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Brain morphology predicts individual sensitivity to
pain: a multicenter machine learning approach
Raviteja Kotikalapudia, Balint Kincsesa,b, Matthias Zunhammerb, Frederik Schlittb, Livia Asanb,
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Abstract
Sensitivity to pain shows a remarkable interindividual variance that has been reported to both forecast and accompany various
clinical pain conditions. Although pain thresholds have been reported to be associated to brainmorphology, it is still unclear howwell
these findings replicate in independent data and whether they are powerful enough to provide reliable pain sensitivity predictions on
the individual level. In this study, we constructed a predictive model of pain sensitivity (as measured with pain thresholds) using
structural magnetic resonance imaging–based cortical thickness data from a multicentre data set (3 centres and 131 healthy
participants). Cross-validated estimates revealed a statistically significant and clinically relevant predictive performance (Pearson r5
0.36,P, 0.0002,R25 0.13). The predictions were found to be specific to physical pain thresholds and not biased towards potential
confounding effects (eg, anxiety, stress, depression, centre effects, and pain self-evaluation). Analysis of model coefficients
suggests that the most robust cortical thickness predictors of pain sensitivity are the right rostral anterior cingulate gyrus, left
parahippocampal gyrus, and left temporal pole. Cortical thickness in these regions was negatively correlated to pain sensitivity. Our
results can be considered as a proof-of-concept for the capacity of brain morphology to predict pain sensitivity, paving the way
towards future multimodal brain-based biomarkers of pain.

Keywords: Pain sensitivity, Cortical thickness, Predictive modelling, Machine Learning, Crossvalidation, Quantitative Sensory
Testing, Pain thresholds, Anterior cingulate cortex

1. Introduction

Pain sensitivity is known to considerably vary across individuals.62

This variability has been reported to both forecast and accom-
pany various clinical pain conditions53,58 and—besides periph-
eral aspects—it seems to be shaped to a large degree by
individual differences in brain structure and function.66,84,93,99

Recent studies found that task-based99,105 and resting-
state47,84 brain function, as measured with magnetic resonance
imaging (MRI), has the potential to characterize pain on the
individual level, with effect sizes that may be sufficient for aiding

diagnosis and for evaluation of risk of developing pain and of
analgesic efficacy.92 Structural T1-weighted MRI is a promising
additional modality for the brain-based characterization of pain,
with a potentially high translational value, because of its
reliability,40,43,55 relatively shorter scanning times (only 5-6
minutes for a complete MR-structural sequence), and its wide
availability in clinical routine (a structural scan is a standard
prerequisite for fMRI/diffusion-weighted images). Several studies
have reported structural brain correlates of pain sensitivity on the
group level. Voxel-based morphometry (VBM) studies have
reported that pain sensitivity is significantly correlated to the
morphology of various structures, including the cingulate cortex
(CC), precuneus, primary somatosensory cortex (S1), putamen,
insula, and parahippocampal gyrus (PHG), among
others.22,60,61,71,103 Surface-based morphometry techniques,24

such as cortical thickness analysis, can provide additional
insights and, in contrast to VBM, a better account for
gyrification.26 For instance, Erpelding et al.23 found a pre-
dominantly positive correlation between cortical thickness and
heat pain thresholds in S1, posterior midcingulate, and orbito-
frontal cortices. These and similar studies have identified many
possible morphological correlates of pain sensitivity. However,
the partly conflicting findings in these studies suggest that we
should not be overly optimistic about the replicability of these
associations. In general, such mass-univariate brain-wide asso-
ciation studies (BWAS) has been reported to typically provide
small effect sizes and often lack reliability.51,83 However, given the
known issues of replicability and small effect sizes in such mass-
univariate brain-wide association studies (BWAS), it is unclear
whether such “pain—brain morphology” associations can serve
with replicable, biomedically relevant effect sizes.51,83 Issues of
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replicability and small effect sizes can be overcome by
multivariate predictive models that integrate small effects across
brain regions into robust predictions with larger effect sizes and
offer substantial promise for delivering robust and replicable
brain-based measures of various behavioural and clinical states
and traits, including pain.104 Yet, we lack systematically evaluated
and externally validated brain morphology-based predictive
models for pain.83,102

We aim to develop a cortical thickness-based predictive model
that is (1) specific to individual pain sensitivity and not confounded
by other related but out-of-interest factors,17,33,42,77,82 (2)
generalizable for heterogenous out-of-centre data,98,102 and (3)
explainable, ie, it provides insights into the underlying
mechanism.84,99

