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Gamma oscillations in visual 
statistical learning correlate with 
individual behavioral differences
Szabolcs Sáringer , Ágnes Fehér , Gyula Sáry  and Péter Kaposvári *

Department of Physiology, Albert Szent-Gyögyi Medical School, University of Szeged, Szeged, Hungary

Statistical learning is assumed to be  a fundamentally general sensory process 
across modalities, age, other cognitive functions, and even species. Despite this 
general role, behavioral testing on regularity acquisition shows great variance 
among individuals. The current study aimed to find neural correlates of visual 
statistical learning showing a correlation with behavioral results. Based on a pilot 
study, we conducted an EEG study where participants were exposed to associated 
stimulus pairs; the acquisition was tested through a familiarity test. We identified 
an oscillation in the gamma range (40–70 Hz, 0.5–0.75  s post-stimulus), which 
showed a positive correlation with the behavioral results. This change in activity 
was located in a left frontoparietal cluster. Based on its latency and location, 
this difference was identified as a late gamma activity, a correlate of model-
based learning. Such learning is a summary of several top-down mechanisms 
that modulate the recollection of statistical relationships such as the capacity 
of working memory or attention. These results suggest that, during acquisition, 
individual behavioral variance is influenced by dominant learning processes which 
affect the recall of previously gained information.

KEYWORDS

statistical learning, EEG, gamma band, implicit learning, behavior

1. Introduction

Our sensory system is constantly bombarded with a great amount of environmental 
information. Some of this information is not random; relationships can be discovered between 
them. Statistical learning (SL) is the ability to extract the relationships underlying environmental 
stimuli without reward and build them into our internal representation of the environment, 
which later can be  used to process incoming information more effectively. Although the 
phenomenon has been known for decades, the term “statistical learning” was coined in the 
domain of language learning (Saffran et al., 1996). Since then, the definition has been broadened 
as SL has been demonstrated in linguistic (Pinto et  al., 2022) as well as in non-linguistic 
paradigms (Henin et al., 2021) using several stimulus modalities, including visual (Fiser and 
Aslin, 2002; Kaposvari et  al., 2018), auditory (Saffran et  al., 1999), tactile (Conway and 
Christiansen, 2005), and even multimodal designs (Seitz et al., 2007).

Aside from modalities, SL has been demonstrated across stimulus complexity and task 
complexity, age (Nemeth et al., 2013; Bertels et al., 2015; Zwart et al., 2019), IQ (Gebauer and 
Mackintosh, 2007; Kaufman et al., 2010), and even species (Santolin and Saffran, 2018). This 
universality supports that SL is a general neural process and possibly fundamental in the creation 
of internal representations of the environment (Armstrong et al., 2017). Despite the crucial role 
of SL in sensory processing, many studies have reported mixed behavioral results, where 
participants’ performance varied greatly, ranging from outstanding to poor results 
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(Turk-Browne et al., 2010; Franco et al., 2015; Batterink and Paller, 
2017; Juhasz et al., 2019). The underlying reasons for such differences 
in individual affinity towards statistical relationships in an elemental 
processing mechanism remain unknown. Although numerous studies 
have aimed to find a link between SL and factors such as age, 
intelligence, and certain cognitive functions, such as attention 
(Conway, 2020), working memory (Janacsek and Nemeth, 2013; 
Lengyel et al., 2019, 2021), or decision-making strategies (Harlé et al., 
2015), only a few studies have aimed to find the neurological traces of 
interpersonal affinity differences in SL.

