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On Wendel’s equality for intersections of balls

Ferenc Fodor, Nicolás A. Montenegro Pinzón, and Viktor V́ıgh

Abstract. We study the analogue of Wendel’s equality in random polytope models in which
the hull of the random points is formed by intersections of congruent balls, called the spindle
(or hyper-) convex hull. According to the classical identity of Wendel the probability that the
origin is contained in the (linear) convex hull of n i.i.d. random points distributed according
to an origin symmetric probability distribution in the d-dimensional Euclidean space R

d

that assigns measure zero to hyperplanes is a constant depending only on n and d. While in
the classical convex case one gets nonzero probabilities only for n ≥ d+ 1 points in R

d, for
the spindle convex hull this happens for all n ≥ 2. We study this question for the uniform
and normally distributed random models.
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1. Introduction and results

Wendel’s equality [10] is one of the classical results in geometric probability:
it states that if x1, . . . , xn are i.i.d. random points in R

d whose distribution is
(centrally) symmetric with respect to the origin o, and the probability measures
of hyperplanes are 0, then the probability that o is not contained in the convex
hull [x1, . . . , xn] is

P(o /∈ [x1, . . . , xn]) =
1

2n−1

d−1∑

i=0

(
n − 1

i

)
. (1.1)

One can find a simple proof of (1.1) in Bárány [1, pp. 94–95], which is inde-
pendent of the distribution (under the above conditions).

It was proved by Wagner and Welzl [9], that o-symmetric distributions are
extremal in this sense. For more information, see also [8, Section 8.1.2].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-022-00912-3&domain=pdf
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Recently, Kabluchko and Zaporozhets [3] investigated the related problem
of finding the probability that the convex hull of n i.i.d. normally distributed
random points in R

d contains a fixed points of space; they called these absorp-
tion probabilities. For a general introduction to random polytopes we refer to
the recent survey paper by Schneider [7] and the book by Schneider and Weil
[8].

We denote the d-dimensional origin centered unit radius closed ball by
Bd and its boundary by Sd−1. The symbol κd denotes the volume (Lebesgue
measure) of Bd, and ωd is the surface volume of Bd. For general information
on convex sets, see the monograph [6] by Schneider.

In this paper we study the following spindle convex variant of the above
problems. Let x, y ∈ R

d be two points and � > 0. If |x − y| ≤ 2�, then let the
spindle [x, y]� determined by x and y be the intersection of all radius � closed
balls that contain both x and y. If |x − y| > 2�, then let [x, y]� = R

d. We say
that a convex body K ⊂ R

d (compact convex set with non-empty interior)
is spindle convex with radius �, or �-spindle convex if together with any two
points x, y ∈ K, it contains the spindle [x, y]�. It is known ([2]) that if a convex
body K ⊂ R

d is spindle convex with radius �, then K is the intersection of
all radius � closed balls that contain K. This latter property is called radius �
ball-convexity.

Let X ⊂ R
d. If X ⊂ �Bd + v for some v ∈ R

d, then the radius � spindle
convex hull [X]� of K is defined as the intersection of all radius � closed
balls containing X. If X �⊂ �Bd + v for any v ∈ R

d, then let [X]� = R
d. If

K ⊂ R
d is spindle convex with radius �, and X ⊂ K, then [X]� ⊂ K. For more

information on spindle convexity, see, for example, the paper [2] by Bezdek et
al. and the book [4] by Martini, Montejano and Oliveros and the references
therein.

First, we describe the �-spindle convex uniform model. Let � > 0, and
let K ⊂ R

d be an o-symmetric convex body that is �-spindle convex. Let
x1, . . . , xn be i.i.d. uniform random points from K. We denote the radius �
spindle convex hull of x1, . . . , xn by K�

(n) = [x1, . . . , xn]�. By the �-spindle
convexity of K, the random ball-polytope K�

(n) is contained in K. We ask
the same question as in the classical convex case: what is the probability that
o ∈ K�

(n)? We note that in this model we may always achieve by scaling
(simultaneously K and radius � circles) that � = 1. Henceforth, in the following
two theorems we assume that � = 1.