2. Methods

2.1. Participants

In total, n 5 133 participants were recruited, and experimental
procedures were performed at 3 different study sites, namely,
Ruhr University Bochum, Germany (study 1, n 5 39); University
Medicine Essen, Germany (study 2, n 5 49); and University of
Szeged, Hungary (study 3, n 5 45). Reimbursement was
performed only for study 1 and study 2 at 20 €/h. All studies
were conducted in accordance with the Declaration of Helsinki
and ethically approved by the local or national committees
(register Numbers: 4974-14, 18-8020-BO, 057617/2015/OTIG,
and ETT TUKEB for studies 1-3, respectively). Inclusion and
exclusion criteria are explained in detail elsewhere.84 In brief,
inclusion criteria comprised no chronic diseases, age $18 and
#40 years (target age 5 25 years), right-handed, nonsmoking
participants, and a balanced sex distribution. Moreover, partic-
ipants were excluded in the presence of acute or chronic
neurological, endocrine, or psychiatric disorders; acute infec-
tions; the use of psychotropic or analgesic-based substances;
wounds; scars; or skin irritations, that could potentially affect the
pain stimuli-based experimental setup. Magnetic resonance
imaging scans underwent a quality check procedure to exclude
images with incomplete whole brain coverage or motion artefacts
(supplementary Figure 1, available at http://links.lww.com/PAIN/
B858). Overall, n5 2 MRI scans with an incomplete frontal brain
acquisition were excluded from final analysis (n 5 131).

2.2. Pain sensitivity measure assessment based on
pain thresholds

Heat (HPT), cold (CPT), and mechanical pain thresholds (MPT) of
the participants were assessed following the established
quantitative sensory testing (QST) protocol.68 Although warmth
(WDT) and cold detection thresholds (CDT) were examined in
study 1 and study 2, in addition, mechanical detection thresholds
(MDT) were also collected for study 3. Thermal thresholds were
obtained using advanced thermal stimulators (ATS thermodes)
on a skin surface of 303 30 mm at the volar forearm. For thermal
stimulators, MSA thermal stimulator (Somedic, Horby, Sweden)
was used in study 1, and pathway thermal stimulators (Medoc
Ltd, Ramat Yishai, Israel) were used in study 2 and 3. Increasing
and decreasing thermal thresholds were applied to the skin, and
the baseline temperature was kept at 32˚C. Using a button press,
participants indicated heat and cold pain onsets. Instead of 3
(original protocol), 6 stimuli repetitions were conducted for all
thermal thresholds to address within-subject variability. To
determine mean WDT, CDT, HPT, and CPT, we calculated the
arithmetic means for each threshold. Therefore, only data of the

measurements 2 to 6 were used. The first measurement of each
WDT, CDT, HPT, and CPT assessment was defined as a test
measurement and, therefore, excluded from the analysis. The
MPT was measured using a set of 7 pin-prick mechanical
stimulators with fixed stimulus intensities (flat contact area of
0.2 mm diameter) that exerted forces of 8, 16, 32, 64, 128, 256,
and 512 mN. The stimulators were applied at a rate of 2 seconds
on and 2 seconds off in an ascending order until the first percept
of sharpness was reached. The final threshold was calculated as
the log-transformed geometric mean of 5 series of ascending and
descending stimuli. Mechanical pain thresholds and MDTs were
determined using a staircase method. Five increasing and 5
decreasing trains of pinprick (MRC Systems, Heidelberg,
Germany) stimuli were applied to the palmar left forearm in an
alternating fashion, whereas the participant was instructed to
categorize the stimuli as painful or not painful. Mechanical
detection threshold was assessed analogously with von Frey
filament stimulations. Mechanical pain threshold and MDT were
computed as the log-transformed geometric mean force de-
termined in 5 ascending and descending staircase-thresholding
runs. Finally, a QST score was calculated as a composite score
composed of HPT, CPT, and MPT. All 3 measures were z-
transformed within each centre. Heat pain threshold and MPT
were inverted (3 21; the algebraic signs “2” were adjusted so
that it reflects the overall pain sensitivity of the participant in the
final composite score, ie, QST score). After this, we calculated the
arithmetic mean of the 3 pain thresholds for each participant.
Quantitative sensory testing scores that were $ 2.5 standard
deviations from the mean were defined as outliers and should,
therefore, be excluded. None of theQST scoreswere identified as
outliers.

2.3. Additional measures

We acquired additional measures wherever possible at the 3 study
centres to evaluate potential confounders. Additional measures
comprised age, body mass index (BMI), date of the first day of the
last menses (females), level of education (primary, secondary, and
university), and the following self-report questionnaires: Pain
Sensitivity Questionnaire: PSQ,70 Pain Catastrophizing Scale:
PCS,86 Pittsburgh Sleep Quality Index: PSQI,10 Perceived Stress
Questionnaire: PSQ20,49State-Trait Anxiety Inventory: STAI,81 and
short German version of the Depression Scale (Centre for
Epidemiological Studies-Depression Scale): ADS-K.48 Blood
pressure was measured both before the MRI and QST procedure.
In study 1, so-called T50 values, ie, temperatures referring to a pain
intensity of 50 on a 0 to 100 Visual Analogue Scale (VAS; anchors:
0 5 no pain and 100 5 intolerable pain), were additionally
measured. These measures along with WDT, CDT, and MDT
measurements were used to analyse the confounding effects on
the model that was based on predicting the composite pain
sensitivity score (QST, for testing model specificity). For study
specific sample sizes, please refer to supplementary table 1,
available at http://links.lww.com/PAIN/B858.

