
lesional psoriatic skin [108] and a decrease in LPS-induced inflammatory gene expression
in macrophages [109] (Figure 5A). HDAC3 is part of the NCOR/SMRT complex, which
is responsible for nuclear receptor-mediated transcriptional repression [110]. From this
complex, we observed the abnormal expression of the GPS2 and TBL1X genes (Figure 1).

GPS2 regulates proinflammatory cytokine production in macrophages [111] and
inhibits proliferation by suppressing mitogen-activated protein kinase-mediated signal-
ing [112].

TBL1X modulates Wnt/β-catenin and TNFA-regulated transcription [110] (Figure 5B).
Elevated levels of TBL1X have been described previously in psoriasis [113].
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Altered expression of HDAC8 in uninvolved skin may modulate (keratinocyte) tol-
erance to TLR2/6 ligand stimulation [114,115] and may increase T cell infiltration [116]
(Figure 5A).
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HDAC I family members HDAC1 and HDAC2 are normally expressed in uninvolved
skin, but the expression of their repressor SPHK2 is altered (Figure 1). SPHK2 inhibits
HDAC1/2 activity [117], thus altering the differentiation of Th17 cells in psoriasis [118].

In addition, we observed altered expression levels of several members of the HDAC1/2
protein complexes, which affect the function of NURD, SHIP, and SIN3 complexes (Figure 1).

The NURD complex is a multi-functional complex, playing a role in remodeling chro-
matin; regulating histone deacetylase activities; and controlling the development of T
cells [119], their cell cycle progression, and progenitor cell maintenance [120]. The NURD
complex contains an ATP-dependent CHD3/4 chromodomain helicase; a transcriptional
repressor adaptor macromolecule GATAD2A; the histone tail and promoter-reading tran-
scriptional coregulator MTA1; a histone-binding, chromatin-remodeling factor RBBP4;
and a DNA-binding MBD2/3, which connects the complex with DNA methylation pro-
cesses [121] (Figure 5B). Among these molecules, the expression of CHD4, GATAD2A, and
MTA1 is altered in uninvolved skin (Figure 1).

CHD4 plays an important role in the early development of the basal epidermal layer
and regulates the induction and development of hair follicles by destabilizing the inter-
actions between DNA and histones [122]. In keratinocytes, CHD4 can increase tolerance
to stress by limiting the expression of stress response genes [123]. CHD4 also regulates
Th2 cell differentiation [124], CD8+ T-cell infiltration [125], and self-antigen expression in
epithelial cells [126] (Figure 5B).

GATAD2A regulates proliferation [127] and naive pluripotency [128] in association
with CHD4. MTA1 regulates the balance between hematopoietic cell renewal and differ-
entiation [129] via the MyD88 pathway [130]. The overexpression of MTA1 triggers the
downregulation of the macrophage-attracting chemokine receptor (CCR2) and ligands,
leading to M2 polarization and impairing the cytotoxic effect of T cells, resulting in CD8+ T
cell enrichment [131] (Figure 5B).

The HDAC1/2-containing SHIP complex exhibits DNA binding and chromatin remod-
eling capabilities [132]. We found that HSPA2, a member of the SHIP complex, exhibited
altered expression in uninvolved psoriatic skin compared with the skin of healthy indi-
viduals (Figure 1). HSPA2 acts as a molecular chaperone and provides protection against
the cytotoxic effects of heat shock [132], and its expression in keratinocytes increases with
hypoxia [133]. This molecule contributes to early keratinocyte differentiation [134] and
acts as an important factor in the establishment and maintenance of the properly layered
epidermis [135] (Figure 5B).

The SIN3 multiprotein complex influences protein stability, transcriptional activity,
aging and heterochromatinization events, cell proliferation/cell cycle progression, cell
survival [136], and pluripotency maintenance [137]. Among the complex components,
SIN3A showed abnormal expression in uninvolved skin (Figure 1). Sin3A regulated T cell
development [138], in particular Th17 cell differentiation, and the establishment of their
inflammatory potential [139]. While in the skin, the same molecule is known to regulate
terminal differentiation and the maintenance of epidermis homeostasis [140] (Figure 5B).

Among the members of the HDACII family, HDAC4, HDAC5, and HDAC6 show
altered expression in uninvolved skin (Figure 1).

