
Introduction 

Pseudomonas aeruginosa (P. aeruginosa) – a member of the 
Pseudomonadota phylum – is one of the most commonly 

isolated species among non-fermenting Gram-negative 
bacteria, both from clinical samples and from environ-
mental sources, which is due to the non-fastidious growth 
requirements and the considerable genomic plasticity 
characteristic for this species (Moradali et al. 2017; Nolan 
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Pseudomonas aeruginosa is one of the most commonly isolated spe-
cies among non-fermenting Gram-negative bacteria, both from clinical samples and 
from environmental sources. The survival of the species in harsh conditions is ensured 
by the production of a protective biofilm; assessment of biofilm-forming capacity aids 
future pathogen eradication strategies. The aim of our present study was to assess the 
relationship between antibiotic resistance, biofilm-forming capacity and other phenotypic 
virulence factors in environmental P. aeruginosa isolates. One hundred and fourteen (n = 
114) isolates were included in the study, which were obtained from various geographical 
regions and environmental origins. Antimicrobial susceptibility testing was carried out us-
ing standard protocols. Biofilm-forming capacity and pyocyanin pigment production were 
tested using microtiter plate-based methods. Swarming, swimming and twitching motility, 
and siderophore-production were assessed using agar-plate based methodologies. Re-
sistance in environmental isolates were highest for levofloxacin/ciprofloxacin 49.12% (n = 
56), ceftazidime 42.98% (n = 49) and cefepime 35.96% (n = 41), while lowest for colistin 0% 
(n = 0); overexpression of RND-type efflux pumps was seen in 33.33% (n = 33) of isolates. 
21.93% (n = 25) met the criteria to be classified as multidrug resistant (MDR). 17.54% (n = 
20) of isolates were weak/non-biofilm producers, while (25.45%, n = 29) and (57.01%, n = 65) 
were moderate and strong biofilm producers, respectively. No significant differences were 
noted in biofilm-formation (OD570 values non-MDR [mean ± SD]: 0.396 ± 0.138 vs. MDR: 0.348 
± 0.181; p > 0.05) or pyocyanin pigment production (OD686 values non-MDR: 0.403 ± 0.169 
vs. MDR: 0.484 ± 0.125; p > 0.05) between MDR and non-MDR environmental P. aeruginosa. 
Highest motility values were observed for swarming motility, followed by swimming and 
twitching motility; no relevant differences (p > 0.05) in motility were noted in the context 
of MDR status or biofilm-formation in the tested isolates. P. aeruginosa is an opportunistic 
pathogen with high medical importance, being a causative agent of recalcitrant infections, 
which are becoming difficult to treat with the onset of MDR. Further studies are warranted 
to assess biofilm-forming capacity, and to provide insights into the mechanisms underlying 
biofilm-formation both in isolates of clinical and environmental origins.
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et al. 2020). Members of the genus are ubiquitous, fre-
quently isolated from aquatic environments and sediment, 
farming, fishing, and agricultural sites (Algammal et al. 
2020; Gutiérrez-Barranquero et al. 2019). In addition, P. 
aeruginosa is an important cause of healthcare-associated 
infections (HAIs; such as ventilation-associated pneumo-
nia, bacteremia, sepsis, skin and soft tissue infections, eye 
infections and otitis externa), which are most commonly 
found in severely debilitated patients, affected by innate 
or acquired immunosuppression, cancer, invasive surgi-
cal interventions or other chronic conditions (e.g., cystic 
fibrosis [CF], diabetes) (Cicek et al. 2021; Veesenmeyer et 
al. 2009). It has been estimated that 8-20% patients will 
be colonized by P. aeruginosa during their hospital stays 
(Klockgether and Tömmler 2017). 