2.4. Magnetic resonance imaging data

Our study uses 3D T1-weighted (structural) images in all study
centres, performed on 3T scanners with an isotropic voxel size of
1 mm3. To avoid the “standardization fallacy”—ie, to preserve a
certain level of data heterogeneity so that the findings could
generalize towards future image acquisitions (Voelkl et al.
2021)—no further standardization of imaging sequences has been
performed across sites. Site-specific scanning parameters are
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listed in Table 1. The 3 centres used different scanners, namely,

Philips Achieva (study 1), Siemens Magnetom Skyra (study 2), and

GE Discovery 750 w MR (study 3). Structural image processing of

T1-weighted images was conducted by using the FreeSurfer

software, version 6.0 (available at https://surfer.nmr.mgh.harvard.

edu/). The underlying working framework for image processing

using FreeSurfer is covered extensively elsewhere.12,14,25–30 We

decided to restrict our analyses to gray matter (GM) thickness and

exclude other measures of morphology (eg, GM volume, area, and

density or morphological connectivity). We selected gray matter

thicknessas ameasurebecause of its reliability and thequantitative

nature of thismeasure,38 aswell as its potential independence from

factors such as the brain surface area and head size in comparison

with GM volume, where factor correction procedures are not well

standardizedand could induce unnecessary statistical artifacts.4,73

Each processing steps involved in obtaining cortical thickness

using recon-all measures are listed with explanations at https://

surfer.nmr.mgh.harvard.edu/fswiki/recon-all. In brief, native space

images were transformed to a standard space using a Talairach

transformation.87 Further image processing steps included cor-

rection for motion artifacts,67 skull stripping,74 removal of the

cerebellum and brain stem, correction of nonuniform intensities,78

segmentation of subcortical, white matter (WM), and deep gray

matter (GM) regions, that helps in estimating GM-WM junction,

tessellation of GM-WM boundary, smoothing of tessellated

surface, automated topology correction,75 and generating amodel

for pial surface (GM-cerebrospinal fluid junction).14,25 Cortical

thickness was measured as the average of distance to the nearest

point on the pial surface from each vertex of the tessellated WM

boundary and from that point back to the nearest point on theWM

boundary. Cortical thickness was measured as the average of

distance to the nearest point on the pial surface fromeach vertex of

the tessellated WM boundary and from that point back to the

nearest point on the WM boundary. Cortical thickness estimates

were averaged within the regional parcellations of the Desikan–

Killiany atlas,16 as (1) it is a widely accepted atlas used in many

multicenter collaborative studies involving cortical thickness

measures46,101 and (2) it offers a favourable balance between the

number of features (68) and our sample size (131), which can help

to mitigate issues of overfitting or inadequate model fitting.37 The

overall procedure for obtaining cortical thicknesses has been

previously validated against histological and manual measure-

ments and its reliability has been established across different

scanning parameters such as MRI sequences and scanning

machines41,69,72.We considered the cortical thickness measures

from the FreeSurfer analysis, which resulted in a total of 68 regional

thickness measures (34 per hemisphere, measured in millilitres).

2.5. Feature harmonization

The feature set comprised 68 features (cortical thickness in 68
regions of the Desikan–Killiany atlas16) for 131 subjects. Regional
cortical thickness measures were scaled by normalizing with the
mean cortical thickness at the per participant. As cortical thickness
measures were previously reported to be highly specific to
scanning sites (Fortin et al.31), the feature set was harmonized to
address the site effects. The harmonization process was
performed using ComBat, a batch-effect correction tool frequently
used in genomics and multicenter neuroimaging studies.46

ComBat uses a Bayesian approach to enhance the reliability of
estimated parameters in smaller samples and has been shown to
be more effective than using simple feature residuals, phenotype-
adjusted residuals, or adding site as a regressor to the predictive
model.11,17,31,82 ComBat was configured to mitigate site effects,
while still preserving the biologically relevant effects of age and sex.
To avoid feature leakage,52 harmonization has been incorporated
into the machine learning cross-validation framework (see next
paragraph, Machine learning pipeline). Leakage was prevented by
using 2 functions: ComBat fit and ComBat transform. The fit
function can be used on the (outer) training set to fit a ComBat
model,whereas the transform function canbeused to simply apply
the already fitted ComBat transformation on the hold-out feature
set. As a result, the transformed training set is guaranteed not to
learn any information from its corresponding test set, thus avoiding
data leakage, which could potentially bias the model predictions.

2.6. Machine learning pipeline

Themachine learning (ML) framework is depicted inFigure 1. First,
the entire sample (feature set: 1313 68 and corresponding target
set5QST scores, 13231)was split into train (feature set1 target)
and its corresponding test (only feature set) sets using a balanced
10-fold cross validation (CV, using GroupKFold: 1-fold corre-
sponds to 1 iteration), where each fold would hold approximately
the same amount of data from all 3 samples. This CV framework
would serve as the outer loop for ourMLpipeline. In this outer loop,
the train data set is fit 1 transformed using ComBat, and the test
set is transformed with the already fitted ComBat model, as
described above. In the inner CV-loop, the train set from the outer
loop is further split into a train subset and a validation subset in a
10-fold CV fashion. Subsequently, in each fold, the transformed
train subset with its corresponding target values (ie, QST-based
composite pain sensitivity scores)was used to fit a linear regression
model with least absolute shrinkage and selection operator
(LASSO),90 using the scikit-learn,63 a python-based package
(https://scikit-learn.org/stable/). LASSOshrinks the features of less
importance and, potentially, eliminates them (nullifying coefficient/
weight of the feature) to reduce model complexity and prevent

Table 1

Magnetic resonance imaging acquisition information.