The histone deacetylase HDAC4 acts as a transcriptional repressor, but it may exhibit
both pro- and anti-inflammatory effects depending on the target gene. While HDAC4-
induced NF-κB gene expression inhibition results in the decreased production of proin-
flammatory cytokines [141], when inflammatory processes are initiated, it can also increase
inflammation by indirectly activating Foxo3a [142]. HDAC4 also inhibits keratinocyte
proliferation [143] (Figure 5A).

On the one hand, the overexpression of HDAC5 contributes to the initiation of apop-
totic processes in keratinocyte stem cells [143]. On the other hand, it also regulates the
transformation of CD4+ T cells into Tregs and the cytokine production of CD8+ T cells [144].
Fluid shear stress stimulates the phosphorylation and nuclear export of HDAC5, which
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plays an important role in the establishment and maintenance of flow-regulated anti-
inflammatory processes [145] (Figure 5A).

Another HDACII family member, HDAC6, promotes cell motility [146] during wound
healing [147] and chemotaxis of T lymphocytes [148], and it regulates the organization of
immune synapses [149] (Figure 5A).

Among the HDACIII family members, SIRT5 and SIRT6 showed abnormal expression
in uninvolved skin (Figure 1).

SIRT5 negatively regulates keratinocyte proliferation and inflammation (TNFA induc-
tion [150]) and improves epidermal barrier dysfunction [151] (Figure 5A).

SIRT6-mediated histone H3 deacetylation at the N-terminal tail (H3K9Ac) and during
the cell cycle at the globular core (H3K56Ac) regulates telomeric chromatin structure,
which is necessary to maintain genomic stability and lifespan [152]. By contrast, SIRT6-
mediated deacetylation at H3K18 of the pericentric chromatin prevents proliferation-related
(replicative) cellular senescence [153]. Changes in SIRT6 expression were also reported in
association with the adaptive immune responses [150]. It regulates the balance between the
M1 and M2 macrophages, influences wound healing [154], inhibits skin inflammation [155],
and plays a role in cDC differentiation and function [156] (Figure 5A).

The HDACIV family member HDAC11 was also differentially expressed in uninvolved
skin (Figure 1). The biological function of this family is incomplete. HDAC11 plays an
important role in immune regulation, neutrophil lineage commitment, and inflammatory
responses, including the regulation of macrophage IL10 and IL1B secretion, dendritic cell
IL1B secretion, and T cell activation [157] (Figure 5A).

3. Materials and Methods
3.1. Establishment of the Psoriatic Transcriptome Sequencing Data Set

The dataset we used for these investigations was successfully used in another study
that screened for psoriasis-related alterations affecting the peripheral nervous system in
psoriatic uninvolved and lesional skin [158]. The combined transcriptome sequencing
data were obtained from three studies [159–161] that randomly enrolled individuals with
chronic plaque-type psoriasis and healthy donors (number of samples: lesional psoriatic: 99,
uninvolved psoriatic: 27, healthy: 172). Skin punch biopsies were collected with no gender
or age (>18) preferences for RNA sequencing. Psoriatic patients (PASI: min. 1% of total body
surface area) on topical and systemic anti-psoriatic treatments had a washout period (the
time between the last treatment and sample collection intended to exclude the interference
of medication-related effects) of 1 and 2 weeks, respectively, prior to biopsy collection in
all studies.

3.2. RNA Sequencing, Data Processing, and Differential Expression Analysis

RNA sequencing data processing and analysis were performed as described previ-
ously [158]. Briefly, the three RNA sequencing datasets [159,160] (ID Accession num-
bers: SRP035988, SRP050971, and SRP055813) were downloaded from the Sequence Read
Archive using SRA tools (v2.9.2), and all available samples were uniformly reprocessed.
Transcript levels were quantified using Kallisto (version 0.43.0) [162] and full transcrip-
tome annotation GENCODE [163] v27 software. Transcript-level, length-scaled TPM
(Transcripts Per Million) expression estimates from Kallisto were imported into the R sta-
tistical environment (v3.4.3) using the tximport [164] package (v1.6.0). The data were
TMM-normalized [165] (edgeR [166] v3.20.9) and voom-transformed (limma [167,168]
v3.34.9). voomWithQualityWeights() was used to combine the observation-level weight
of the transcripts with the sample-specific weight, retaining lower-quality samples but
down-weighing them in the analysis. Differential expression between uninvolved and
healthy sample groups was tested using Limma. A linear model was fitted (limma lmFit),
and the moderated t-statistics were calculated (eBayes). Differentially expressed transcripts
(DETs) were defined if they had an FDR [168,169] corrected p-value of <0.05.
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3.3. Screening for Histones and Histone Acetylation-Related DETs