P. aeruginosa possesses a relatively large genome (~5.5–7 
Mb), which allows for the possession of numerous genes 
encoding for virulence factors, such as a Type III secre-
tion system, exotoxins A, S, T and U, proteases and other 
degrading enzymes, pigments (most notably pyocyanin, 
pyomelanin and pyoverdine), flagella and iron-acquisition 
systems (siderophores) (Bentzmann and Plésiat 2011; Pang 
et al. 2019). Undoubtedly, one the most relevant protec-
tive factor for pseudomonads is the production of biofilm 
(Ciofu et al. 2017); biofilms consist of aggregated bacte-
rial communities (either monospecies or multispecies), 
embedded in a matrix of exopolysaccharides, proteins, 
lipids, environmental DNA (eDNA) and water, bestowing 
protection from harsh environmental conditions (e.g., sheer 
forces, drying damage), the immune system (phagocytes, 
immunoglobulins) and antibiotics (Azeredo et al. 2017; 
Lebeaux et al. 2014). Biofilm-formation contributes to 
the persistence of P. aeruginosa in strident environmental 
conditions and in healthcare-associated environments 
(e.g., water taps, respiratory tubes, dental unit water 
systems) (Khajezadeh et al. 2022; Maurice et al. 2018). 
Therefore – from the perspectives of infection prevention 
and control (IPC) – insights into biofilm-formation are 
crucial for the successful eradication of these pathogens 
(Spangolo et al. 2021).

Antimicrobial resistance has emerged as one of the 
most critical issues facing humanity in the 21st century 
(O’Neill 2014). P. aeruginosa is one of the most common 
multidrug-resistant (MDR) pathogens encountered in 
clinical practice; these infections are often difficult to 
treat (due to the numerous intrinsic resistance mechanisms 
coupled with acquired resistance genes), with limited 
therapeutic options for clinicians to choose from (López-
Causapé et al. 2019). According to the Global Burden of 
Antimicrobial Resistance study, P. aeruginosa is among the 
six leading pathogens for deaths associated with MDR 
(Antimicrobial Resistance Collaborators 2022), while 
the World Health Organization (WHO) has designated 

carbapenem non-susceptible P. aeruginosa as a “Priority 1: 
Critical” pathogen for the development of novel antibiot-
ics (World Health Organization 2017). With carbapenem 
resistance on the rise, the use of older, more toxic drugs 
(e.g., colistin) is often necessary, which may lead to ad-
verse outcomes and sequelae ( Jeannot et al. 2021). There 
has been a pronounced interest in developing alternative 
approaches to prevent and treat bacterial infections, in-
cluding phage therapy, antimicrobial peptides, vaccine 
development, drug repurposing and the introduction 
of antimicrobial adjuvants (e.g., as anti-biofilm or anti-
virulence agents) (Fayad et al. 2018; Killough et al. 2022; 
Lagadinou et al. 2020; Pushpakom et al. 2019; Zhang et 
al .2023). In the recent past, there has been an increased 
interest in possible association (or co-occurrence) of the 
MDR-phenotype and the expression of various virulence 
factors and/or biofilm-formation in clinically relevant 
Gram-positive and Gram-negative pathogens (Carcione 
et al. 2022; Elmouaden et al. 2019; Maione et al. 2023). As 
biofilms represents a tertiary form of drug resistance (by 
inhibiting the diffusion of antimicrobials), a possible link 
between the two protective mechanisms (either through 
genetically encoded or adaptive mechanisms of gene ex-
pression) may also have important consequences for the 
outcomes of infections (Aldman et al. 2023). While the 
number of studies in this field has increased consider-
ably for both P. aeruginosa and for other biofilm-forming 
pathogens, the currently accumulated evidence is still 
controversial, as numerous publications – based on both in 
vitro and in vivo results – have derived markedly different 
conclusions (Ghasemian et al. 2023; Mirzahosseini et al. 
2020; Zhao et al. 2020).

Previously, we have assessed whether the propensity 
to form biofilm is predicted by antimicrobial resistance 
in P. aeruginosa from both clinical (Gajdács et al. 2021) and 
environmental origins (Behzadi et al. 2022); our results 
so far have shown no significant associations between 
biofilm-forming capacity and the MDR-status of the iso-
lates. Moreover, as a secondary outcome, our in vitro studies 
also highlighted that there was no association between 
biofilm formation, motility, or the production of various 
other virulence factors (Behzadi et al. 2022). To verify and 
complement our existing findings, the aim of our present 
study was to assess whether a relationship exists between 
antibiotic resistance, biofilm-forming capacity and other 
phenotypic virulence factors in a batch of environmental P. 
aeruginosa isolates. Our initial hypotheses – derived from 
previous findings – were the following: (i) environmental 
P. aeruginosa isolates are strong biofilm-producers; (ii) there 
is no significant association between the production of 
biofilm or pigment and MDR; (iii) there is no significant 
association between biofilm-production and the expres-
sion of other virulence factors.
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Materials and methods