Study 1 Study 2 Study 3

Scanner Philips Achieva X Siemens Magnetom Skyra GE Discovery MR750w

Head coil 32-channel 32-channel 20-channel

Sequence MP-RAGE MP-RAGE IR-FSPGR

FOV 256 3 256 3 220 mm3 256 3 256 3 192 mm3 256 3 256 3 172 mm3

TR 8500 ms 2300 ms 5.3 ms

TE 3.9 ms 2.07 ms 2.1 ms

Study specific MRI acquisition information is presented including scanner protocols.

FOV, field of view; IF-FSPGR, inversion recovery fast spoiled gradient echo; MP-RAGE, magnetization prepared rapid gradient echo; MRI, magnetic resonance imaging; TE, echo time; TR, repetition time.
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overfitting. LASSO’s tendency to fully eliminate unimportant
features can improve the interpretability of the resulting model
but will inevitably result in a shrinkage of the magnitude of the
predictions, as comparedwith themagnitude of the target variable.
Shrinkage in LASSO is implemented by an L1-penalty equal to the
absolute value of the magnitude of feature coefficient and can be
adjusted through tuning a single hyperparameter: a (learning rate).
At different hyperparameter values for a ([0.0001, 0.001, 0.01, 0.1,
1, 10, 1000, and10000]), the LASSOmodelwas fit to the inner train
set and evaluated on the validation subset for mean squared error
(MSE) when predicting the composite pain sensitivity scores. The
best LASSO model estimator in each inner loop was applied to
create predictions for the actual outer test set (final predictions) in
each of the 10outerCV loops. As our initial model was confounded
by estimated total intracranial volume (eTIV) (P 5 0.006, see 2.7.
confounder analysis for methodological details), we controlled for
eTIV post hoc at the level of machine learning predictions, as
proposed by (Dinga et al. 2020). In details, eTIV was regressed out
from the output of the LASSOmodel in a cv-consistent fashion, ie,
the regression coefficients were fit on the train set predictions (in
eachcv iteration), and in the test set, the unconfoundedpredictions
were calculated based on these coefficients. Overall, any potential
cofounding effects with the final predictions were regressed out.17

Finally, we evaluated feature importance for each “best estimator
model,” corresponding to the 10 outer CV iterations and
considered features, which have a nonzero coefficient to be robust
predictors for pain sensitivity. Pearson r was calculated for all
associations, and itsP-value was determined using nonparametric
permutation testing with 10,000 permutations.

2.7. Confounder analyses

To evaluate potential confounding bias in the model predictions
for centre-based, demographic-based, and psychological-
based additional measures, we used the “mlconfound” package,
which is available from https://mlconfound.readthedocs.io.82 We
performed the partial confounder test with the null hypothesis of
“no confounder bias,” which is tested by probing the conditional
independence of the predicted pain sensitivity on each additional
measure, given the observed pain sensitivity. The test is
distinguished from alternative approaches by its robustness to
nonnormally and nonlinearly dependent predictions. Therefore, it
is applicable without investigating the conditional distribution of
the predictions on the target and the confounder for normality and
linearity. A P-value , 0.05 implies confounding bias (ie, the
predictions are driven partially by the confounder).

2.8. Leave-one-study-out

Along with the main analysis, we also assessed out-of-centre
generalizability by means of a leave-one-study-out crossvalida-
tion, ie, predicting each study by fitting the above-described
machine learning model on the remaining 2 studies. Pain
sensitivity in the left-out centre was predicted with the model
that performed best on data from the remaining 2 centres (with
hyperparameter a optimized in a nested cross-validation loop).
That means, study 11 2 (11 3 and 21 3) were used to estimate
pain sensitivity in a completely unseen study 3 (2 and 1).
Parameters, such as a values in the inner CV data splitting
scheme (GroupKFold(10)), remained the same as mentioned in
the previous section (machine learning pipeline). It should be
noted, that, since ComBat can only consider batch IDs that it has
already seen during training, the final predictions were performed
twice, ie, the left-out study was considered by ComBat to be from

an identical source as either the first or the second from the
training studies (and mean predictions were considered).

2.9. Correlation with the Human Connectome Project
1200 data

To further characterize themost important predictors, we analyzed
already processed FreeSurfer data from the Human Connectome
Project (HCP; www.humanconnectome.org, WU-Minn HCP 1200
Subjects Data Release, release of the data: March 1, 2017).
Although the HCP1200 does not involve measures of pain
sensitivity, it contains 2 pain-related scores, namely, the pain
intensity and pain interference surveys (both self-reported ques-
tionnaires by the participant). The data for the 2 questionnaires is
collected by the pain intensity survey for age .18 years (The NIH
Toolbox Sensation Measures, www.nihtoolbox.org). The survey
consists of 1 self-report item asking about the participant’s level of
pain in the past 7 days. Participantswere asked to rate their pain on
a scale of 0 (no pain) to 10 (worst imaginable pain). Associations
were testedwith Pearson correlation.We tested only those regions
that emerged as the nonzero-weighted features (a priori) in our
LASSO-driven predictive model. The correlations’ one-sided P-
value was obtained using nonparametric permutation testing (n5
10,000). Like our data analysis, the cortical thickness values were
normalized with mean thickness and area measures with eTIV.
Before performing the correlations, cortical measures were
adjusted for age, sex, TIV, and batch effects using ComBat.