We study the special case when K = rBd with 0 < r ≤ 1. Then K is clearly
spindle convex with radius � = 1. We wish to determine the probability

P (d, r, n) := P(o ∈ [x1, . . . , xn]1).

In Sect. 2 we prove the following theorem:
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Theorem 1.1. Let K = rBd. Then

P (d, r, 2) =
ωd−1ωd

(rdκd)2

∫ r

0

∫ r

0

∫ ϕ(r1,r2)

0

rd−1
1 rd−1

2 sind−2 ϕ dϕdr2dr1,

where ϕ(r1, r2) = arcsin(r1/2) + arcsin(r2/2). In particular,

P (2, 1, 2) =
√

3
π

− 1
3

= 0.2179 . . . ,

P (3, 1, 2) =
1
64

(23 + 12
√

3π − 8π2) = 0.1459 . . . .

Furthermore, for the case of three points, we prove the following statement
in Sect. 3.

Theorem 1.2. Let K = B2. Then

P (2, 1, 3) =
−84π2 − 477 + 360

√
3π

144π2
= 0.4594 . . . .

Finally, in Sect. 4, we study the Gaussian �-spindle convex model. Let
x1, . . . , xn be i.i.d. random points from R

d distributed according to the stan-
dard normal distribution. The question is the same, what is the probability
that o ∈ K�

(n)? We note that in this second case, it may, and does, happen that
K�

(n) = R
d. We give an integral formula for the probability that a Gaussian

unit radius spindle contains the origin and evaluate it numerically in the plane.

2. Proof of Theorem 1.1

Note that it is the simplest case of the model when n = 2, and K = rBd,
where 0 < r ≤ 1 is a fixed number. This, of course, is of no interest in the
classical version of Wendel’s problem as P(o ∈ [x1, x2]) = 0 since [x1, x2] is a
segment.

Let us examine what it means geometrically that o ∈ [x1, x2]1. Let M(x1)
denote the union of all open unit balls that contain o and x1 on their boundary.
Let K(d, r, x1) be the part of rBd\M(x1) that is in the closed half-space
bounded by the hyperplane through o and orthogonal to x1 which does not
contain x1. We depicted this region in Fig. 1 when d = 2. We will only use
K(2, r, x1) in our calculations, so, in order to simplify notation, we will denote
it by K(r, x1) = K(2, r, x1).

In order to evaluate P (d, r, 2), we use the linear Blaschke-Petkantschin for-
mula. Let G(d, 2) denote the Grassmannian manifold of 2-dimensional linear
subspaces of R

d, and ν2 be the unique rotation invariant Haar probability
measure on G(d, 2). The 2-dimensional special case of the linear Blaschke-
Petkantschin formula (see, for example, [8, Theorem 7.2.1 on p. 271]) says the
following: If f : (Rd)2 → R is a non-negative measurable function, then
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Figure 1. The region K(r, x1)

∫

(Rd)2
f dλ2 =

ωd−1ωd

ω1ω2

∫

G(d,2)

∫

L2
f(x1, x2)∇d−2

2 (x1, x2) dλ2
L ν2(dL), (2.1)

where ∇2 denotes the area of the parallelogram spanned by the vectors x1, x2

in L. The symbol λ denotes the Lebesgue measure in R
d, and λL the (2-

dimensional) Lebesgue measure in L.
Next, using polar coordinates for x1, x2 ∈ L, that is, x1 = r1u1, x2 = r2u2,

where u1, u2 ∈ S1, r1, r2 ∈ R+, we may write the right-hand-side of (2.1) as
follows.