An often-used paradigm exposes subjects to an auditory sequence 
where tones create triplets that always occur together in the sequence. 
Using this paradigm, a difference can be discovered in the N100 and 
N400 components of EEG data. However, the appearance of this 
change is not consistent over time, since participants with good 
behavioral results showed it earliest while this difference was not 
detectable in the group with the lowest behavioral performance (Abla 
and Okanoya, 2009). In an EEG study using frequency tagging, a 
positive correlation was found between the normalized power of a left 
anterior and a right occipital cluster (Buiatti et al., 2009). Moreover, 
there was a positive correlation between the behavioral results and the 
intertrial phase coherence (ITPC) of the left pre-central gyrus and the 
right temporo-frontal area. Individual behavioral differences were 
explained as the previously acquired information emerged as explicit 
knowledge on different levels (Moser et al., 2021). Beta activity has 
been correlated with the behavioral results of SL; a 19–21  Hz 
oscillatory activity difference was found between within-pattern and 
between-pattern transitions. This difference emerged before stimulus 
presentation and the pre-stimulus beta-power increased during triplet 
transitions (Bogaerts et al., 2020).

In the current study, we  aimed to find neural responses that 
correlate with the performance of the participants in SL task. The 
variance of the function that is related with the neural response can 
explain the interindividual differences. We used a previously published 
visual SL paradigm (Sáringer et al., 2022) and adapted it to EEG to 
find the cortical changes associated with SL, particularly the oscillatory 
patterns correlating with the individual results of an offline familiarity 
test. A substantial part of the suspected processes that might 
be responsible for inter-individual differences belongs to executive 
functions. These functions are typically linked to the frontoparietal 
region, and in the time-frequency spectrum, the related signal 
response emerges with late latency in the high-frequency range (Reber 
et  al., 2003; Herrmann et  al., 2004; Smittenaar et  al., 2013). 
We identified a high-frequency oscillatory activity that correlated with 
the participants’ behavioral results and could be a potential marker of 
their affinity towards environmental regularities. Afterward, we traced 
the scalp distribution of said changes. Based on this activity 
we  theorize underlying top-down mechanisms influencing 
interpersonal differences in SL.

2. Materials and methods

2.1. Participants

Seventeen (9 females, mean age: 25.7 y) and thirty (16 females, 
mean age: 26.4 y) volunteers participated in the pilot behavioral study 

and in the EEG study for course credits, respectively. Based on the 
results of the pilot study (A′ (mean ± SD) = 0.6 ± 0.17, Cohen’s d = 0.59) 
a priori calculation (ɑ = 0.05, β = 0.95) showed the need for a sample 
size of 33. All participants provided written, informed consent; all 
stated having a correct or corrected-to-normal vision and no history 
of epilepsy or other neurological diseases. One participant was 
excluded due to extremely high noise in the recording. The study 
protocol was approved by the Human Investigation Review Board of 
the University of (266/2017-SZTE).

2.2. Sequence design

We adapted a previously described paradigm (Sáringer et  al., 
2022). In each run, 412 trials were presented to the participants: 16 
images of objects were presented 25 times, and 12 pictures of animals 
were randomly inserted into the stream; these 12 pictures were target 
stimuli. A run was divided into two parts. During the first part, all 16 
objects were presented 10 times randomly under the constraint that a 
stimulus could not appear again until after three other stimuli had 
been presented. The second part had 15 cycles; each cycle contained 
all 16 stimuli. In this part, regularities were hidden in the sequence. 
Eight pictures formed four stimulus pairs, always following each other 
in a fixed order. The remaining eight stimuli served as control; they 
had no statistical relationship with any other stimulus above chance. 
Thus, there were three conditions: Condition P1, P2, and S. Condition 
P1 refers to the first member of the stimulus pair which always 
precedes the predictable stimuli. Condition P2 refers to the second 
member of the stimulus pair which becomes predictable. Condition S 
indicates the remaining eight control stimuli (Figure 1).

2.3. Task

In each run, 12 images of animals were randomly inserted into the 
sequence. Participants were informed that they were going to view a 
stream of images representing everyday objects and animals. Their 
task was to indicate the appearance of an animal with a button press 
as soon as they could (Figure 2). This task aimed to focus the subjects’ 
attention on the visual stream, and at the same time, it helped to keep 
the regulatory information implicit.