Sample size determination

The required sample size of environmental P. aeruginosa 
isolates was determined using the formula below (1), ac-
cording to the methodology described by Thrusfield et al. 
(2001), where n was the calculated sample size, z was the 
desired confidence level (1.96), i was the standard sam-
pling error (5%), while p was the estimated prevalence set 
at 5% (Odongo et al. 2020). Based on the calculation, the 
required sample size of n = 114 isolates was determined.

 
n = z2p (1-p)/i2              (1)

Collection of isolates
A total of one hundred and fourteen (n = 114) isolates were 
included in the study, which were obtained from various 
geographical regions and environmental origins, i.e. from 
outdoor sources (e.g., agricultural sources, plants, sedi-
ments, soil and surface waters), and sources with high 
rates of anthropogenic presence (e.g., handles, steel and 
rubber surfaces). Environmental sampling procedures 
were carried out according to protocols previously de-
scribed (Kaszab et al. 2021), between 1st of January 2020 
and 1st of January 2021. As a general rule, only one P. 
aeruginosa isolate per source was included (Behzadi et al. 
2022). During the experiments, P. aeruginosa ATCC 27853 
(characterized by limited biofilm-production and MDR 
status), and P. aeruginosa PAE 170022 (characterized by 
strong biofilm-production and susceptibility to antibiotics) 
were used as control strains, which were obtained from 
the American Type Culture Collection (ATCC; Manassas, 
VI, USA) (Saeki et al. 2021). Stock cultures were stored 
at - 80 °C in a cryopreservation medium (700 µL trypti-
case soy broth + 300 µL 50% glycerol) until further use.

Microbial identification procedures
P. aeruginosa isolates were identified to the species level 
before inclusion in further experiments; identification was 
carried out by matrix-assisted laser desorption/ioniza-
tion–time-of-flight mass spectrometry (MALDI–TOF 
MS). The instrument used was the MicroFlex MALDI 
Biotyper (Bruker Daltonics, Bremen, Germany), while 
spectra analysis was performed with the MALDI Biotyper 
RTC 3.1 software and the MALDI Biotyper Library 3.1 
(Bruker Daltonics, Bremen, Germany). Detailed technical 
characteristics of the mass spectrometry measurements 
were described elsewhere (Schubert and Kostrzewa 2017). 
Reliable species-level identification was accepted in the 
case of a log(score) value ≥2.30.

Antimicrobial susceptibility testing 
Antimicrobial susceptibility testing (AST) was performed 
using the standard disk diffusion method (Oxoid, Bas-
ingstoke, UK) on Mueller-Hinton agar plates (bioMéri-
eux, Marcy-l’Étoile, France) including anti-pseudomonal 
cephalosporins (ceftazidime, cefepime), anti-pseudomonal 
carbapenems (imipenem, meropenem), fluoroquinolones 
(ciprofloxacin, levofloxacin), aminoglycosides (amikacin, 
gentamicin) and colistin. With the exception of colistin, 
interpretation of the AST results was based on the stan-
dards and breakpoints of the European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) v. 11.0 
(European Committee on Antimicrobial Susceptibility 
Testing 2022). Results indicating “susceptible, increased 
exposure (I)” were grouped with and reported as sus-
ceptible (S) (European Committee on Antimicrobial 
Susceptibility Testing 2019). Susceptibility to colistin 
was assessed according to the provisional breakpoints 
as advised by Galani et al. (Galani et al. 2008), using 10 
μg colistin-containing disks (i.e. inhibition zones ≥ 14 
mm were considered susceptible). Classification of the 
isolates as MDR (resistance to at least one agent in ≥ 3 
antibiotic groups) was based on the recommendations of 
Magiorakos et al. (2012). 