ωd−1ωd

ω1ω2

∫

G(d,2)

∫

L2
f(x1, x2)∇d−2

2 (x1, x2) dλ2
L ν2(dL)

=
ωd−1ωd

ω1ω2

∫

G(d,2)

∫

(S1×R)2
f(r1u1, r2u2)

× ∇d−2
2 (r1u1, r2u2) r1r2dr1du1dr2du2 ν2(dL)

=
ωd−1ωd

ω1ω2

∫

G(d,2)

∫

(S1×R)2
f(r1u1, r2u2)rd−1

1 rd−1
2 ×

× |u1 × u2|d−2dr1du1dr2du2 ν2(dL). (2.2)

Now, from (2.2) we obtain that

P (d, r, 2) =
1

(rdκd)2

∫

rBd

∫

rBd

1(o ∈ [x1, x2]1) dx1dx2

=
1

(rdκd)2
ωd−1ωd

ω1ω2

∫

G(d,2)

∫

S1

∫ r

0

∫

S1

∫ r

0

1(o ∈ [r1u1, r2u2]1)r
d−1
1 rd−1

2
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× |u1 × u2|d−2dr1du1dr2du2 ν2(dL)

=
1

(rdκd)2
ωd−1ωd

ω1ω2

∫

S1

∫ r

0

∫

S1

∫ r

0

1(o ∈ [r1u1, r2u2]1)r
d−1
1 rd−1

2

× |u1 × u2|d−2dr1du1dr2du2

=
1

(rdκd)2
ωd−1ωd

ω1ω2

∫

S1

∫ r

0

∫

S1

∫ r

0

1(x2 ∈ K(r, x1))r
d−1
1 rd−1

2

× |u1 × u2|d−2dr2du2dr1du1.

By the rotational symmetry of rBd, integration with respect to u1 is a multi-
plication by 2π. Hence, from now on, we fix u1 = (0, 1). Let ϕ be the angle of
u2 and −u1, as shown on Fig. 1, and let

ϕ(r1, r2) = arcsin(r1/2) + arcsin(r2/2).

Then

P (d, r, 2) =
2π

(rdκd)2
ωd−1ωd

ω1ω2

∫ r

0

∫ r

0

∫ ϕ(r1,r2)

−ϕ(r1,r2)

rd−1
1 rd−1

2 | sin ϕ|d−2 dϕdr2dr1

=
4π

(rdκd)2
ωd−1ωd

ω1ω2

∫ r

0

∫ r

0

∫ ϕ(r1,r2)

0

rd−1
1 rd−1

2 sind−2 ϕ dϕdr2dr1

=
ωd−1ωd

(rdκd)2

∫ r

0

∫ r

0

∫ ϕ(r1,r2)

0

rd−1
1 rd−1

2 sind−2 ϕ dϕdr2dr1.

The above integral can be evaluated for any specific value of d using multiple
integration by parts. In particular,

P (2, r, 2) =
4

πr4

∫ r

0

∫ r

0

∫ ϕ(r1,r2)

0

r2r1dϕdr2dr1

=
4

πr4

∫ r

0

∫ r

0

r2r1(arcsin(r1/2) + arcsin(r2/2)) dr2dr1

=
4

πr4

(
r2

4
(r

√
4 − r2 + 2(r2 − 2) arcsin(r/2))

)

=
1

πr2

(
r
√

4 − r2 + 2(r2 − 2) arcsin(r/2)
)

, (2.3)

and

P (3, r, 2) =
9

2r6

∫ r

0

∫ r

0

∫ ϕ(r1,r2)

0

r22r
2
1 sin ϕ dϕdr2dr1

=
9

2r6

(
r2

288
(−72 + 90r2 − 4r4 + 9r6)

+
1
4

arcsin(r/2)(R
√

4 − r2(r2 − 2) + 4 arcsin(r/2))
)

.
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In particular,

P (2, 1, 2) =
√

3
π

− 1
3

= 0.2179 . . . ,

P (3, 1, 2) =
1
64

(23 + 12
√

3π − 8π2) = 0.1459 . . . .