2.4. Familiarity test

After the sequence presentation, participants performed an offline 
familiarity test to evaluate their gained knowledge about the associated 
stimuli pairs in a two-alternative forced choice (2AFC) design. The 
test consisted of four presentations of eight stimulus pairs, 32 
presentations in total. Four pairs were previously seen and the rest 
were newly added by switching one member of the original pairs from 
the same position. The members of each pair were presented in the 
same way as during the original sequence. After presenting both 
members, participants had to indicate whether the presented stimulus 
pair was familiar or not with a keyboard button press (‘S’: not familiar, 
‘K’: familiar). The next pair was shown after the subject had given 
an answer.
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2.5. Stimulus presentation

Gray-scale images of everyday objects were presented to the 
participants in a stream. Sixteen images of objects and 12 of animals 
were selected from the Bank of Standardized Stimuli (BOSS) (Brodeur 
et  al., 2010, 2014) for each run. All stimuli were displayed at 
approximately 7.5° × 7.5° in visual angle. Stimuli were presented in 
Psychtoolbox, MATLAB (Brainard, 1997) on an ASUS ROG Swift 
PG248Q Monitor (24″, FHD, 1920 × 1,080). Participants were seated 
approx. 50 cm from the screen. Pictures were displayed for 0.3 s and a 
jittered intertrial interval was used (0.7–1.2 s).

2.6. Procedure

First, we run a pilot behavioral experiment to determine whether 
our paradigm works and SL is detectable with a familiarity test. Note 
that the original paradigm (Sáringer et al., 2022) was able to measure 
SL online because the subjects needed to indicate the category of each 

presented stimulus by a button press. Here, we modified the paradigm 
to exclude the motor component in the EEG signal during the training 
period. At the beginning of this pilot study, participants were 
instructed that they should press number 1 on the numeric keyboard 
when seeing an animal among a stream of pictures. After one run (412 
trials in total, approximately 7 min long), they performed the 
familiarity test, where they were informed about the 
hidden regularities.

After the pilot behavioral study, we performed the EEG study 
during which stimuli presentation was coupled with EEG recording. 
To accumulate data and reduce variance, we performed three runs 
(1,236 trials, ~25 min). For all subjects in each run, a newly generated 
sequence with new regularities (pairs) was used. The total presentation 
of every picture was 25 times (10 times in the random sequence and 
15 times in the structured sequence), thus the pairs were presented 15 
times accordingly. Between runs, participants could take a few 
minutes break to relax and reduce fatigue. At the end of the three runs, 
participants were informed about the regularity and performed a 
familiarity test based only on the regularities seen in the last run.

FIGURE 1

Stimulus sequence structure. Eight out of the 16 pictures of everyday objects formed four stimulus pairs; their members always followed each other 
with a transitional probability of one. The remaining eight stimuli were part of the control, S conditions, which had no statistical relationship with any 
other picture. Pictures were displayed for 0.3  s; a jittered intertrial interval (ITI) was used (0.7–1.2  s).

FIGURE 2

Detection task during the sequence. Participants were asked to focus on the images and indicate the appearance of an animal with a button press.
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2.7. EEG data acquisition

EEG data were recorded using a 64-channel Biosemi Active II 
system with a sampling rate of 2048 Hz. An electrooculogram (EOG) 
was recorded using four channels 1 cm above and below the left eye 
and the outer canthus of both eyes.

The preprocessing pipeline was implemented in EEGLAB 
(Delorme and Makeig, 2004). First, based on visual inspection, 
channels with compelling artifacts and noise were interpolated. 
Then, a 1–80 Hz bandpass filter and a 48–52 Hz Notch filter were 
applied. The data were re-referenced to the grand average and 
resampled to 200  Hz. Eye movements and other artifacts were 
excluded using EyeCatch software (Bigdely-Shamlo et al., 2013) 
and Multiple Artifact Rejection Algorithm (MARA, Winkler et al., 
2011, 2014). We removed the EOG channels from the clean data 
and epochs were defined: from 0.7 s before to 1.7 s after the 
beginning of stimulus presentation.