3. Results

Our predictive model has been developed in a sample of n5 131
healthy participants, recruited at 3 different scanning centres. We
trained amultivariate model on normalizedmean cortical thickness
values in 68 unilateral, anatomically definedbrain regions (based on
the Desikan–Killiany brain atlas16) to predict the QST-based68

composite pain threshold score based on threshold sensitivity, as
defined in previous studies.84,106 Model characterization involved
brain morphological data from a total of n 5 1226 participants
(including data from the Human Connectome Project94) and
focused on 3 aspects: (1) estimation of the unbiased effect size of
the multicentre predictive model with a balanced, nested cross-
validation strategy; (2) testing out-of-centre generalizability on each
of the 3 independent imaging centres; and (3) evaluation of the
neuroscientific validity of the model and the specificity of its
predictions to physical pain thresholds, by investigatingmodel bias
towards a comprehensive set of “validator variables,” including
demographics, psychometrics, sensory thresholds, neurotrans-
mitter levels and subjective, and self-evaluative pain phenotypes
(which are known to significantly diverge from physical pain
thresholds13,19). Finally, by analysing the predictive coefficients, we
identified 3 key regions that drive the morphology-based pain
sensitivity predictions: right rostral anterior cingulate cortex (rACC),
the left PHG, and the left temporal pole (TP).

3.1. Model predictions

The multicentre model predicted pain sensitivity in unseen
participants with a medium effect size (Pearson correlation
coefficient r5 0.36, P-value5 0.0002, R25 0.13). The predicted
values also correlated significantly with the QST scores from each
individual site, ie, study 1 (r 5 0.42, P 5 0.01, R2 5 0.18 see
Supplementary Figure 2a–c, available at http://links.lww.com/
PAIN/B858), study 2 (r5 0.32, P5 0.01, R25 0.10), and study 3
(r5 0.35, P5 0.01, R25 0.12). Multicenter model predictions for

November 2023·Volume 164·Number 11 www.painjournalonline.com 2519

https://mlconfound.readthedocs.io/
http://www.humanconnectome.org/
http://www.nihtoolbox.org/
http://links.lww.com/PAIN/B858
http://links.lww.com/PAIN/B858
www.painjournalonline.com


pain sensitivity are presented in Figures 2A and B, supplemen-
tary figure-table 3, available at http://links.lww.com/PAIN/B858.

3.2. Model properties

The bestmodel was foundwith ana5 0.01 (regularization constant
hyperparameter) consequently across all 10 iterations of the outer
loop crossvalidation in the multicentre analysis. The applied
machine learning model (LASSO) eliminates features of less
importance by assigning a feature weight (coefficient) 5 0. Hence,
we interpret the features with nonzero weights (coefficients) as the
most prominent regions involved in predicting pain sensitivity. There
were 6 regions that had nonzero coefficients in at least one of the
cross-validation iterations and 3 of them emerged in all iterations
(Table 2). These 3 regions also displayed the highest predictive

importance in themodel (meanpredictive coefficient, averaged over
crossvalidation iterations). Based on absolute weights (coefficients
of the feature), the right rACC provided the highest contribution to
the model’s predictions, which was followed by left parahippo-
campal gyrus (PHG) and left TP. All 3 features were negatively
associated with the pain sensitivity scores (Figs. 2C–E), ie, right
rACC (r 5 20.38, P 5 0.0001), left PHG (r 5 20.24, P 5 0.003),
and TP (r520.16, P5 0.03), indicating that thinner cortices were
associatedwith higher pain sensitivity. Threemore regions, namely,
the right PHG (r520.22,P5 0.01), right frontal pole (r5 0.12,P5
0.09), and left entorhinal cortex (r 5 20.13, P 5 0.07), have also
emerged with nonzero coefficients in at least one CV iteration, but
their appearancewasnot consistent as they emergedonly in 1 (right
PHG), 5 (right frontal pole), and 2 (left entorhinal cortex) CV
iterations, respectively.