This finishes the proof of Theorem 1.1. �
We conclude this section with the following statements.

Corollary 2.1. For any fixed d ≥ 2, it holds that

lim
r→0+

P (d, r, 2) = 0.

Furthermore, for any fixed 0 < r ≤ 1, it holds that

lim
d→∞

P (d, r, 2) = 0.

Proof. Note that, using arcsinx ≤ πx/2 for x ∈ [0, π/2] and sinx ≤ x for
x ∈ [0, π/2], we get that

P (d, r, 2) ≤ C(d)
r2d

∫ r

0

∫ r

0

∫ r1+r2

0

rd−1
1 rd−1

2 (r1 + r2)d−2 dϕdr2dr1

≤ 2d−1C(d)
r2d

∫ r

0

∫ r

r1

∫ 2r2

0

r3d−4
2 dϕdr2dr1

=
2dC(d)

r2d

∫ r

0

∫ r

0

r3d−3
2 dr2dr1

=
2dC(d)

r2d

r3d−1

3d − 2
,

where the constant C(d) depends only on the dimension d. From this it follows
that

lim
r→0+

P (d, r, 2) = 0

for d ≥ 2, as claimed.
In the proof of the second statement we use the fact that ϕ(r1, r2) ≤ π/3.

Thus

P (d, r, 2) ≤ ωd−1ωd

r2dκ2
d

∫ r

0

∫ r

0

rd−1
1 rd−1

2

(√
3

2

)d−1

dr2dr1

=
ωd−1ωd

d2κ2
d

(√
3

2

)d−1

=
d − 1

d

κd−1

κd

(√
3

2

)d−1

.

From κd−1/κd ∼ c · √
d as d → ∞, it follows that P (d, r, 2) → 0 as

d → ∞. �
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3. Proof of Theorem 1.2

The case when n = 3, can be treated, at least in the plane, as follows. We only
consider when r = 1, that is, K = B2. Let x1, x2, x3 be i.i.d. uniform random
points from B2. Let

P (2, 1, 3) : = P(o ∈ [x1, x2, x3]1)

= P(o ∈ [x1, x2]1) + P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1)

= P (2, 1, 2) + P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1).

Let

P (2, 1, 3) := P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1).

Due to the rotational symmetry of B2, we may assume that x1 = (0, r1).
Let x2 = r2u2, where ϕ is the angle of u2 and the negative half of the y-axis.
Making use of the previously introduced notation, we write K(x1) = K(1, x1)
and, similarly, K(x2) = K(1, x2). The ray oxi divides K(xi) into two congruent
parts. The part that is on the positive side of oxi is denoted by K+(xi), and
the negative part is K−(xi), as shown in Fig. 2.

Figure 2. The regions K−(x2) and K+(x1)
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Let V +(xi) = V2(K+(xi)) and V −(xi) = V2(K−(xi)) for i = 1, 2. Then it
holds that

V +(xi) = V −(xi) =
∫ 1

0

∫ ϕ(ri,r)

0

r dϕdr =
∫ 1

0

(arcsin(ri/2) + arcsin(r/2))r dr

=
1
12

(
3
√

3 − π + 6arcsin(ri/2)
)

.

We distinguish four cases according to the relative position of x1 and x2.
Case 1. r2 ≤ r1 and x2 /∈ [x1, o]1.
In this case, ϕ ∈ [ϕ(r1, r2), π − arcsin(r1/2) + arcsin(r2/2)]. Then

P1 := P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x2 /∈ [x1, o]1 and r1 ≥ r2)

=
2π

π3

∫ 1

0

∫ r1

0

∫ π−arcsin(r1/2)+arcsin(r2/2)

ϕ(r1,r2)

×
(

V +(x1) + V −(x2) +
π − ϕ

2

)
r1r2dϕdr2dr1

=
1
π2

∫ 1

0

∫ r1

0

∫ π−arcsin(r1/2)+arcsin(r2/2)

ϕ(r1,r2)

(√
3 − π

3
+ arcsin(r1/2)

+ arcsin(r2/2) +
π − ϕ

2

)
r1r2dϕdr2dr1

= − 5
72

− 1
π2

+
5

4
√

3π
.