Clean and segmented data were further processed using 
Fieldtrip (Oostenveld et al., 2010). Event-related potentials (ERP) 
were baselined to 0.2 s before stimulus presentation and inspected 
between −0.2 and 1 s. ERP was calculated for each subject, 
condition, and channel and used for further analysis.

A time-frequency analysis of the data was performed via 
Morlet wavelet analysis in the time-frequency window of −0.7 to 
1.7 s and 2–80 Hz. Hanning taper and padding were applied. For 
the inspection of lower frequencies (8–30 Hz) range cycle number 
of 4 and for higher frequencies (30–80 Hz) range cycle number of 
10 was used. The power was baselined to 0.4–0.2 s before stimulus 
presentation and given in dB. Then the spectral data were averaged 
across trials.

ITPC was calculated for the same time-frequency window as 
in the time-frequency analysis. Frequency decomposition was 
performed via Morlet wavelet analysis with a cycle number of 10 
(high-frequency range). The ITPC value can range between 0 and 
1, where 0 means high variance in phase angles and 1 indicates that 
all trials have the same phase angles.

2.8. Statistical analysis

On the familiarity test data, the modified Grier’s formula was 
applied (Eqs 1, 2) (Grier, 1971, Aaronson and Watts, 1987), where HIT 
means the hit probability of the subject and FA signifies the false alarm 
probability of the subject. This formula describes the subjects’ 
sensitivity in a 2AFC task as a value A’, a variable between 0 and 1. 
Chance performance is 0.5 A’, approaching 1 indicates improved 
performance in a 2AFC test. Equation 2 is used when a participant’s 
hit probability is lower than their false alarm probability. We calculated 
the A′ value of every subject and used a one-sided t-test to evaluate 
whether the population mean is significantly different from 0.5. In 
addition, we divided the participants into two groups based on the 
result of the familiarity test. EEG volunteers, who performed >0.5 on 
the test were labeled AC for above-chance performers; the remaining 
subjects were labeled C for chance performers.
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For ERP comparisons, the Fieldtrip toolbox was used. 
Permutation statistics with cluster-based correction were applied 
where data points within the cluster were connected through time 
and channels. The result of dependent t-tests determined the 
cluster size, where the significance threshold was set to 0.0167 
(one-third of 0.05, after Bonferroni correction for the multiple 
comparisons among the three conditions). After 1,000 
permutations, the 95th percentile of the summed t values within a 
cluster were accepted as significant.

For the time-frequency data analysis, a window of interest was 
chosen in the mean spectral data of all subjects, channels, and 
conditions following the method of Bogaerts et  al. (2020). To 
confirm that the power in this window can contribute to the 
variance in the performance of the offline test, the participants’ 
behavioral results were correlated with the average power of our 
window of interest using Pearson’s correlation.

To confirm the results of the correlation and to specify the 
origin of the increased oscillatory activation, permutation-based 
statistics were applied to the time-frequency data with Bonferroni 
and cluster-based correction as described above. The clusters were 
determined across time, frequency, and channel dimensions. For 
the comparisons, the two groups [above chance (AC, n = 14) and 
chance (C, n = 15) performers] were contrasted. Then, the three 
conditions (P1, P2, and S) were contrasted within the AC group.

To test the phase-lock to the stimulus onset time, after 
averaging the ITPC values in the observed time-frequency window 
and same size window in the pre-stimulus baseline period, they 
were compared with Wilcoxon signed-rank test where ɑ was set 
to 0.05.

3. Results

3.1. Behavioral pilot study

To assess the adequacy of the above-described paradigm, 
we conducted a pilot behavioral study on 17 participants. The sample 
mean of A’ was significantly higher than 0.5 (A′ (mean ± SD) = 0.6 ± 0.17, 
Cohen’s d = 0.59, t (16) = 2.44, p = 0.0132; Figure  3). Accordingly, 
we used this paradigm for the subsequent EEG study.