Figure 1. Flow chart of themachine learning pipeline. The flowchart shows the splitting ofmulticentre data into train and test sets and subsequent processes. In the
outer crossvalidation (CV), train sets consist of participant’s cortical thickness matrix and QST-scores, which are used for fitting LASSO (least absolute shrinkage
and selection operator) models. In the test sets, the participants’ cortical thicknessmeasures are fed into the already fitted LASSOmodel (optimized in the inner CV
loop) to provide crossvalidated predictions for the pain sensitivity scores. The nested cross-validation scheme and the use of the fit-transform scheme for data
harmonization (ComBat) avoid feature leakage and provides unbiased estimates of the predictive performance. MSE, mean squared error; QST, quantitative
sensory testing.
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3.3. Leave-one-center-out validation

Leave-one-study-out analyses revealed a significant model perfor-
mance on out-of-centre data. (Figs. 2F–H) and Supplementary

figure 1, available at http://links.lww.com/PAIN/B858 and, for the
coefficients of predictive regions, Table 3) Predictions across all 3
studieswere significant (P, 0.05), with effect sizes comparablewith

Figure 2. Gray matter cortical thickness predicts pain sensitivity. Scatter plots and regression lines (with 95% confidence intervals) depicting the correlation
between pain sensitivity and the machine learning model’s predictions are shown in this figure. (A) The pooled multicentre data set (balanced nested 10-fold
crossvalidation), (B) learning curve for the best model for the train and validation sets suggests that increasing training sample size would result in marginal benefits
for model performance, (C–E) the main cortical regions driving predictions, ie, right rostral anterior cingulate cortex, left parahippocampal gyrus, and left temporal
pole, respectively, (F–H) results from the leave-one-center/study-out analyses. r5 Pearson correlation coefficient, P5 P-value tested for 10,000 permutations.
PHG, parahippocampal gyrus; rACC, rostral anterior cingulate cortex.
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that of the multicentre prediction. Common predictor across all
studieswas the right rACC. The left PHGwas an additional common
predictor for study 1 and 3 (right PHG in case of study 2), whereas
the left TP was observed to be an additional common predictor for
study 2 and 3. Other predictors included the right frontal pole (FP)
(study 1) and the left entorhinal cortex (study 3).

3.4. Confounder analyses

The cofounder analysis of the final model revealed no significant
(all P-value . 0.05) confounding bias for any of the investigated
demographic, physiological, and psychological variables
(Table 4).

3.5. Correlation with the human connectome project
1200 data

We checked for associations of the morphological measures
(cortical thickness and area) of the 3 most predictive regions
(rACC, TP, and PHC) and the self-reported pain intensity and
inference in the HCP1200 data set (Supplementary table 2,
available at http://links.lww.com/PAIN/B858). We did not find any
associations between pain and the rACC. A weak but significant
negative correlation was observed between the thickness of the
TP and the pain intensity scores (r 5 20.06, P 5 0.02, R2 5
0.0036) on both sides. For the pain interference T score, there
was a weak but significant negative correlation with the area of
PHG (r 5 20.06, P 5 0.02, R2 5 0.0036) that was found
bilaterally.

4. Discussion

We have developed a multicentre predictive model for pain
sensitivity assessed by pain threshold measurements based on
structural brain morphology. The proposed model can be
considered as a proof-of-concept for the capacity of brain
morphology to yield robust and specific individual-level predic-
tions for pain sensitivity, posing brain structure as a promising
component of future multimodal brain-based pain bio-
markers.47,91 Our results broaden our knowledge about the
brain structural correlates of individual differences and alterations
in pain sensitivity by identifying 3 key regions that drive the
morphology-based pain sensitivity predictions: the right rACC,
the left parahippocampal gyrus (PHG), and the left temporal
pole (TP).

Robust, clinically relevant predictive performance is a key
requirement for clinically useful predictive models. In our study,
grey matter cortical thickness explained 13% of the variance in
pain sensitivity (R2 5 0.13 for the single, cross-validated model
based on all centres and R25 0.08-0.17 in the leave-one-centre-

out cross-validation). Both according to Cohen rules of thumb,
and in comparison with typical effect sizes in multivariate brain-
wide association studies (eg, mean r � 0.1 when predicting
cognition from cortical thickness),51 this is a substantial predictive
effect size that may hold clinical relevance18 and demonstrates
that brain morphology has the potential to be a valuable modality
for objectively characterizing pain based on brain-based features.
Our model can serve as a baseline for future studies that, with the
aid of highly optimized models (eg, advanced morphological
features assessed in a larger number of brain regions), will likely
yield even higher predictive effect sizes.

The applied leakage-free nested cross-validation framework
with a minimal, conventional feature preprocessing approach
mitigates effect size inflation that could stem frommethodological
flexibility choices (“vibration effects,” ie, ratio of largest versus
smallest effect on the same associations explored through
different model parameters).39,95 Moreover, the model training
procedure proved to be highly stable for hyperparameters
(regularization) and model coefficients (predictive weights) when
generalizing to the heterogeneous left-out data set (different
scanners, sequences, research staff, etc). Although this robust-
ness may justify cautious optimism regarding the generalizability
of the proposed model to external data sets, a comprehensive
evaluation of generalizability requires independent external
validation studies with large samples. To facilitate future external
validation studies, we provide a containerized version of our
model, to compute pain sensitivity predictions from BIDS-
formatted data sets in a single step (https://github.com/pni-lab/
ctp-signature).

Clinically relevant predictive performance and generalizability
to new data are necessary but not sufficient criteria for brain-
based biomarker candidates.82,102 Specificity to pain and the
absence of bias towards potential confounders are also crucial
factors that determine the clinical and translational utility of brain-

Table 2

Cross-validation feature information.

