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Abstract: Temperature and precipitation are the most important meteorological variables influencing crop 
yields of cereals. In the paper we use and compare two procedures, namely Factor analysis with special 
transformation and multiple linear regression analysis with stepwise method in determining the influence of 
monthly mean temperatures and monthly precipitation amounts of April, May, June, July and August for 
determining the crop yields of maize, wheat, barley and rye. When comparing the results received on the two 
methods, those variables were retained that were concurrently significant for determining the crop yields for 
both cases. It is found that for maize yield the most important variables in decreasing order are August mean 
temperature with negative, as well as July and June precipitation amounts with positive association. For wheat 
yield, June and May mean temperatures, while for barley yield the same but in reverse order are the most 
important variables, all with negative relationship. Concerning rye yield, April precipitation amount with 
positive and June mean temperature with negative association are the decisive variables. Among the examined 
cereals, maize yield is the most sensitive to precipitation. The here-mentioned significant relationships may 
have a predictive power in projecting the actual crop yield.  
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1. INTRODUCTION 
 

The global demand for food will increase for at 
least in the next 40 years (Nelson et al., 2014). 
Warming climate and increasing frequency of 
extreme meteorological events (Rosenzweig et al., 
2002) transform the regional rates of food production 
serving an ever growing threat to food security 
(Rosenzweig et al., 2014; IPCC, 2019). Without 
adequate adaptation, increasing losses in aggregate 
production of wheat, rice and maize are expected in 
both temperate and tropical regions as warming 
increases (Challinor et al., 2014, Asseng et al., 2015). 
However, observed yields are function of not only 
environmental but social factors that largely vary by 
farm and region. At the same time, agricultural 
activities intensify warming of the climate when 
greenhouse gases (GHGs) are released, for example, 
due to rice production, keeping and breeding of 

cattles, furthermore land clearing (e.g. stubble 
burning), inappropriate use of fertilizers, and other 
practices that are harmful for the environment 
(Beddington et al., 2012; Nelson et al., 2014).  

Climate models project an estimated 0.3-1.7°C 
increase in global average temperature for the lowest 
emissions scenario [Representative Concentration 
Pathway (RCP2.6), van Vuuren et al., 2011] and a 
2.6-4.8°C increase for the highest emissions scenario 
(RCP8.5) over the 21st century (Riahi et al., 2011). 
For the three highest of the four RCPs, the increase of 
the global average temperature is projected to exceed 
2°C by 2050, compared to the pre-industrial levels 
(UNFCCC, 2009; Collins et al., 2013). Annual 
average land temperature over Europe is projected to 
increase higher than that of the global land area 
(Jacob & Podzun, 2010; Collins et al. 2013; Jacob et 
al., 2014). At the same time, global mean 
precipitation increases in all scenarios, due to the 
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intensification of the hydrological cycle (Collins et 
al., 2013). Because of global warming, the climate of 
Hungary will become drier and sunnier during the 
initial few decades of warming; while later, the 
moisture supply improves and is expected to 
approach or exceed the current values (Faragó et al., 
2010). Whilst globally, climate variability accounts 
for roughly a third (32-39%) of the yield variability 
of maize and wheat (Ray et al., 2015); in Hungary, 
climate accounts for 33%-67% of yield variability, 
and a 1°C temperature increase reduced wheat yield 
almost two times higher than the global average 
during the last 30 years (Liu et al., 2016; Pinke & 
Lövei, 2017).  

Projected future temperature rise and decline in 
rainfall amount may decrease cereal crop yields. 
Global wheat production is estimated to decrease by 
6% for each °C of further temperature increase and its 
spatial and temporal variability increases (Asseng et 
al., 2015). According to model calculations (Allen et 
al., 1998; Paltineanu et al., 2011; Pirttioja et al., 2015) 
yields decline with higher temperatures and low 
precipitation amounts; furthermore, they increase 
with higher precipitation and evapotranspiration. 
However, climate risk of crop yields can be reduced 
by shifting optimum planting windows to earlier dates 
(Ottman et al., 2012). A major reason of significant 
decrease in crop yields associated with ever 
prolonging dry periods may be attributed to increased 
leaf senescence, owing to exceeding the 
physiologically critical temperature value (Tcrit) 
(Asseng et al., 2011). A further risk is that high 
temperatures and prolonged dry period in the ripening 
stage reduces the duration of the grain-filling period 
and thus the kernel weight. In spite of this, e.g. the 
yield of winter rye is going to be increasing from the 
mid 1980s due to the higher crop density and kernel 
number, caused probably by the higher temperatures 
in winter months and the earlier start of the growing 
season (Chmielewski & Köhn, 2000). Concerning 
maize, daily water shortage in July, as a critical 
month, is three times more sensitive to 2°C warming 
than to a 20% decrease of precipitation (Lobell et al., 
2013). Peltonen-Sainio et al., (2010) confirmed a 
species dependent negative effect of increased 
temperatures on wheat, barley and rye both in the pre- 
and post-anthesis phases. The response is probably 
associated with water shortage, as a limiting factor of 
yield, particularly at the beginning of the growth 
phase (Peltonen-Sainio et al., 2010).  