Detection of efflux pump overexpression using pheno-
typic methods

The overexpression of resistance-nodulation-division-
type (RND) efflux pumps was tested if ciprofloxacin-
resistance was noted based on the disk diffusion test. 
The assay was carried out using a phenylalanine-arginine 
β-naphthylamide (PAβN)-based agar dilution method, 
described previously (Khalili et al. 2019). A two-fold 
decrease in ciprofloxacin MICs (measured by E-tests; 
Liofilchem, Roseto degli Abruzzi, Italy) in the presence of 
PAβN, compared to the MIC values without the inhibitor, 
was considered positive for efflux pump overexpression 
(Gajdács 2020; Khalili et al. 2019). P. aeruginosa ATCC 
27853 was used as a control strain.

Assessment of biofilm-forming capacity
Biofilm-formation in environmental P. aeruginosa was as-
sessed using a microtiter-plate based method, as previously 
described (Ramos-Vivas et al 2019). Briefly, overnight P. 
aeruginosa cultures, grown on Luria–Bertani [LB] agar, 
were inoculated into 5 mL of LB-broth and incubated 
overnight at 37 °C. The next day, 20 μL of bacterial 
suspension (set at 106 CFU/mL) and 180 μL of LB-broth 
were transferred onto 96-well flat-bottomed microtiter 
plates to a final volume of 200 µL. Following a 24 h in-
cubation period at 37 °C, supernatants were discarded, 
and the wells were washed three times using 200 µL of 
phosphate-buffered saline (pH set at 7.2). Following this 
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washing step, the wells were fixed with 250 μL of metha-
nol (Sigma-Aldrich, St. Louis, MO, USA) for 10 min, and 
stained with a 1.0% crystal violet (CV; Sigma-Aldrich, St. 
Louis, MO, USA) solution for 15 min. The CV dye was 
then discarded, and the wells were washed three times 
with purified water to remove excess stain. The wells’ 
contents were solubilized in 250 μL of 33% v/v% glacial 
acetic acid (Sigma-Aldrich, St. Louis, MO, USA), and a 
microtiter plate reader was used to measure absorbance 
at 570 nm (OD570). Results of the experiments originate 
from three independent measurements. Interpretation of 
biofilm-forming capacity was based on the guidelines set 
by Ansari et al. (2014): isolates with OD570 values < 0.12 
were classified as weak/non-biofilm producers, OD570 
values between 0.12–0.24 were classified as moderate 
biofilm producers, while OD570 values > 0.24 were clas-
sified as strong biofilm producers, respectively.

Assessment of bacterial motility
Motility assays on environmental P. aeruginosa were car-
ried out in an agar-based assay: Petri dishes containing 
Tryptic Soy Agar were inoculated with the tested isolates, 
where media contained different agar concentrations 
(0.3% for swimming motility, 0.8% for swarming motility, 
and 2.0% for twitching motility, respectively) for differ-
ent assays (Ha et al. 2014). Overnight bacterial cultures 
(set at a density of 105 CFU/mL) were transferred into 
the agar medium by puncture using a pipette tip (at 1/2 
depth for swimming and swarming motility and at full 
depth for twitching motility) (Ha et al. 2014). Following 
inoculation at 37 °C for 24 h (swimming and swarm-
ing motility) or 48 h (twitching motility), diameters of 
bacterial growth (in mm) were recorded; in the case of 
swimming and swarming motility, the measurements 
were made directly, while in case of twitching motility, 
the agar layer was removed and the bottom of the plates 
was stained directly with 0.01% CV solution (Ha et al. 
2014; Markwitz et al. 2021; Turnbull and Whitchurch 
2014). Results of the experiments originate from three 
independent measurements.

Assessment of pyocyanin pigment production
Pyocyanin pigment production was assessed in 24-well 
tissue culture plates (Sarstedt, Nümbrecht, Germany) 
containing an overnight bacterial culture of P. aeruginosa, 
incubated at 37 °C for 48 h. Following the incubation 
period, each bacterial suspension was collected in an 
Eppendorf tube and centrifuged at 10 000 rpm (Das and 
Manefield 2012; Markwitz et al. 2021). The supernatants 
were transferred to 96-well microtiter plates, after which, 
the absorbance for pyocyanin (OD686) was measured us-
ing a microtiter plate reader. Results of the experiments 
originate from three independent measurements.