Right rACC Left PHG Left TP Right FP Right PHG Left ENT

Mean weight 21.67 20.53 20.21 0.11 20.02 20.01

STD 0.24 0.18 0.10 0.11 — 0.001

Frequency (/total CV) 10/10 10/10 10/10 5/10 1/10 2/10

Feature rank 1 2 3 — — —

The predictive features are remarkably robust across crossvalidation folds. Mean and standard deviation of the model coefficients across all outer CV iterations are shown for all features that were given a nonzero coefficient at

least in one crossvalidation fold. The frequency of occurrence in the model across all CV iterations reveals the right rACC, the left PHG, and the left TP as the most robust predictors of pain sensitivity. The hyperparameter

remained constant across all 10 crossvalidations at a 5 0.01.

CV, crossvalidation; ENT, entorhinal cortex; FP, frontal pole; PHG, parahippocampal gyrus; rACC, rostral anterior cingulate cortex; STD, standard deviation; TP, temporal pole.

Table 3

Out-of-centre generalization results.

Left-out-study-ID Coefficients

Study 1 Right rACC 5 21.72, left PHG 5 20.49, right

FP 5 0.14

Study 2 Right rACC 5 21.39, left TP 5 20.89, right

PHG 5 20.87

Study 3 Right rACC 5 21.86, left PHG 5 20.77, left

ENT 5 20.29, left TP 5 20.06

The regularization factor remained constant in all validations at a5 0.01. Study 1 (2 and 3, respectively) was

always a completely new data set to the model that was calculated using study 2 and 3 (1 and 3 and 1 and 2,

respectively). TIV was regressed out from final predictions within the cross-validation framework. Age and

gender were adjusted along with the batch (study centre) in the ComBat model before predictions.

ENT, entorhinal cortex; PHG, parahippocampal gyrus; rACC, rostral anterior cingulate cortex; TIV, total

intracranial volume; TP, temporal pole; FP, frontal pole.
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based predictive models.82 Our confounder analysis showed that
the predictions of the proposed model are not biased by
variables-of-no-interest, such as centre effects (shown to be
problematic for cortical thickness31), demographics, intracranial
volume, blood pressure, menstrual cycle, alcohol consumption,
or sleep quality. The predictions were not primarily driven by
sensory detection thresholds (as measured by QST) suggesting
that themodel is specific to pain (as opposed to being amarker of
general sensory sensitivity).

Clinically relevant predictive performance of the proposed
model, its potential generalizability, as well as its high neurosci-
entific validity and specificity highlights that, next to functional
brain signatures of pain,84,99 brain morphology should also be
considered as a promising modality for the objective brain-based
characterization of pain. The reported predictive performance,
together with the relatively short (approx. 5-6 minutes), reliable73

andwidely applicable and available data acquisition protocol, and
the lightweight data analysis requirements render brain

morphology not only as an additional modality of future
multimodal pain biomarkers91—complementary to functional
brain signatures of pain84,99—but also as a highly accessible,
standalone tool for pain research.

Next to serving as a proof-of-concept for the utility of
morphology in the construction of brain-based predictive models
of pain, the present work also broadens our knowledge about the
structural brain correlates of individual pain sensitivity differences.
Despite the robustness of the model’s predictions, it is important
to note that the LASSO-assigned feature weights may be subject
to uncertainty. Thus, it is crucial to interpret the model predictors
within the context of their biological plausibility and not for their
inferential guarantee as infallible indicators of pain sensitivity.89 In
all 3 regions that were robustly identified as valuable predictors
(rACC, PHG, and TP), we found that thicker cortex was
associated with lower pain sensitivity. Cortical thickness has
been found to be inversely correlated with laminar differentia-
tion,100 myelination,59 glial cell involvement,97 and—in a region

Table 4

Results of the confounder analysis for predictions with additional measures.

No. Validator variable Correlation with pain sensitivity (r ) Correlation with model predictions (r ) Significance of confounder bias (P )

1 BP at MRI systole 20.11 20.07 0.53

2 BP at MRI diastole 0.01 0.13 0.20

3 BP at QST systole 20.1 20.03 0.82

4 BP at QST diastole 20.05 0.04 0.72

5 MRI-QST time diff. 0.06 0.07 0.48

6 Sex 20.09 20.02 0.88

7 Day of menses 20.09 0.05 0.72

8 Age 0.03 20.07 0.42

9 BMI 0.01 0.04 0.71

10 Education 20.05 20.13 0.26

11 Alcohol per unit 0.15 0.21 0.25

12 Alcohol per week 20.05 20.05 0.62

13 PCS: catastrophizing 0.09 0.03 0.72

14 PCS: Rumination 0.14 0.01 0.93

15 T50 20.45 0.12 0.71

16 GLX 0.36 0.37 0.10

17 GABA 0.24 0.11 0.58

18 Anxiety state 20.01 0.03 0.75

19 Anxiety trait 0.11 20.02 0.81

20 Pain questionnaire 0.16 0.03 0.74

21 Depression 20.11 20.01 0.91

22 Stress 0.17 0.06 0.64

23 Sleep quality 20.04 0.1 0.42

24 Cold detection thresh. 0 0.07 0.50

25 Warm detection thresh. 0 0.08 0.44

26 Mechanical detection thresh. 0.05 0.02 0.32

27 Study center 20.01 0.04 0.65

28 Total intracranial vol. 20.02 20.02 0.842

Confounder analysis was performed with the partial confounder test.82 A P-value, 0.05 suggests that confounder bias exists and that the predictions are not exclusively driven by the cortical thickness but also by the validator

variable.