Obviously, several factors can contribute to the 
quality and quantity of cereal crop yields, like 
environmental factors, such as meteorological 
variables, soil types, consistency (bulk density) of the 
soil, available water capacity, gold crown value of the 

soil (a land rating value, an indicator of the net 
income of a unit area, concerning fertility, location, 
and cultivability), geomorphology (slope of the 
cultivated area), as well as social factors, such as land 
size, and -extent, fertilization, use of pesticides, 
mechanization, precision farming, etc.). In the 
following, we will simplify the above-mentioned 
complex relationship and will only stay (1) at quantity 
of cereal crop yields and (2) at temperature and 
precipitation among meteorological variables. The 
reason of this simplification is that (1) for supplying 
population, quantity of the cereal is much more 
important than its quality and (2) among the 
meteorological factors these two components 
contribute most to the yields of cereal crops (Waha et 
al., 2013). The role of temperature and precipitation, 
as major factors of crop yields, has been analyzed in 
several aspects. However, to our knowledge, no 
papers have been published in demonstrating the 
order of importance of these meteorological elements 
in determining the crop yield of different cereals. 
Hence, in the paper, based on two procedures, we 
aimed at calculating the order of importance of the 
mean monthly temperatures and monthly 
precipitation amounts of April, May June, July and 
August in determining of the crop yields of maize, 
wheat, barley and rye for Hungary. The results 
received on the two methods will be compared and 
then evaluated.  
 

2. MATERIALS AND METHODS 
 
2.1. Location and data 

 
According to the climatic classification system 

of Köppen, the majority of Hungary belongs to the Cf 
climate zone characterized by temperate-warm 
climates with an almost even distribution of 
precipitation (Köppen, 1931), or that of Trewartha’s 
D.1 climate zone characterized by continental 
climates with long warm seasons (Trewartha, 1943). 
Temperate-warm / continental climates are the most 
suitable for growing cereals.  

Hungary is an important country for producing 
cereals in Europe (Fig. 1, prepared in Excel 16 
software). The ratio of the agricultural production is 
gradually decreasing in the national gross domestic 
product (GDP) (2000: 5.4%, 2010: 3.8%, 2018: 
3.6%) (Hungarian Central Statistical Office, 2010; 
2018). However, in 2018, the production area 
accounted for 79.1% of the country’s territory, and a 
significant part of the production area (57%) was 
agricultural land (only UK, as former EU-member, 
has a bigger ratio) (Hungarian Central Statistical 
Office, Statistical Mirror, 2018). According to the 
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same source, Hungary has 58 hectares of agricultural 
land per 100 inhabitants, which equls to the average 
of the EU-countries. This also indicates that the 
agriculture of Hungary is capable of exporting 
agricultural products in addition to supplying the 
local population. In 2010, only 4.4% of total cereal 
production in the EU-27 was produced in Hungary, 
while per capita cereal production was more than 
twice of the EU-27 average and the second highest 
after Denmark (Hungarian Central Statistical Office, 
2010; 2018). Wheat and maize performed well above 
the EU-average in Hungary, ranking 7th and first in 
the ranking of EU-27 based on the specific value of 
yield, respectively (Hungarian Central Statistical 
Office, 2010; 2018).  
 

 
Figure 1. Location of Hungary in Europe 

 
Since temperature and precipitation are the 

most important meteorological variables influencing 
crop yield, we took into account both mean monthly 
temperatures and monthly precipitation amounts for 
April, May, June, July and August, respectively.  

Data of temperature and precipitation were 
used from the latest 30-year period (1981-2010) 
(Hungarian Meteorological Service, 2016). We used 
mean monthly amounts of precipitation and monthly 
mean values of temperature calculated on five 
meteorological stations in Hungary: namely, 
Budapest (47.5°N, 19.0°E), Debrecen (47.5°N, 
21.6°E), Szeged (46.2°N, 20.1°E), Pécs (46.0°N, 
18.2°E) and Szombathely (47.2°N, 16.6°E) that are 
distributed evenly throughout the country (Pinke & 
Lövei, 2017). These meteorological data are 
homogenized for the above-mentioned cities 
(Peterson et al., 1998; Szentimrey, 1999).  