Differentially expressed transcripts (DETs) from the NL vs. H (non-lesional/uninvolved
and healthy, respectively) comparison were analyzed using libraries of datasets down-
loaded from https://amigo.geneontology.org/amigo/term/ (accessed on 24–29 June 2023)
and supplemented with literature data. A complete list of libraries is shown in Supplementary
Table S1, in which the GO database and literature datasets [13,14,73,87,101,103,132,170–173]
are listed separately. The filtering used to determine matches between NL vs. H and
the downloaded dataset was performed in Python by applying intersection analysis. De-
tailed information on all methodological steps and processes of the study is provided in
Supplementary Methodology Figure S1.

4. Conclusions

On the basis of our findings, we identified complex expression abnormalities in
histones and genes with functions in histone acetylation-related processes.

There are already some therapies available to alleviate the clinical manifestation of the
symptoms, which are based on a significant number of genetic/epigenetic studies [174]. The
regulatory effect of HDAC inhibitors on T cells has been reported. According to these stud-
ies, in the presence of histone deacetylase inhibitors, the release of Th1 cytokines and the
polarization of Th17 cells decreases, while the formation of Treg cells increases [175]. In ad-
dition, HDAC inhibition also modulates pigmentation by reducing MITF expression [176].
A study on the pan-HDAC inhibitor vorinostat found that it induced the apoptosis and
differentiation of keratinocytes—consistent with the inhibition of keratinocyte proliferation
in psoriasis [177]. According to recent research, the HDAC1 inhibitor (entinostat) reduced
the infiltration of IL-17A+ γδT cells into the skin [178].

The pan-BET bromodomain HAT inhibitor (JQ1) reduced the ratio of IL17A+/IFNY+
T cells and IL17A secretion in both psoriatic arthritis patients and healthy individuals [179].
The CREBBP and P300-specific (type A HATs) inhibitor (CBP30) reduced the induced Th17
response in patients with psoriatic arthritis [180].

The described alterations are likely to contribute to the dysregulation of prolifera-
tion and differentiation, pro- and anti-inflammatory processes mediated by innate and
professional immune cells in uninvolved psoriatic skin, leading to disease flare-ups. Fur-
ther experimental confirmation of their functional modification may represent new points
of intervention.