BMI, body mass index; BP, blood pressure; GABA, gamma aminobutyric acid; GLX, glutamate1 glutamine; MRI, magnetic resonance imaging; P, P-value after 10,000 permutations; PCS, Pain Catastrophizing Scale; QST,
quantitative sensory testing; r, Pearson correlation coefficient.
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dependent manner—neuronal density,44 altogether suggesting a
close coupling between cortical structure and functional de-
mand. To this end, it is appealing to hypothesize that the
observed predictive capacity of cortical thickness in these regions
originates from their differential functional involvement in pain
processing and the resulting structural plasticity. Consistently
with this notion, various studies have shown a significant
association between cortical thickness and pain in healthy
participants23 as well as in pain disorders.15,21,50

The predictive regions identified in this study fit well into this
framework because the pain-related function of these regions is
widely acknowledged. Identifying rACC thickness as the most
important morphological predictor of pain sensitivity is in line with
the collective evidence for the involvement of rACC in modulating
nociceptive processes.1,5–7,20,32,45,80,85,88,99 A thicker rACC
might be a consequence of a higher functional involvement in
nociception-related neural processes that are involved in
attenuating pain. For example, Bingel et al.9 showed that
repetitive pain stimulation over a number of days did not only
significantly decrease individual pain ratings but also increased
the functional involvement of the rACC. Furthermore, in line with
our finding, a thicker rACC cortex has been linked to lower pain
sensitivity levels in long-term meditation practitioners when
compared with a control group.35 The lack of associations
between rACC thickness and self-reported pain intensity or
interference in the HCP data is tempting to be interpreted in the
light of the previously reported robust (N 5 505) divergence
between QST-based pain thresholds and self-reported pain
sensitivity,19,36,54 with the latter being apparently more closely
related to anxiety. This may suggest that the observed pain-
related thickness changes in the rACC are specific to behaviour in
the presence of acute painful experiences (as measured by QST)
and do not generalize to the subjective beliefs about one’s own
sensitivity to (intangible) pain, as measured by self-reports.

Although chronic pain has been also consistently linked to
lower grey matter volume in the rACC,79 it remains unclear
whether structural features of chronic conditions are based on
similar histological correlates as in heightened acute pain
sensitivity and if a thin rACC might even predispose for pain
chronicity. Translational animal studies could help to elucidate the
cellular mechanisms for these macroscopic changes.2

The PHG and TPwere also found to be robust predictors of pain
sensitivity, although with a lower predictive coefficient and weaker
unimodal association with pain sensitivity, as compared with rACC
(r 5 20.24 and r 5 20.16, respectively). Several studies have
described the involvement of PHG and hippocampal networks in
nociceptive processes,8,96 and functional connectivity of these
areas was posed as an important modulator of pain quality
experiences, possibly mediated by anticipatory anxiety and
associative learning.64 Several structural findings underpin the
notion that differences in PHG function may manifest in regional
morphology. For instance, Mutso et al.57 reported a reduction of
hippocampal volume in chronic pain patients and proposed
synaptic plasticity and neurogenesis as possible mechanisms,
based on a neuropathic rodent pain model. Moreover, in the
aforementioned study, Grant et al. reported a negative association
between cortical thickness and pain sensitivity in long-term
mediation practitioners not only in the rACC but, interestingly, also
in the PHG.35 Neumann et al.60 recently also reported increased
grey matter volume in PHGwith lower pain sensitivity in centre 1 of
the present multicentre analysis.

The predictive capacity of the thickness of the TP may also be
traced back to its pain-related function. Several studies reported
TP activation after noxious stimuli.3,34,56,76 Furthermore, the TP

has been brought into relation with the interaction of pain and
working memory, changing the way stimuli are later remembered
by acting directly on memory encoding.34 The putative role of
both the hippocampal formation and the TP in the formation of
pain-relatedmemories is underpinned by our results showing that
morphological measures of these regions—but not the rACC—
showed a weak but significant negative correlation with self-
reported pain intensity and inference ratings in the HCP data set.
As self-reported pain scores are known to be associated with
both anxiety19 and the interaction between pain and working
memory (changing the way how painful experience is remem-
bered),34 these results support the previously reported role of
hippocampal and temporal formations in the exacerbation of pain
by anxiety.65

Altogether, we provide a robust predictive modelling of
individual differences in perceiving pain, which broadens our
understating of the morphological markers of pain sensitivity. The
identified predictive model may have potential implications for
translational pain research and novel analgesic treatment
strategies in precision medicine.
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[47] Lee J-J, Kim HJ, Čeko M, Park B-y, Lee SA, Park H, Roy M, Kim S-G,
Wager TD, Woo C-W. A neuroimaging biomarker for sustained
experimental and clinical pain. Nat Med 2021;27:174–82.

[48] Lehr D, Hillert A, Schmitz E, Sosnowsky N. Screening depressiver
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