Regarding crop data, annual average yields 
(t/ha) of maize, wheat, barley and rye were used 
(Hungarian Central Statistical Office 2012). For 
maize, temperature and precipitation data between 
April-August; for wheat and barley, between April-
June; while, for rye between April-July were 

considered. All statistical computations were 
performed in Excel (version 16) software.  
 

2.2. Methods 
 
2.2.1. Factor analysis with special 

transformation 
Factor analysis (FA) identifies linear 

relationships among subsets of examined variables 
and this helps to reduce the dimensionality of the 
initial database without substantial loss of 
information. First, a factor analysis was applied to the 
initial dataset consisting of different number of 
variables. Namely, for maize, 11 variables were used 
[10 explanatory variables, i.e. 5 temperature and 5 
precipitation variables between April-August, in 
addition 1 resultant variable, i.e. maize]. For wheat 
and barley, 7-7 variables were applied [6 explanatory 
variables, i.e. 3-3 temperature and precipitation 
variables between April-June; furthermore, 1 
resultant variable, i.e. wheat and barley, respectively. 
Finally, for rye, 9 variables were used [8 explanatory 
variables, i.e. 4-4 temperature and precipitation 
variables between April-July, besides 1 resultant 
variable, i.e. rye)]. Then, these original variables were 
transformed to fewer variables. These new variables 
(called factors) can be viewed as latent variables 
explaining the joint behaviour of weather – crop yield 
variables. The optimum number of the retained 
factors is determined by different statistical criteria 
(Jolliffe, 1993). The most common and widely 
accepted one is to specify a least percentage (80%) of 
the total variance in the original variables that has to 
be achieved (Liu, 2009). Note that though we have 
altogether four target variables; however, in one 
factor analysis we use only one of them. Therefore, 
we will perform altogether four factor analyses for the 
four target variables, respectively.  

After performing factor analysis, a special 
transformation of the retained factors was performed 
to find out: (1) to what degree the above-mentioned 
explanatory variables affect the resultant variable and 
(2) what is the order of importance of their influence 
on the crop yields as resultant variables (Fischer & 
Roppert, 1965; Jahn & Vahle 1968; Jolliffe, 1993).  

Following the transformations – after 
aggregating all the weights of the retained factors at 
the place of both the explanatory variables and the 
target variable into one factor – the significance 
thresholds belonging to the factor loadings are 
determined as follows. Introducing the 0-hypothesis, 
according to which a given factor loading is 0, that is, 
this factor loading does not play a role in determining 
the target variable, the  
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𝑡𝑡 = �𝑟𝑟2(𝑛𝑛−2)
1−𝑟𝑟2

    (1) 
 

statistics follows Student's t-distribution with n–2 
degrees of freedom, where r is the value of the given 
factor loading and n is the number of data pairs. From 
here, in the knowledge of t belonging to the chosen 
probability level and the calculated degree of 
freedom, the threshold r can be calculated (Csépe et 
al., 2014; Makra et al., 2016; Matyasovszky et al., 
2011; Matyasovszky & Makra, 2012).  
 

2.2.2. Multivariate linear regression and 
stepwise regression 

The task is (1) to establish a relationship 
between the explanatory variables and the resultant 
variable; furthermore, (2) to calculate the order of 
importance of the explanatory variables in 
determining the resultant variable. As the variables 
exhibit annual trends, regression coefficients in the 
linear relationship have annual courses described by 
sine and cosine functions with yearly and half-yearly 
periods. This latter cycle was introduced to describe 
the asymmetries of the annual courses. The 
coefficients of these periodic functions were 
estimated using the least squares principle (Draper & 
Smith, 1981).  

In order to determine the order of importance 
of the explanatory variables, the above-mentioned 5 
temperature variables (mean monthly temperatures 
for April, May, June, July and August) and 5 
precipitation variables (monthly precipitation 
amounts for April, May, June, July and August) were 
used to evaluate which of them influence mostly the 

annual crop yield of the examined four cereals. Using 
the above-mentioned 10 explanatory variables an 
iteration was performed with the aim of assessing the 
annual crop yield. Then the error of the assessment 
was calculated. In the next step of the iteration, one 
variable was omitted and the assessment was 
performed again. This iteration was performed in all 
possible ways.   