Statistical analysis

Descriptive statistical analysis (means with ranges and 
percentages) was carried out using Microsoft Excel 2013 
(Microsoft, Redmond, WA, USA). Normality testing was 
performed by the graphical method and the Kolmogorov-
Smirnov test. One-way analysis of variance (ANOVA) with 
Tukey’s post hoc test was used to compare growth zones 
(for swimming, swarming and twitching motility) between 
different biofilm-producing P. aeruginosa populations. An 
independent sample t-test was used to compare biofilm-
forming capacity and pyocyanin-production between 
MDR and non-MDR P. aeruginosa. Inferential statistical 
analyses were performed using SPSS software version 
22.0 (IBM, Armonk, NY, USA). p < 0.05 was considered 
statistically significant.

Results 

Antimicrobial resistance and efflux pump overexpres-
sion in environmental P. aeruginosa

Rates of non-susceptibility in environmental P. aeruginosa 
were as follows (in increasing order): colistin 0% (n = 0), 
meropenem 14.04% (n = 16), imipenem 14.91% (n = 17), 
amikacin 16.67% (n = 19), gentamicin 17.54% (n = 20), 
cefepime 35.96% (n = 41), ceftazidime 42.98% (n = 49), 
levofloxacin 49.12% (n = 56) and ciprofloxacin (n = 56). 
Out of these isolates 21.93% (n = 25) met the criteria to 
be classified as MDR. When phenotypic ciprofloxacin 
resistance was noted, the overexpression of RND-type 
efflux pumps was also tested; based on the plate-based 
assay, 67.86% (n = 38 out of 56 isolates; 33.33% overall) 
of isolates were positive.

Biofilm-forming capacity, and phenotypic virulence fac-
tors in environmental P. aeruginosa

Based on the results of the CV-based quantitative biofilm-
formation assay (where OD570 values were measured), 
isolates were classified as follows: non-producing/weak 
biofilm-producers (17.54%, n = 20; OD570 < 0.12), moderate 
biofilm-producers (25.45%, n = 29; OD570: 0.12–0.24) and 
strong biofilm-producers (57.01%, n = 65; OD570 > 0.24), 
respectively. The positive control isolate PAE 170022 
showed OD570 values [mean ± SD] of 0.462 ± 0.074, while 
the negative control isolate ATCC 27853 showed OD570 
values of 0.096 ± 0.011, respectively. During the compari-
son of biofilm-formation between MDR and non-MDR 
environmental P. aeruginosa, no significant differences 
were noted, based on the measured OD570 values (OD570 
values non-MDR [mean ± SD]: 0.396 ± 0.138 vs. MDR: 
0.348 ± 0.181; p > 0.05). 

The results of the motility assays (expressed in mm) 
– with regards to the groups based on biofilm-forming 
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capacity – are summarized in Table 1.; highest motility 
values were observed for swarming motility, followed by 
swimming and twitching motility. Significant differences 
were not found in motility between the isolates of differ-
ent biofilm-forming capacities (Table 1.). Similarly, when 
comparing motility in the context of the MDR status of 
the isolates, no significant differences were found (swarm-
ing: non-MDR: 30.31 ± 11.99 vs. MDR: 32.17 ± 12.23; 
p > 0.05; swimming: non-MDR: 26.92 ± 9.12 vs. MDR: 
25.26 ± 9.21; p > 0.05; twitching: non-MDR: 12.03 ± 4.58 
vs. MDR: 11.25 ± 5.03; p > 0.05). Pyocyanin production 
(measured as OD686) was also assessed between MDR and 
non-MDR P. aeruginosa isolates, where no statistical as-
sociation was shown (MDR: 0.484 ± 0.125 vs. non-MDR: 
0.403 ± 0.169; p > 0.05). 