Case 2. r2 ≥ r1 and x1 /∈ [x2, o]1. By the symmetry of x1 and x2,

P2 := P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x1 /∈ [x2, o]1 and r1 ≤ r2)

= P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x2 /∈ [x1, o]1 and r1 ≥ r2)

= − 5
72

− 1
π2

+
5

4
√

3π
.

Case 3. x2 ∈ [x1, o]1.
In this case r1 ≥ r2 and ϕ ∈ [π − arcsin(r1/2) + arcsin(r2/2), π]. Then

K(x2) ⊂ K(x1), thus

P3 := P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x2 ∈ [x1, o]1)

=
2π

π3

∫ 1

0

∫ r1

0

∫ π

π−arcsin(r1/2)+arcsin(r2/2)

V (x1)r1r2dϕdr2dr1

=
1

π2

∫ 1

0

∫ r1

0

∫ π

π−arcsin(r1/2)+arcsin(r2/2)

(√
3

2
− π

6
+ arcsin(r1/2)

)
r1r2dϕdr2dr1

=
99 − 24

√
3π + 4π2

576π2
.
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Case 4. x1 ∈ [x2, o]1. Again, by the symmetry of x1 and x2,

P4 = P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x1 ∈ [x2, o]1)

= P(o /∈ [x1, x2]1 and o ∈ [x1, x2, x3]1 and x2 ∈ [x1, o]1)

=
99 − 24

√
3π + 4π2

576π2
.

Thus, considering the symmetry with respect to the line ox1, we obtain
that

P (2, 1, 3) = 2(P1 + P2 + P3 + P4) =
−36π2 − 477 + 216

√
3π

144π2
.

Thus,

P (2, 1, 3) = P (2, 1, 2) + P (2, 1, 3) =
−84π2 − 477 + 360

√
3π

144π2
= 0.4594 . . . .

We note that the actual calculation can be carried out, at least numerically,
for any 0 < r ≤ 1. Furthermore, the cases of n = 4, 5, . . . are essentially similar,
although the case analysis grows significantly more complicated as n increases.

Finally, we note that according to Wendel’s equality (1.1),

P(0 ∈ [x1, x2, x3]) =
1
4

< P (2, 1, 3).

4. The case of normally distributed random points

In this subsection we consider the model in which � = 1 and x1, . . . , xn are i.i.d.
random points in R

d that are distributed according to the standard normal
distribution with density function

f(x) =
1

(2π)
d
2
e− |x|2

2 , x ∈ R
d.

Here we need to use the part of the definition of the spindle convex hull
that normally does not come into play when the random points are chosen
from a convex body that is spindle convex with radius less than or equal to 1.
Namely, if x, y ∈ R

d are such that |x − y| > 2, then [x, y]1 := R
d.

We are interested in the following probability

PN (d, 1, n) := P(o ∈ [x1, . . . , xn]1).

It is clear that

P(o ∈ [x1, . . . , xn]) ≤ P(o ∈ [x1, . . . , xn]1)

as [X] ⊂ [X]1 for any X ⊂ R
d.

Let E be the event that |x1 − x2| ≤ 2. Then

PN (d, 1, 2) = P(o ∈ [x1, x2]1 and E) + P(Ec),
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where Ec is the complement of E, as Ec automatically implies that o ∈
[x1, x2]1.

Let l denote the length of the random segment [x1x2]. It is known (see [5,
p. 438] and the historical references therein) that the density of s := l2/4 is

g(s) =
s

d
2 −1e−s

Γ(d/2)
, 0 < s < ∞. (4.1)

Thus,

P(Ec) =
∫ ∞

1

g(s) ds =
γ(d/2, 1)
Γ(d/2)

,

where Γ(·) is Euler’s gamma function, and γ(d/2, x) denotes the lower incom-
plete gamma function.