 
3. RESULTS  
 
3.1. Factor analysis with special 

transformation 
 

After performing a factor analysis equally for 
maize, wheat, barley and rye, as target variables, as 
well as for temperature and precipitation as 
explanatory variables for the months mentioned in 
section 2.1, 6 factors were retained for each of the 
four crop yields, respectively. In order to calculate the 
rank of importance of the explanatory variables for 
determining the resultant variable, loadings of the 
retained factors were projected onto Factor 1 (with a 
special transformation) (Table 1) (Jahn & Vahle, 
1968).  

As regards the crop yields as target variables, 
maize is more sensitive to precipitation than the 
remaining three cereals (Table 1). Concerning the 
meteorological variables, monthly precipitation 
amunts in June, July and August show very strong 
positive relationship with the crop yield of maize 
(p<0.01). In addition, mean temperatures in May and 
August exert significant negative influence on the 

 
Table 1 

Special transformation.  
Effect of the explanatory variables on crop yields as resultant variables and the rank of importance of the explanatory 

variables on their factor loadings transformed to Factor 1 for determining the resultant variable (thresholds of 
significance for the weights: underlined: x0.05 = 0.361; bold: x0.01 = 0.462; bold underlined: x0.001 = 0.570; 

 
Explanatory 
variables 

maize wheat barley rye 

weight rank p-
value weight rank p-

value weight rank p-
value weight rank p-

value 
APR,temp -0.019 10 >0.900 -0.197 5 0.297 -0.215 6 0.258 0.039 8 0.838 
MAY,temp -0.410 5 0.026 -0.722 2 <0.001 -0.784 2 <0.001 -0.627 2 <0.001 
JUN,temp -0.317 7 0.090 -0.861 1 <0.001 -0.810 1 <0.001 -0.619 3 <0.001 
JUL,temp -0.166 9 0.382 – – – – – – -0.041 7 0.830 
AUG,temp -0.614 1 <0.001 – – – – – – – – – 
APR,prec 0.315 8 0.092 0.114 6 0.550 0.244 5 0.188 0.750 1 <0.001 
MAY,prec 0.319 6 0.088 0.352 4 0.058 0.386 4 0.038 0.280 5 0.141 
JUN,prec 0.525 3 0.005 0.382 3 0.040 0.515 3 0.006  0.421 4 0.022 
JUL,prec 0.551 2 0.003 – – – – – – 0.176 6 0.355 
AUG,prec 0.515 4 0.006 – – – – – – – – – 

Legends: APR,temp = mean April temperature; MAY,temp = mean May temperature; JUN,temp = mean June 
temperature; JUL,temp = mean July temperature; AUG,temp = mean AUG temperature; APR,prec = mean April 
precipitation amount; MAY,prec = mean May precipitation amount; JUN,prec = mean JUN precipitation amount; 
JUL,prec = mean July precipitation amount; AUG,prec = mean AUG precipitation amount;  
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maize yield. Note that May and June mean 
temperatures have a significant negative effect on the 
crop yields of wheat, barley and rye, respectively (for 
each case: p<0.001). Moreover, wheat is sensitive to 
June precipitation amount (significant positive 
effect), barley to May and June precipitation amounts 
(significant positive relationship) and rye both to 
April and June precipitation amounts (significant 
postive effects) (Table 1). 
 

3.2. Multivariate linear regression and 
stepwise regression  

 
When performing multivariate linear 

regression, crop yields were estimated in the function 
of the examined meteorological variables. The order 
of importance of the examined meteorological 
variables in determining the crop yields were 
calculated through the application of stepwise 
regression (Table 2).  

 
3.3. Comparison of the results  

 
The order of importance of the meteorological 

characteristics as explanatory variables in determining 
the target variables as crop yields for the examined 
cereals calculated by the two above-mentioned 
procedures are compared using Spearman rank 
correlation. According to this method, the order of 
importance of the meteorological variables show 
significant similarity for maize [rs, maize = 0.770 (p-
value: 0.010)], rye [rs, rye = 0.834 (p-value: 0.011)] and 
barley [rs, barley = 0.829 (p-value: 0.044)], while for 
wheat [rs, wheat = 0.600 (p-value: 0.210)] we cannot say 
similarity in the orders of importance.  