3.2. Behavioral results of the EEG study

In the EEG study the sample mean was >0.5 (A′ 
(mean ± SD) = 0.53 ± 0.18, Cohen’s d = 0.18; Figure  3), but not 
significantly so (t (28) = 1.002, p = 0.1623). Out of the 29 people, 
one person explicitly reported that she did not comprehend the 
task and additionally we speculate three people misunderstood 
the task since they answered only “not familiar.” Still, these 
subjects were kept in the analysis, so we do not increase bias in the 
study. Although the analysis of the behavioral results was not 
significant, it showed the same tendency as the pilot study, where 
we  could confirm the efficiency of the paradigm. Hence, 
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we  pursued the analysis of the EEG data with 29 participants. 
According to the outcome of the familiarity test, the participants 
were divided into two groups: AC, above chance performers, who 
achieved >0.5, and C, chance performers, who resulted in ≤0.5 on 
the familiarity test.

3.3. Analysis of the event-related potentials

No significant clusters were found in the data of all subjects when 
contrasting the post-stimulus intervals of the three conditions. Neither 
the analysis of all data of the AC group nor that of the data from the 
last 10 repetitions (6 to 15) in the same group showed 
significant clusters.

3.4. Spectral analysis

To determine a window of interest we followed the methodology of 
Bogaerts et al. (2020). The time-frequency data was averaged over all 
subjects, conditions, and channels. A window of interest was selected in 
the gamma range (40–70 Hz) from 0.5 to 0.75 s after stimulus 
presentation (Figure 4). Then, we investigated the relationship between 
the individual gamma powers (averaged across all conditions and 
channels) and the behavioral results tests of the participants. The 
average powers of the window of interest were assigned next to the A’ 
values of each participant. Pearson’s correlation coefficient was 
calculated based on the data distribution. The test yielded significant 
results with a coefficient of r = 0.3705 (n = 29, p = 0.0478; Figure 5). As 
mentioned previously, the behavioral data of four participants do not 
reflect their actual acquisition of the associated pairs due to 
misconception. In a reanalysis of the correlation, we excluded these 
participants to verify the observed relationship between the behavioral 
and electrophysiological data without this skewing factor. In this case, 
with only 25 subjects, the correlation statistics still yielded significant 
results (n = 25, r = 0.4494, p = 0.0242). Based on this, we decided to keep 
the electrophysiological data of these four participants and continued 
the EEG analysis with 29 subjects.

In order to establish the spatial distribution of the 40–70 Hz gamma 
activity, we compared the AC and C groups. The average power in all 
conditions was used to perform permutation-based statistics across the 
scalp in the previously described 0.5–0.75 s period. After correcting for 
multiple comparisons, a significant cluster emerged in the left 
frontoparietal region (tsum = 860.57, p = 0.041, Figure 6). According to 
the analysis, the AC group (mean ± SEM = 0.35 ± 0.07 dB) has a higher 
average gamma power than the C group (mean ± SEM = 0.08 ± 0.05 dB).

We compared oscillations in the same range (40–70 Hz) and in the 
same time window (0.5–0.75 s after stimulus presentation) on the scalp 
to determine whether this high-frequency activity is constant across all 
conditions or condition-specific. No significant cluster appeared 
including all subjects in the analysis. Nonetheless, we performed the 

FIGURE 3

Individual A′ values indicating accuracy, where each dot represents the result obtained by a single participant. The hit probability (true pair/“familiar” 
answer) is displayed against the false alarm probability (false pair/“familiar” answer). The color bar indicates the A′ value from 0 to 1, while the diagonal 
line is the 0.5 chance performance. Left: behavioral pilot study. Right: behavioral results of the EEG study.