Using the linear Blaschke–Petkantschin formula (2.2) and the rotational
invariance of the standard normal distribution we obtain that

P(o ∈ [x1, x2]1 and E)

=
1

(2π)d

∫

Rd

∫

Rd

1(o ∈ [x1, x2]1 and E) e− |x1|2+|x2|2
2 dx1dx2

=
1

(2π)d

ωd−1ωd

ω1ω2

∫

G(d,2)

∫

L2
1(o ∈ [x1, x2]1 and E)

× Δd−2(x1, x2) e− |x1|2+|x2|2
2 dx1dx2ν2(dL)

=
1

(2π)d

ωd−1ωd

ω1ω2

∫

L2
1(o ∈ [x1, x2]1 and E)Δd−2(x1, x2) e− |x1|2+|x2|2

2 dx1dx2.

In order to evaluate the above integral, we use polar coordinates x1 = r1u1

and x2 = r2u2, r1, r2 ≥ 0, u1, u2 ∈ S1. Let ϕ be the angle of −u1 and u2, as
before. For 2 − r1 ≤ r2 ≤

√
4 − r21, let

ψ(r1, r2) = π − arccos
(

r21 + r22 − 4
2r1r2

)
.

We distinguish two cases according to r2. When 0 ≤ r2 ≤ 2 − r1, then
−ϕ(r1, r2) ≤ ϕ ≤ ϕ(r1, r2), and when 2−r1 ≤ r2 ≤

√
4 − r21, then −ϕ(r1, r2) ≤

ϕ ≤ −ψ(r1, r2) and ψ(r1, r2) ≤ ϕ(r1, r2), see Fig. 3.
By the rotational symmetry of the normal distribution, integration with

respect to u1 is just a multiplication by 2π. Then, w obtain that

P(o ∈ [x1, x2]1 and E)

=
2

(2π)d−1

ωd−1ωd

ω1ω2

∫ 2

0

∫ 2−r1

0

∫ ϕ(r1,r2)

0

rd−1
1 rd−1

2 sind−2(ϕ) e− r21+r22
2 dϕdr2dr1
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Figure 3. Integration bounds in ϕ according to r2

+
2

(2π)d−1

ωd−1ωd

ω1ω2

∫ 2

0

∫ √
4−r2

1

2−r1

∫ ϕ(r1,r2)

ψ(r1,r2)

rd−1
1 rd−1

2

× sind−2(ϕ) e− r21+r22
2 dϕdr2dr1.

The above integrals can be evaluated, at least numerically, for any specific
value of d. In particular, for d = 2, we obtain for the first integral

1
π

∫ 2

0

∫ 2−r1

0

∫ ϕ(r1,r2)

0

r1r2 e− r21+r22
2 dϕdr2dr1

=
1
π

∫ 2

0

∫ 2−r1

0

(arcsin(r1/2) + arcsin(r2/2))r1r2 e− r21+r22
2 dr2dr1

= 0.079214 . . . .

The second integral is

1

π

∫ 2

0

∫ √
4−r1

1

2−r1

∫ ϕ(r1,r2)

ψ(r1,r2)

r1r2 e−
r21+r22

2 dϕdr2dr1

=
1

π

∫ 2

0

∫ √
4−r2

1

2−r1

(
arcsin(r1/2) + arcsin(r2/2) − π + arccos

(
r21 + r22 − 4

2r1r2

))
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× r1r2 e−
r21+r22

2 dr2dr1

= 0.01866 . . . .

For d = 2,

P(Ec) =
γ(1, 1)
Γ(1)

=
1
e

= 0.367879 . . . ,

thus, in summary,

PN (2, 1, 2) = 0.465753 . . . .
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