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This Special Issue has focused on dissecting the neuroprotective and neurodegener-
ative components of neurological and neuropsychiatric diseases, highlighting the latest
advance in understanding the etiology, pathomechanism, biomarkers, imaging techniques,
and novel therapeutic targets of neurodegenerative diseases (NDDs). The articles published
in the Special Issue have featured Alzheimer’s disease (AD), Parkinsons’s disease (PD),
multiple sclerosis (MS), dementia with Lewy bodies, and salicylate-induced tinnitus.

Broadly speaking, the disease onset and course may be roughly understood by imag-
ining a tug-of-war between neuronal damage and recovery, which takes place as early as
in prodromal phase. Then, who pulls the rope first? NDDs are multifactorial diseases in
which genetic susceptibility, environmental factors, infections, nutrition, and/or lifestyle
make a complex interaction to form an initial causative complex which later progresses to
formation of secondary complex, eventually leading to the onset of diseases [1,2]. NDDs
are characterized by impairments of both cognitive function and social interaction. Indeed,
these alterations in social cognition and social functioning, are attributed to altered activity
within cortical and subcortical brain structures [3], which store sensory, motor, and affective
information, fundamental for self-awareness and decisional process [4], which is a crucial
aspect in the symptomatology of various neurodegenerative disorders. Clinical features
and changing functional patterns in NDDs include impairments in memory and emotional
learning, poor planning, altered capacity to adapt behavior to the environment, impaired
working memory, apathy, depression, disinhibition, and/or a dysexecutive cognitive pro-
file, which correlate with a typical cognitive pattern due to frontal lobe dysfunction [4–10].
Thus, a certain interaction of etiological factors and a unique pathological progression
together composite a team which triggers the initial pull of the rope.

Featuring environmental factors as pathogenic culprits, Sini and colleagues explored
the potential etiological link between microorganisms and NDD pathogenesis in an envi-
ronmental scale. Blue-green algae cyanobacteria produce cyanotoxins which are released
during cell lysis in an algal bloom into the surrounding water. Acute exposure to cyan-
otoxins cause gastrointestinal symptoms, allergic reactions, headache, and neurological
symptoms including muscle weakness and dizziness. The cyanobacteria neurotoxin β-
N-methylamino-l-alanine (BMAA) is considered to play a role in development of NDDs
including AD, PD, and amyotrophic lateral sclerosis [11].

Diagnosis of a NDD is made through assembling a clinical picture interpreted by a
doctor based on signs, symptoms, family history, and medical investigations including
biomarkers, imaging tools, and medications [12]. The onset and disease course of NDDs
may well be understood by envisioning a disease in analogy to a position vector: a position
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being the initial domain of symptoms; magnitude being severity in scales from molecular,
tissue, neural correlate, to functional levels; and a direction being the domain of secondary
symptoms. Neuroprotection, either through endogenous defense mechanisms or by ex-
ogenous supplements such as antioxidants may be able to intervene disease progression,
slowing a free fall course with temporal remissions [13–15]. Following neural damage,
direct repair mechanism neuroregeneration may help restore original or close to original
brain functions in cellular and tissue levels [16]. Furthermore, overall neural activities
can be maintained by the ability of the nervous system to recruit other components by
reorganizing its structure, connections, and/or functions (that is neuroplasticity [17]). The
capacity of neuroplasticity is bounded by resilience, which is the ability to be flexible and
adaptive in response to harmful challenges [18]. The exacerbating disease course may well
be exemplified by decreasing neural plasticity and weakening functional resilience. The
endpoints of the plasticity, the resilience, and thus neural activities are neurodegeneration
and eventually functional loss (Figure 1).
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The initial neural damage can be repaired, and the function can be restored by the 
endogenous process of neuroprotection which refers to the salvage or recovery of the 
structure, function, neuronal cells, and/or network in the nervous system [19,20]. Micro-
glial cells are responsible for inflammatory reaction in the nervous system. Czapski and 
Strosznajder discussed the roles of neuronal and microglial proteins including receptors, 
their involvement in the neural communication, and microglial-neuronal crosstalk in 
NDDs in search of neuroprotective and pharmacological targets [21]. The acute inflam-
matory response may proceed to neural recovery, but it may also lead to low-grade 

Figure 1. The dynamics of neurodegenerative diseases (NDDs) from prodromal phase, onset, neu-
rodegeneration, to functional loss. The pathogenesis of NDDs starts from a tug-of-war between
neural damage and neural recovery in prodromal phase. The normal neural functions can be compen-
sated by neuroplasticity, which is bounded by functional resilience. Decreasing neuroplasticity and
resilience lead to neurodegeneration and functional loss. The figure was created with BioRender.com.

The initial neural damage can be repaired, and the function can be restored by the
endogenous process of neuroprotection which refers to the salvage or recovery of the
structure, function, neuronal cells, and/or network in the nervous system [19,20]. Mi-
croglial cells are responsible for inflammatory reaction in the nervous system. Czapski and
Strosznajder discussed the roles of neuronal and microglial proteins including receptors,
their involvement in the neural communication, and microglial-neuronal crosstalk in NDDs
in search of neuroprotective and pharmacological targets [21]. The acute inflammatory
response may proceed to neural recovery, but it may also lead to low-grade chronic in-
flammation and the state of immune tolerance. This is the allostatic state that maintains
functional homeostasis at the cost of self-harm [22]. The healthy function in the network
of excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) neurotransmission is
crucial to maintain neural homeostasis in the brain and the reciprocal excitatory-inhibitory
balance has been observed to be compromised in neuroinflammation and AD [23]. Thus,
the magnitude of organizational level is affected in AD through neuroinflammation.