FIGURE 4

Spectral power averaged across all subjects, conditions, and 
channels. Power is illustrated by time in s (x-axis) and frequency in 
Hz (y-axis) in the window of 0.2  s before stimulus presentation and 
1  s post presentation and from 10 to 80  Hz. The dashed window 
indicates the selected window of interest.
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analysis separately on the AC and C groups. Although no significant 
cluster could be  discovered within the C group, a difference was 
detectable between condition P1 and S in the AC group (tsum = 681.30, 
p = 0.021, Figure 7). The distribution of gamma oscillations between 
conditions was remarkably similar to the previously described activity 
differences between the AC and C groups as it appeared in the left 
frontoparietal region.

The finding that condition P2 was not significantly different from 
either condition was not in line with our expectations. If there is no 
change during the processing of P2 stimuli, condition P2 should have 
had similar dynamics as condition S, being significantly different from 
condition P1. If the underlying process does change due to SL, 
Condition P2 should have been significantly different from condition 
S. To understand why condition P2 does not differ from the other 
conditions, we observed the average gamma power in the window of 
interest (40–70 Hz,0.5–0.75 s post-stimulus) in each condition. The 
mean gamma power was greatest in Condition P1 and lowest in 
condition S [P1 (mean ± SEM) = 0.4691 ± 0.1184 dB, S 
(mean ± SEM) = 0.219 ± 0.0492 dB]. In condition P2, the gamma power 
(P2 (mean ± SEM) = 0.3222 ± 0.1015 dB) lies in between, which can 

explain why we could not detect significant differences between P1 and 
P2 or P2 and S in the cluster analysis (Figure 8).

The ITPC of the time-frequency window of interest (0.5–0.75 s, 
40–70 Hz) in group AC (Median: 0.0698 IQR: 0.0052) in condition P1 
was compared to the ITPC of the pre-stimulus baseline window (40–70 
Hz, −0.4 to −0.15 s) in the same group and condition (Median: 0.0683, 
IQR: 0.0048). The difference in median coherence was not significant 
(N = 14, z = −0.2824, z/√N = −0.075, p = 0.78).

After establishing the results found in the gamma range, we tracked 
differences in the theta (4–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz) 
ranges using the same time window. These frequency bands showed no 
significant or even tendentious difference between groups or between 
conditions. Based on these findings we did not pursue any analysis 
beyond the previously settled gamma window.

4. Discussion

Our aim was to find electrophysiological markers that correlate 
with the accuracy in a VSL paradigm and can contribute to clarifying 
the great interpersonal differences in performance in SL studies. 
We  assessed an unsupervised VSL paradigm with determined 
regularities (associated stimuli pairs) in a temporal sequence. We found 
that gamma activity correlated with performance in the familiarity task 
(Figure 5). This activity in the low gamma range (40–70 Hz) over the 
left frontoparietal region increased in the AC group between 0.5 and 
0.75 s post-stimulus (Figure 6). Furthermore, this gamma oscillation 
was higher in condition P1 compared to the control condition and not 
phase-locked to the stimulus onset time (Figure 7). Considering the 
predictive role of Condition P1, the latency of the gamma activity 
relative to the stimuli, and its correlation to performance, this induced 
gamma activity appears related to SL; however, the function of this high 
oscillatory activity still needs to be clarified.

4.1. Behavioral findings

In line with previous research, great variance was observed in 
participants’ performance (Turk-Browne et al., 2010; Franco et al., 2015; 
Batterink and Paller, 2017; Bogaerts et al., 2022). High variance exists 
both within individual studies and between different studies despite the 
fact that most studies, including ours, measured a relatively 

FIGURE 5

Correlations of the A′ value and average gamma power (40–70 Hz, 
0.5–0.75  s window, all channels) of all participants (n  =  29, r  =  0.3705, 
p  =  0.0478). Gamma power in dB (y-axis) is displayed by the 
participants’ individual A′ values (x-axis).