Discussion 

In the present study, the biofilm-forming capacity and 
pigment-production of environmental P. aeruginosa were 
assessed, with special regard to the possible relationship 
of the MDR-phenotype and virulence-factor expres-
sion. The importance of studies on both clinical and 
environmental Pseudomonas spp. have been highlighted 
with the introduction of the “One Health” concept, as 
environmental pseudomonads were suggested as viable 
reservoirs of antibiotic resistance genes, and their role in 
zoonotic infections (e.g., in birds) has also been described 
(Algammal et al. 2022; Balcázar et al. 2015; El-Ghany 
2021). In addition, the prevalence of P. aeruginosa infections 
is on the rise, together with the number of immunocom-
promised individuals, and patients undergoing invasive 
medical interventions (Sanya et al. 2023). Most of the 
isolates (82.46%) were biofilm-producers, with almost 
60% being strong biofilm-producers; the present batch of 
isolates had the highest rate of biofilm-producers, when 
compared to our previous studies on environmental 
(Behzadi et al. 2022) or clinical isolates (Gajdács et al. 
2021). On the other hand, antimicrobial resistance rates 
and percentage of MDR isolates was lowest in our cur-
rent study (with highest resistance rates found in clinical 
isolates for most anti-pseudomonal antibiotics (Gajdács 
et al. 2021)), although the common tendencies (highest 

resistance for fluoroquinolones, followed by cephalo-
sporins, aminoglycosides and carbapenems, while most 
isolates were susceptible to colistin) were similar in all 
reports (Behzadi et al. 2022; Gajdács et al. 2021). In line 
with our previous experimental results for P. aeruginosa, 
we could not detect significant associations between the 
MDR-phenotype and biofilm-forming capacity in the 
tested isolates. Furthermore, no differences in motility 
(with swarming motility being the most pronounced, 
followed by swimming and twitching motility, as seen 
previously (Behzadi et al. 2022; Gajdács et al. 2021)) and 
pigment production were shown either. Interestingly, in 
our study with clinical P. aeruginosa isolates, pyocyanin 
production was higher among MDR P. aeruginosa. 

Microbial biofilm-production is one of the most 
effective protective mechanisms against harsh en-
vironmental conditions and the immune system of 
the host (Sharma et al. 2023); additionally, due to 
the heterogeneous composition of these biofilms, 
the complex interplay of multiple drug resistance 
mechanisms (i.e. “biofilm resistance”, which is medi-
ated by the expression of various genes in the cells) 
may result in minimum inhibitory concentrations 
(MICs) 100-10000-times higher, compared to those 
against planktonic bacteria (Donadu et al. 2018). The 
results of Arslan and co-workers have shown that 
sub-MIC treatment of P. aeruginosa with various 
antibiotics (ciprofloxacin, fosfomycin, piperacillin/
tazobactam and tobramycin) resulted in increased 
expression of biofilm-specific resistance genes and 
motility (Arslan et al. 2023). Hindering adherence to 
surfaces (a critical initial step in biofilm-formation) 
and/or biofilm-maturation by various molecules 
(either synthetic or from natural sources) is con-
sidered a viable strategy for future drug develop-
ment; these compounds may act through a variety 
of mechanisms, such as leading to changes in the 
bacterial metabolism, inhibition of quorum sensing 
(QS) and inhibition of efflux pumps, among others 
(Talebi-Taher et al. 2016). For example, Peppoloni 
et al. (2023) showed that the phenolic compounds 
found in pomegranate peel extract have anti-biofilm 
properties, and they also hinder autoinducer (AI) sig-
naling in P. aeruginosa, thereby leading to attenuated 

Virulence factor Weak/non-biofilm producers 
17.54% (n = 20)

Moderate biofilm producers 
25.45% (n = 29)

Strong biofilm producers 
57.01% (n = 65) Significance

Swimming motility (mm) (mean ± SD) 24.92 ± 10.11 25.78 ± 9.34 27.16 ± 11.93 p > 0.05

Swarming motility (mm) (mean ± SD) 33.01 ± 12.30 31.82 ± 10.78 31.11 ± 9.89 p > 0.05

Twitching motility (mm) (mean ± SD) 11.76 ± 4.92 11.34 ± 5.14 12.76 ± 6.31 p > 0.05