5. Limitations of the Study

It is important to note that no fold change cut-off was used as a criterion for differential
expression; therefore, minor differences between uninvolved and healthy skin (FDR < 0.05)
are also included in the study. These minor differences (as well as all others) in the expres-
sion were observed at the level of RNS transcripts, some of which may not have manifested
at the protein level due to post-transcriptional, translational, and post-translational events,
including the processing and degradation of proteins. In addition, skin biopsies contain
both the epidermis and the dermis. These two layers of the skin contain different cell
types, including keratinocytes, melanocytes, Merkel cells, fibroblasts, and several resident
immune cells, like T cells, dendritic cells, Langerhans cells, NK cells, and macrophages.
Therefore, the cell type in which the mRNA expression differences manifest could not be
determined with certainty, and further experimental confirmation is required to support
them, for which these results provide a strong basis.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241914551/s1.
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ACTB Actin Beta
ANP32A Acidic Nuclear Phosphoprotein 32 Family Member A
ANP32E Acidic Nuclear Phosphoprotein 32 Family Member E
AQP3 Aquaporin 3
ATAC Ada-two-A-containing
B-CDK1 Cyclin Dependent Kinase 1
BRD8 Bromodomain Containing 8
CAF1 Chromatin Assembly Factor-1
CBP/CREBBP CREB-binding Protein
CCL2 C-C Motif Chemokine Ligand 2
CCR2 C-C Motif Chemokine Receptor 2
cDC classical Dendritic Cells
CHAF1A Chromatin Assembly Factor 1 Subunit A
CHD3 Chromodomain Helicase DNA-Binding Protein 3
CHD4 Chromodomain Helicase DNA-Binding Protein 4
cMYC MYC Proto-Oncogene, BHLH Transcription Factor
CREMα cAMP-responsive Element Modulator α
CTBP1 C-Terminal Binding Protein 1
DET Differentially Expressed Transcript
DNA Deoxyribonucleic Acid
DUB Deubiquitinating
E-CDK2 Cyclin-Dependent Kinase 2
ELP3 Elongator Acetyltransferase Complex Subunit 3
EP300 E1A Binding Protein P300
FDR False Discovery Rate
FOXP3 Forkhead Box P3
GATAD2A GATA Zinc Finger Domain-Containing 2A
GO Gene Ontology
GNAT GCN5-related N-acetyltransferases
GPS2 G Protein Pathway Suppressor 2
H Healthy
H2AFY MacroH2A.1 Histone
H2AFZ H2A.Z Variant Histone 1
H3F3A H3.3 Histone A
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H3F3B H3.3 Histone B
HAT Histone Acetyltransferase
HDAC Histone Deacetylase
HDAC11 Histone Deacetylase 11
HDAC3 Histone Deacetylase 3
HDAC4 Histone Deacetylase 4
HDAC5 Histone Deacetylase 5
HDAC6 Histone Deacetylase 6
HDAC8 Histone Deacetylase 8
HIRA Histone Cell Cycle Regulator
HIST2H2AA3 H2A Clustered Histone 18
HIST2H4A H4 Clustered Histone 14
HSPA2 Heat Shock Protein Family A (Hsp70) Member 2
ID Identification
IFNB1 Interferon Beta 1
IFNG Interferon Gamma
IL10 Interleukin 10
IL-17A Interleukin 17A
IL-8 Interleukin 8
IL-9 Interleukin 9
ILB Interleukin 1 Beta
ING3 Inhibitor of Growth Family Member 3
INHAT Inhibitor of Acetyltransferases
JAK/STAT Janus Kinase/Signal Transducers and Activators of Transcription
KANSL1 KAT8 Regulatory NSL Complex Subunit 1
KAT2B Lysine Acetyltransferase 2B
KAT5 Lysine Acetyltransferase 5
Ki67 Marker Of Proliferation Ki-67
L Lesional
LPS Lipopolysaccharide
MBD2 Methyl-CpG Binding Domain Protein 2
MBD3 Methyl-CpG Binding Domain Protein 3
MBIP MAP3K12 Binding Inhibitory Protein 1
MITF Melanocyte Inducing Transcription Factor
MCRS1 Microspherule Protein 1
MTA1 Metastasis Associated 1
MYBBP1A MYB Binding Protein 1a
MYD88 MYD88 Innate Immune Signal Transduction Adaptor
MYST Moz, Ybf2/Sas3, Sas2, Tip60
NAA40 N-Alpha-Acetyltransferase 40, NatD Catalytic Subunit
NCOR Nuclear Receptor—Co-repressor
NF-κB Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells
NL Non-lesional
NPM1 Nucleophosmin 1
NSL Non-specific Lethal
NURD NUcleosome Remodeling and Deacetylase
P53 Tumor Protein P53
PASI Psoriasis Area and Severity Index
PARP1 Poly(ADP-Ribose) Polymerase 1
PWP1 PWP1 Homolog, Endonuclein
RBBP4 RB Binding Protein 4, Chromatin Remodeling Factor
RNA Ribonucleic Acid
SAGA Spt-Ada-Gcn5 Acetyltransferase
SET SET Nuclear Proto-Oncogene
SIN3A SIN3 Transcription Regulator Family Member A
SIRT5 Sirtuin 5
SIRT6 Sirtuin 6
SMRT Silencing Mediator for Retinoid and Thyroid Receptor
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SPHK2 Sphingosine Kinase 2
SPL Splicing
STAT3 Signal Transducer and Activator of Transcription 3
TADA2B Transcriptional Adaptor 2B
TBL1X Transducin Beta-Like 1 X-Linked
Th17 T helper 17
TLR2 Toll-Like Receptor 2
TLR4 Toll-Like Receptor 4
TLR6 Toll-Like Receptor 6
TNFA Tumor Necrosis Factor
TMM Trimmed mean of M-values
TPM Transcripts per million
Treg Regulatory T cell
TRRAP Transformation/Transcription Domain-Associated Protein
UBN1 Ubinuclein 1
VPS72 Vacuolar Protein-Sorting 72 Homolog
WBP2 WW Domain-Binding Protein 2
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