Characterizing preclinical animal models simulating human diseases is an essential
step for bench-to-bed translation research [24–37]. Mendes-Pinheiro and colleagues studied
the behavioral domains of 6-hydroxydopamine (6-OHDA)-induced mouse model of PD. A
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progressive neurological disorder PD is widely considered to primarily affect movement
of individuals. PD patients frequently experience psychological and behavioral symp-
toms named non-motor symptoms, which include sensory complaints, mental disorders,
sleep disturbances, autonomic dysfunction, peripersonal space coding difficulties, motor
disfunction and psychobehavioral symptoms such as apathy, agitation, hypersexuality,
pathological gambling, psychoses, hallucinations, depression, and anxiety [2]. These symp-
toms can be present in the early stages of the disease, sometimes even before the appearance
of classical motor symptoms, likely in relation to dopamine depletion in basal ganglia,
suggesting how modulation of autonomic nervous system responses is fundamental for
behavioral regulation. Evidence in healthy participants may suggest that these proprio-
ceptive and motor mechanisms might be impaired in PD patients [38,39]. The authors
investigated not only motor and coordination domain, but also the domains of positive
and negative valences together with glial cell response. The mice showed despair-like
behavior, decreased self-care, and less motivational behavior with proliferative and reactive
microglia [40]. Thus, the authors successfully characterize a pharmacological animal model
of PD, which also manifests the directional component of neural damage vector.

Biomarkers are measurable indicators to help evaluate risk, diagnosis, disease course,
and therapeutic outcomes for a disease. MS is a chronic immunological neurodegenerative
disease of which biomarkers certainly may be able to help identify various stages of MS
and build personalized treatment plan. Biernacki and colleagues reviewed promising
new biomarkers of blood and cerebrospinal fluid samples for MS, emphasizing need
to develop biomarkers from blood samples and to establish biomarkers to complement
current diagnostic strategies [41]. Furthermore, discovery of prodromal biomarkers is an
urgent need not only for MS, but other NDDs in order to prevent the onset of diseases.
Development of new diagnostic imaging techniques is under extensive research for NDDs.
The accumulation of the tau protein is closely linked to neurodegeneration and thus
cognitive impairment. The tau protein may serve as diagnostic and prognostic biomarkers.
However, its precision calibration in vivo remained a great challenge. Ricci and colleagues
reviewed recent advances in in vivo imaging by positron emission tomography (PET) using
tau tracer 2-Deoxy-2-[18F]fluoroglucose (18F-FDG), describing the development of tau PET
tracers and the distribution of tau tracers and pattern in the brain [42]. Accordingly, blood
biomarkers and in vivo imaging techniques potentially serve as barometers of sustainability
in the brain including neural plasticity and functional resilience.

Neuropeptides and neurohormones play an important role in cognitive, emotional,
social, and arousal functions. Thus, neuropeptide fragments, receptor antagonists, and
analogues are under extensive study in search of their beneficial use for neurological and
psychiatric diseases [43–46]. Kisspeptin is a neuropeptide that plays a crucial role in the
function of the hypothalamic–pituitary–gonadal axis. Simon and colleagues reported that
A kisspeptin fragment Kisspeptin 10 (K-10) was observed to mitigate amyloid-β toxicity by
direct biding. Simon and colleagues showed that low concentrations of KP-10 suppressed
wild-type and E46K mutant α-syn-mediated toxicity in vitro and that KP-10 favorably
binds to the active sites of wild-type and E46K 32 mutant α-syn in silico, concluding that
KP-10 may be a potential therapeutic agent targeting the active sites of α-syn [47].

Drug repurposing is the fastest and the most economical drug developing strategy
screening already approved drugs for other medical conditions in search of new indica-
tions [48]. Valproic acid (VA) is primarily indicated for epilepsy, bipolar disorder, and
prophylaxis of migraine and seizures [49]. Song and colleagues investigated the neuro-
protective effects of VA on an ototoxic drug salicylate-induced tinnitus model in vitro and
in vivo, showing that salicylate-induced excitotoxicity and production of reactive oxygen
species were attenuated by VA [50]. The study presented exogenous use of neuroprotective
agent for temporary tinnitus and healing loss.

Accordingly, this Special Issue has successfully presented research articles covering a
broad aspect of NDDs from environmental etiological factors, cellular and functional path-
omechanism, preclinical models, clinical biomarkers, imaging technique, and endogenous
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neuroprotective peptides to exogenous neuroprotective medicine. Identifying combina-
tions of multifactorial factors which increase susceptibility to an NDD including the initial
causative and the subsequent causative complexes and detecting such risk factors in a
prodromal phase would be of particular interest for prophylactic measures. Revealing
the pathomechanism of NDD exacerbation, calibrating the levels of neuroplasticity, and
measuring the strength of functional resilience would help plan personalized treatment to
induce and secure remission. Monitoring the status of tryptophan-kynurenine metabolism
which has close ties with neuroinflammation may shed some light on these approaches to
neuropsychiatric symptoms [51–58]. Exploring endogenous and exogenous neuroprotec-
tive approaches would be able to complement current disease-modifying strategies and
thus may be able to delay development of full-blown neurodegeneration and functional
loss in NDDs.
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AD Alzheimer’s disease
BMAA β-N-methylamino-l-alanine
18F-FDG 2-Deoxy-2-[18F]fluoroglucose
GABA γ-aminobutyric acid
K-10 Kisspeptin 10
MS multiple sclerosis
NDD neurodegenerative disease
6-OHDA 6-hydroxydopamine
PD Parkinson’s disease
PET positron emission tomography
VA Valproic acid
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