FIGURE 6

Scalp distribution of the 40–70  Hz gamma activity in the 0.5–0.75  s time window. (A) Power difference (colorbar) between the AC and C groups on the 

scalp. (B) standard deviation of the difference, where σ σ σdiff = +
1

2

2

2 . (C) Difference illustrated as t values (colorbar) on the scalp. Channels in the 

significant cluster (tsum =  860.57, p =  0.041) are marked as black dots (p <  0.05).
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homogeneous population of university students between 20 and 30 
years old. In the pilot behavioral study, we found a significantly different 
mean population performance from chance, which proved that the 
regularities were acquired, and our paradigm was suitable to detect 
SL. Similarly, to the pilot study, the mean population performance was 
higher than chance in the EEG study, however, behavioral results failed 
to reach significance (Figure 3). A possible reason for this result could 
be fatigue. Further possible factors resulting in null finding could be that 
contrarily to the single run of the pilot study, participants were exposed 
to three runs in the EEG study, which aside from the longer time of the 
task also meant three times more stimuli pairs to learn even if the 
successful acquisition was tested only in the last run. Notwithstanding, 
the lack of great effect size in the familiarity test does not influence the 
cortical activity related to the acquisition process of 
statistical relationships.

4.2. The role of gamma oscillations

To adequately interpret the role of the observed gamma power 
change we  place our findings in literature. Post-stimulus gamma 

activity was defined as early and late gamma activity previously. Early 
gamma activity was defined as a transient evoked activity with phase-
locked oscillation ending before 0.15 s after stimulus presentation. It 
is a correlate of basic perceptual processes based on the latency and 
the phase-locked nature of the oscillation (Pulvermüller et al., 1999). 
Late gamma activity is a longer, non-phase-locked oscillation, typically 
found between 0.2 and 1 s with great variance and in the low range 
between 30 and 80  Hz. In the match and utilization model for 
interpreting gamma oscillations, early gamma is linked to matching 
the incoming sensory information to past experiences while late 
gamma oscillation is linked to utilization (Herrmann et al., 2004). 
Utilization is described as a process during which, after matching, 
information “can be used for coordinating behavioral performance, 
for redirecting attention, or for storage in memory” (Herrmann et al., 
2004). One aspect of utilization can be  attention control: gamma 
activity has been linked to attention (Fell et al., 2003) and plays a role 
in top–down attentional control in the case of predictable stimuli 
(Gonzalez Andino et al., 2004). In addition, the role of attention in SL 
has been described as a reciprocal relationship, since attention to a 
regularity helps its acquisition, and attention can be guided to learned 
regularities through top-down mechanisms (Conway, 2020). Based on 
the frequency range (40–70 Hz), the latency (0.5–0.75 s), and also 
being a non-phase-locked activity, we interpret our findings as a late 
gamma activity involved in the utilization process.

Not only the latency and frequency range but the location of the 
oscillation helps to narrow down the spectrum of the suspected 
function. The earlier and more posterior the activity on the scalp the 
more likely it represents sensory functions, while later and more 
anterior activity is linked to executive functions (Reber et al., 2003; 
Smittenaar et al., 2013). However, the border between sensory and 
executive functions is not always clearly defined, particularly 
concerning SL. Likewise, the definition of utilization allows a variety 
of interpretations. Another theory, which defines model-free and 
model-based learning, draws a similar conclusion. Although 
overlapping with the match and utilization model, it links the 
processes to different brain regions. Model-free learning means 
stimulus-driven, incidental detection of environmental regularities in 
an unsupervised form without intention and is assumed to happen 
implicitly. The extraction of stimulus patterns is an essential element 
of SL that can be linked to bottom-up processes and appears in the 
posterior regions of the cortex. Meanwhile, model-based learning 

FIGURE 7

Scalp distribution of the 40–70 Hz gamma activity in the 0.5–0.75 s time window between Condition P1 and S within the AC group. (A) Power 

difference (colorbar) of the two conditions across the scalp. (B) standard deviation of the difference, where σ σ σdiff = +
1

2

2

2 . (C) Difference displayed 

as t values (colorbar), where significant channels (tsum =  681.30, p =  0.021) are marked as black dots (p <  0.0167, after Bonferroni correction).