Table 1. Relationship between biofilm-production and motility in environmental P. aeruginosa.
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virulence. Likewise, the experiments of Tsavea et al. 
(2023) highlighted the potential of honeys from Mt. 
Olympus as anti-virulence compounds, inhibiting 
pigment production, motility, and biofilm-formation 
in the tested isolates. Di Bonaventura and co-workers 
performed the screening of >3,000 FDA-approved 
drug molecules to identify novel therapeutic leads 
with antimicrobial and anti-biofilm activity against 
P. aeruginosa, in conditions relevant to CF-infected 
lungs (Di Bonaventura et al. 2023); in their study, 
Ebselen (an anti-inflammatory and antioxidant 
compound), tirapazamine, carmofur, 5-fluoroura-
cil (antitumor agents) and tavaborole (antifungal) 
showed relevant antimicrobial properties in time-kill 
assays, on the other hand, only tirapazamine and 
tavaborole were effective in dispersing preformed 
biofilms. The importance of the de novo pyrimidine 
synthesis pathway (which is inhibited by numerous 
anticancer medication) in intact bacterial virulence 
for P. aeruginosa has also been highlighted by Niazy 
et al. (2022). On the other hand, Valentin and co-
workers proposed a different approach, where a 
public P. aeruginosa transposon insertion library was 
utilized, to screen for biofilm-relevant genes: with 
this approach, potential future molecular targets 
could be identified to aid advances in drug develop-
ment (Valentin et al. 2023).

The meta-analysis of Mirzahosseini et al. (2020) 
aimed to summarize the available evidence on the 
association between biofilm-formation and MDR in 
clinical P. aeruginosa published between 2000 and 
2019: based on the pooled data, 86.5% (95% CI: 79.0-
91.6%) of isolates produced biofilm, out of which, 
51.0% were strong biofilm-producers; highest rates of 
resistance were recorded against anti-pseudomonal 
β-lactams (namely piperacillin-tazobactam, 90%), and 
the prevalence of virulence genes were >90% in most 
studies. Overall, the meta-analysis has shown that 
the rate of biofilm-production was higher in MDR 
isolates, with a significant correlation identified in 
>50% of included studies (Mirzahosseini et al. 2020). 
This positive association was further underlined in 
the recent publication of Baskan et al. (2023), the 
report of Zahedani et al. (2021) (where an association 
was found between efflux pump overexpression and 
biofilm-formation), and the experiments of Karami 
et al. (2018) (where the MDR status was significantly 
more common in strong biofilm-producers in case 
of both clinical and environmental P. aeruginosa). In 
line with our current findings, the results of Choy et 
al. (2008) (involving isolates from keratitis), Bahador 
et al. (2019) (involving isolates from keratitis), and 
Radó et al. (2017) (involving environmental isolates) 

did not show any relevant correlation between drug 
resistance, biofilm-formation, and the detection of 
specific virulence genes. In contrast, several studies 
have described as inverse relationship between the 
presence of resistance determinants and biofilm-
formation: for example, Edward and co-workers 
showed that in clinical P. aeruginosa, presence and 
expression of specific virulence genes was associated 
with susceptibility to various antimicrobials (e.g., 
ceftazidime and aztreonam susceptibility) (Edward 
et al. 2023). Gallant et al. (2005) found that isolates 
carrying the β-lactamase TEM-1 β-lactamase have 
impaired adhesive capacity, which is crucial in the 
initial stages of biofilm-formation. While in the study 
of Yamani et al. (2021), upregulation of biofilm and 
virulence-associated genes was seen in susceptible 
isolates, compared to their MDR counterparts.

Conclusions

P. aeruginosa is an opportunistic pathogen with high medi-
cal importance, being a causative agent of recalcitrant 
infections, often affecting the most debilitated patients. 
P. aeruginosa infections are becoming difficult to treat 
with the onset of MDR, with isolates susceptible only to 
last-resort drugs with severe adverse effects (e.g., colistin) 
or to novel antibiotics, which are often not available in 
developing countries. Based on our present findings – 
which were concurrent with our previous results – no 
relationship was found between biofilm-forming capacity, 
pigment production, motility, and drug resistance in the 
tested isolates; however, no sweeping conclusions can 
be made based on the current evidence. Further studies 
are warranted to assess biofilm-forming capacity, and to 
provide insights into the mechanisms underlying biofilm-
formation in P. aeruginosa, both in isolates of clinical and 
environmental origins.
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