Significant relationships of crop yield vs 
metorological variables received on both procedures 

were selected and their concurrent occurrences were 
collected (Table 3). For maize, August mean 
temperature, as well as June and July precipitation 
amounts have significant role on both procedures. For 
wheat and barley, the importance of May and June mean 
temperatures were confirmed by both methods. At the 
same time, for rye, June mean temperature and April 
precipitation amount are the clearly highlighted 
variables (Table 3). Note that significant relationships 
shown by using stepwise regression can be experienced 
in case of factor analysis with special transformation, as 
well. In addition, the latter method detected 7 more 
significant relationships. This assumes that factor 
analysis with special transformation is a more refined 
procedure for exploring hidden crop yield vs 
meteorological variables relationships (Table 3).  

 
4. DISCUSSION  

 
Climate conditions are the most important 
meteorological factors affecting agricultural 
production. Dependence of the crop yields of the 
main cereals on meteorological variables have been 
extensively studied in the international special 
literature (Ji et al., 2017; Kheiri et al., 2017; Maaz et 
al., 2017; Pinke & Lövei, 2017). Multiple linear 
regression analysis (Mosaedi & Kaheh, 2008; Klink 
et al., 2014), via e.g. Enter and Stepwise methods 
(Mosaedi & Kaheh, 2008) is a known procedure for 
studying weather dependent crop yield of different 
cereals. However, factor analysis with special 
transformation has not yet been applied for this aim. 

Xiao & Tao (2016) revealed that introducing 
effective agronomic and management practices raised 
the maize yield; however, the climate change related 
loss reached 46-67% of the increased yields in North 
China Plain, between 1981-2009. According to Akpalu

 
Table 2 

Explanatory variables with their p-value and the order of importance of the explanatory variables for determining the 
resultant variable i.e. crop yields, via stepwise regression (underlined: significant at the 5% probability level; bold: 

significant at the 1% probability level; bold underlined: significant at the 0.1% probability level)  
Explanatory 
variables 

maize wheat barley rye 
p-value rank p-value rank p-value rank p-value rank 

APR,temp 0.389 7 0.641 5 0.738 4 0.797 7 
MAY,temp 0.808 9 0.024 2 0.009 1 0.286 3 
JUN,temp 0.182 5 0.002 1 0.012 2 0.033 2 
JUL,temp 0.954 10 – – – – 0.764 6 
AUG,temp <0.001 1 – – – – – – 
APR,prec 0.256 6 0.628 4 0.840 6 0.014 1 
MAY,prec 0.428 8 0.469 3 0.760 5 0.834 8 
JUN,prec 0.003 3 0.670 6 0.494 3 0.461 4 
JUL,prec 0.001 2 – – – – 0.731 5 
AUG,prec 0.115 4 – – – – – – 

Legends: the same as at that of Table 1;  
The most influencing factors in determining crop yield of maize are August mean temperature, as well as June and July precipitation 
amounts, while those for wheat and barley are May and June mean temperatures, respectively. Concerning rye, the only significant 
factors influencing crop yield are June mean temperature and April precipitation amount (Table 2). 
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Table 3 
Concurrent significant relationships of crop yield vs meteorological variables (conc. sign. rel. ) by using factor 

analysis with special transformation (FA+sptr) and stepwise regression (stregr) and their order of importance (rank)  
Explanatory 
variables 

maize wheat barley rye 

conc. 
sign. rel.  

rank 
Conc. 

sign. rel. 

rank 
conc. 

sign. rel. 

rank 
conc. 

sign. rel. 

rank 
FA+ 
sptr stregr FA+ 

sptr stregr FA+ 
sptr stregr FA+ 

sptr stregr 

APR,temp             
MAY,temp     2 2  2 1    
JUN,temp     1 1  1 2  2 2 
JUL,temp    – – – – – –    
AUG,temp  1 1 – – – – – – – – – 
APR,prec           1 1 
MAY,prec             
JUN,prec  3 3          
JUL,prec  2 2 – – – – – –    
AUG,prec    – – – – – – – – – 

Legends: the same as at that of Table 1;  
 
et al., (2008), the impact of precipitation on maize yield 
is stronger than that of temperature. Current warming 
with temperature increase and concurrent decrease in 
precipitation are of negative effect on maize yield 
(Akpalu et al., 2008). Liu et al., (2019) reported similar 
results; namely, vegetative growth period, reproductive 
growth period and whole growth period of maize was 
negatively associated to average temperature and 
positively related to precipitation and sunshine hours. 
Recent models, adapting global climate change, indicate 
an average decrease in maize yield between 13.2-19.1% 
during 2050s, compared to 1961-1990 (Tao & Zhang, 
2010). Humidity/precipitation sensitivity of maize crop 
yield was also shown by Huang et al., (2015), who 
examined this relationship for the Eastern United States. 
Ceglar et al., (2016) detected a significant dependence 
between maize yield and monthly cumulated 
precipitation for France. The here-mentioned sensitivity 
of maize yield is in a negative relationship in 
accumulation of temperatures above 30°C [or extreme 
degree days (EDD)] (Lobell et al., 2013). In China, 1℃ 
temperature increase in the growing season involved 
25.1% reduction in maize yield (Wang et al., 2014).  