FIGURE 8

Average power in each condition within the time-frequency window 
of interest (0.5–0.75 s, 40–70  Hz). The error bars indicate SEM.
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constructs an internal representation from the extracted regularities 
to execute goal-oriented behavior and modulate executive functions. 
It can be related to top-down mechanisms and appears in the anterior 
regions of the cortex (Daw et al., 2011).

The role of top-down mechanisms in anterior areas affecting SL 
was tested in a recent study (Ambrus et al., 2020), where the activity 
of the dorsolateral prefrontal cortex (DLPFC) was disrupted by 
transcranial magnetic stimulation during an alternating serial reaction 
time task. After 24 h, they found higher SL performance. The result is 
interpreted in a competitive framework due to an antagonistic 
relationship between model-based and model-free learning. DLPFC 
disruption decreased model-based learning, opening the door for 
model-free learning. Model-based learning is linked to the PFC 
(prefrontal cortex) and the hippocampus (Conway, 2020). The PFC is 
associated with the function of working memory and has the ability 
to keep the information available in a temporal design during a delay 
period between stimulus presentations. Thus, it seems essential in 
learning associated stimuli in time. The hippocampus has a possible 
role to build the information originating from incidental learning into 
the internal representational schemas (Cowan, 1988; Cowan, 2017).

Another study (Batterink et  al., 2015) makes functional 
distinctions between brain areas and their results are in line with the 
previously mentioned model-free/model-based approach. Posterior 
areas were associated with bottom-up functions, meaning they have 
greater activity in case participants have to rely on the sensory 
processing of stimuli without pre-existing knowledge, while the 
anterior areas are more involved in top-down processes when 
participants can use previously acquired information about the 
upcoming stimuli. Their approach is very similar to the above-
discussed model-free/model-based learning model, but they view 
these learnings as parallel processes, where their relationship is not 
necessarily competitive.

The familiarity test used in our paradigm is an offline, somewhat 
explicit measurement (Turk-Browne et al., 2005; Kim et al., 2009; 
Batterink et al., 2015). To achieve above-chance performance on the 
test, two requirements must be met. First, extraction of an observed 
environmental regularity and model building must be achieved. Next, 
the participant needs to recall explicit knowledge from this internal 
representation. In our view, the term utilization describes almost 
identical cortical processes as model-based learning. The temporal 
aspect of our results suggests that the observed gamma activity 
differences are correlates of the utilization process. The localization of 
the oscillatory activity supports the hypothesis that it is a correlate of 
model-based learning. In addition, these two terms are linked by their 
similar description, as well. Based on these observations we theorize 
that late gamma oscillation is the correlate of model-based learning.

However, we cannot rule out the possibility that the extraction of 
regularities and building of an internal representation happens in 
every participant since our paradigm cannot measure model-free 
learning processes. Independent of a possible competitive or parallel 
relationship between model-based and model-free learning processes, 
the gamma activity and its correlation to behavioral performance 
suggest that the level of model-based learning dominance can 
potentially explain interpersonal differences in offline tests. However, 
this conclusion does not fully address our original question, since 
model-based learning and utilization involve several parallel cortical 
and subcortical functions, such as attention and working memory. 

Thus, the precise cortical process and the origin of the gamma 
oscillation need to be confirmed in further studies.

5. Conclusion

In conclusion, we  aimed to find cortical correlates of the 
behavioral performance of an offline familiarity test in a temporal VSL 
paradigm to clarify the ambiguous results obtained in frequently used 
offline tests. We found that the familiarity test results correlated with 
a frontoparietal post-stimulus low gamma activity. Based on the 
latency and frequency range of the oscillation (0.5–0.75 s, 40–70 Hz), 
we identified this activity as a late gamma oscillation. According to the 
literature, this late gamma activity appears to be a correlate of model-
based learning, which is required for information recall during an 
offline test. Hence, we propose that the dominance level of model-
based top–down processing contributes to the experienced 
performance variances.
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