According to our results, maize yield – 
meteorology relationship are consistent with those of 
other authors. Namely, the major meteorological 
components determining the yield in decreasing order 
are August mean temperature, furthermore July, June 
and August precipitation amounts, as well as May 
mean temperature by using FA and special 
transformation. However, by using both methods, the 
common significant variables influencing maize yield, 
in decreasing order, are August mean temperature, as 
well as July and June precipitation amounts. It is clear 
that temperature shows negative, while precipitation 
positive relationship with the maize yield, respectively.  

Negative effect of temperature on cereal crop 
yields is widely reported. Some examples are as 

follows. Every 1°C increase in daily mean temperature 
reduces yield by 4.1-5.7% (Schelling et al., 2003). A 
1°C increase in wheat growing season temperature 
reduces wheat yields by about 3-10% (You et al., 
2009). A warming since the 2000s contributed to a 
4.5% reduction in wheat yields in China (Asseng et al., 
2011). When separating the impact of temperature 
from other components, variations of mean growing 
season temperatures of ±2°C may contribute to an up 
to 50% decrease in the crop yield of wheat in Australia 
(Asseng et al., 2011). Kheiri et al., (2017) found that 
spring meteorological variables influence the most the 
wheat yield. In addition, Holman et al., (2011) found a 
negative relationship between wheat crop yield and 
increased daily maximum temperatures; furthermore, a 
similar association was detected between winter wheat 
and mean monthly temperature for France, as well 
(Ceglar et al., 2016).  

Our results are in accordance with those of the 
special literature. Namely, crop yields of wheat, barley 
and rye are in a significant negative relationship with 
both May and June mean temperatures, respectively. 
That is, high mean temperatures in these months 
predict poor harvest and vice versa. Significant 
dependence on precipitation is detected only between 
rye yield and April precipitation amount. The sequence 
of the meteorological variables in decreasing order for 
significantly determining (1) wheat crop yield: are 
June and May mean temperatures, (2) barley yield: are 
May and June mean temperatures, and (3) rye yield: 
are April precipitation amount and June mean 
temperature by using FA and special transformation.  
 

5. CONCLUSIONS 
 

For rainfed agriculture under Hungarian 
environmental conditions, temperature and precipitation 
are the most important meteorological variables 
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influencing crop yields of maize, wheat, barley and rye. 
It was found that for maize yield the most important 
variables in decreasing order were August mean 
temperature with negative, as well as July and June 
precipitation amounts with positive association. For 
wheat yield, June and May mean temperatures, while 
for barley yield the same but in reverse order were the 
most important variables, all with negative relationship. 
Concerning rye yield, April precipitation amount with 
positive and June mean temperature with negative 
association were the decisive variables. Among the 
examined cereals, maize yield was the most sensitive to 
precipitation. The here-mentioned significant 
relationships may have a predictive power in projecting 
the actual crop yield.  

Note that the relationship between the 
meteorological variables and crop yields is more 
complex than examined in this paper. As mentioned, 
the study applies to rainfed crops where irrigation and 
reference evapotranspiration were not investigated. 
For an in-depth approach, a phenophase specific 
analysis of the cereal crop yields with the 
meteorological elements would make a possibility for 
reaching more refined results. In addition, including 
further meteorological variables, such as accumulation 
of temperatures above 30°C [or extreme degree days 
(EDD)], or the occurrence of physiologically critical 
temperatures (Tcrit) (34°C for wheat, 35°C for maize), 
diurnal temperature range, maximum temperature, 
accumulated cold degree days (ACDD), solar 
radiation, soil water content, change in the distribution 
of the growing period, especially during the grain‐
filling stage could be important components of crop 
yields. Furthermore, analysis of further yield 
dependent variables, such as spike number per plant 
(SNPP), grain number per spike (GNPS), 1000-grain 
weight (TGW) and grain yield per plant (GYPP) 
provides a further opportunity to explore the 
meteorological relationships of crop yields in more 
detail.  
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