
The optimal absolute ratio for online bin packing∗
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Abstract

We present an online bin packing algorithm with absolute competitive ratio 5/3, which is
optimal.

1 Introduction

In the online bin packing problem, a sequence of items with sizes in the interval (0, 1] arrive one by
one and need to be packed into bins, so that each bin contains items of total size at most 1. Each
item must be irrevocably assigned to a bin before the next item becomes available. The algorithm
has no knowledge about future items. There is an unlimited supply of bins available, and the goal
is to minimize the total number of used bins (bins that receive at least one item).

Bin packing is a classical and well-studied problem in combinatorial optimization. The offline
version, where all the items are given in advance, is well-known to be NP-hard [7]. Extensive
research has gone into developing approximation algorithms for this problem. Such algorithms
have provably good performance for any possible input and work in polynomial time. In fact, the
bin packing problem was one of the first for which approximation algorithms were designed. The
(absolute) approximation ratio of an algorithm is the worst case ratio, over all possible inputs, of its
cost for a particular input divided by the optimal cost for the same input. Simchi-Levi [15] showed
that First Fit Decreasing and Best Fit Decreasing have the best possible absolute approximation
ratio of 3/2. For surveys, see [3, 4].

The focus of the research into approximation algorithms is on the question of how much per-
formance degrades if an algorithm is constrained to work in polynomial time. In practical packing
problems, however, it happens frequently that the input is not known completely before the algo-
rithm starts working. It is therefore very natural to consider the online version of this problem.
In online problems, we ask how much performance degrades as a result of not knowing the future.
In general, there is no restriction on the amount of computation time used by an online algorithm.
However, most online algorithms, including all the ones we consider in this paper, are very efficient.

∗A preliminary version of this paper appeared at SODA 2015, 1425-1438. Balogh and Békési were supported by the
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For an input L, let ALG(L) be the number of bins used by algorithm ALG to pack this input.
Let opt(L) denote the number of bins in an optimal solution.

The absolute and asymptotic performance ratios of the algorithm are defined as

RABS(A) := sup
L

{
A(L)

opt(L)

}
, (1)

and

RASY (A) := lim sup
n→∞

{
max

L:opt(L)=n

{
A(L)

n

}}
, (2)

respectively.
We note that definition (2) focuses on the long-term behavior of online algorithms. For small

inputs, the relative performance of an online algorithm might be worse than the asymptotic perfor-
mance ratio suggests. Hence, if we want to have a performance guarantee relative to the optimal
solution for every possible input, we need to consider the absolute competitive ratio.

In both cases, for any input L, the number of bins used by an online algorithm A is compared
to the optimal number of bins needed to pack the same input. Note that calculating the optimal
number of bins might take exponential time; moreover, it requires that the entire input is known
in advance.

One of the most famous algorithms for bin packing is an online algorithm called First Fit (FF).
It packs each item into the first bin where it fits, ordering the bins by when they were opened (i.e.,
received their first item). First, Ullmann [16] proved that the asymptotic competitive ratio of FF is
1.7. Later, Garey et al. [8] and Johnson et al. [11] extended this work. Among other results, they
proved that FF works much better if the elements of the input are sorted in decreasing order. In
this case the asymptotic performance ratio is 11

9 . Of course, this algorithm cannot be used for the
online problem. Later, online algorithms improving on FF were given, for example the algorithm
of Refined First Fit [18], with an asymptotic worst-case performance ratio of 5/3.

Harmonic-type online algorithms were designed by Lee and Lee [12]. Lee and Lee gave a
sequence of Harmonic Fit algorithms, and the asymptotic ratio of their algorithms tends to ap-
proximately 1.69103. Further improvement on the asymptotic performance is also presented by
Lee and Lee [12], giving an algorithm Revised-Harmonic (RH). The asymptotic performance ratio
of RH is 373

228 = 1.6359. Ramanan et al. [13] presented new Harmonic-based algorithms Modi-
fied Harmonic (MH) and Modified Harmonic–2 (MH–2) with asymptotic upper bounds 1.615 and
1.612, respectively. For long time the best online algorithm Harmonic++ was given by Seiden in
2002 [14]. It is based on the idea of Harmonic Fit and it has an asymptotic competitive ratio of
1.58889. Recently two improved algorithms have been presented: SonOfHarmonic with asymptotic
upper bound 1.5816 by Heydrich and van Stee [9, 10] and Advanced Harmonic (AH) by Balogh et
al. [1] with asymptotic upper bound 1.57829. Both of these algorithms are Harmonic-based, but
go beyond the family of Super Harmonic algorithms introduced in [14].

Van Vliet [17] proved that there is no online algorithm with asymptotic competitive ratio below
1.54014. Balogh et al. [2] improved this to 248

161 = 1.54037.
The absolute competitive ratio of FF was only recently determined to be 1.7 (equal to the

asymptotic ratio) by Dósa and Sgall [5]. Afterwards, the absolute competitive ratio of Best Fit
(BF), which packs each item into the bin where it leaves the least amount of space unused, was also
shown to be exactly 1.7 [6]. Before our work, 1.7 was the best known absolute competitive ratio
of any algorithm. There is a simple lower bound, consisting of only 18 items, which shows that no
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algorithm can be better than 5/3-competitive. This folklore result is included in Section 1.1 for
completeness.

The natural question is then whether an algorithm with better ratio than FF or BF exists.
In this paper, we answer this question in the affirmative by presenting an online algorithm with
absolute competitive ratio 5/3.

1.1 Lower bound of 5/3

First, 6 items of size 1/7 arrive. If they are packed in more than one bin, the competitive ratio is
at least 2 and the input stops.

Otherwise the 6 items are packed in a single bin. Then 6 items of size 1/3 + ε arrive for some
ε ∈ (0, 1/84). They do not fit in the first bin. If they are packed into four or more bins, the
competitive ratio is at least 5/3 and the input stops.

Otherwise the only possibility is to pack the 6 items of size 1/3 + ε into three bins, two per bin.
Then, 6 items of size 1/2 + ε arrive. These items must be packed into 6 separate new bins, for a
total of 10 bins. However, the entire input can be packed into only 6 bins with one item of each
size, proving the lower bound.

1.2 Basic definitions

The level of a bin is the sum of the sizes of the items in it.
A bin is called a k-bin if there are exactly k items packed into it. A k+-bin contains at least k

items.
Items of size more than 1/2 are called large, others are called small.

1.3 Idea of the algorithm

Our algorithm, which we call Five-Thirds (FT), behaves like FF whenever possible, while avoiding
certain bad situations.

To give some intuition, consider the worst case for FF which is given by instances of the following
form. The input starts with 10k items of sizes very close to 1/6, for some integer k. FF packs these
items into 2k bins. Then, 10k items of sizes very close to 1/3 arrive. These items are packed in
pairs into 5k bins by FF. Finally, 10k items of size slightly more than 1/2 arrive, that FF packs
into individual bins. In the end, FF = 17k, while the items can be packed into 10k bins. In these
instances, it is notable that all bins used by FF are relatively full, apart from the last 10k bins.

In our algorithm FT, we try to avoid the bad situation where, at the end of the input, the
algorithm has to open many new bins that are only half full. More specifically, FT avoids long
sequences of 2-bins. It can be shown easily that 3+-bins are generally fuller than 2-bins, and this
compensates for 1-bins that are only half full at the end. However, 2-bins are problematic, since
they may be only about 2/3 full on average. Therefore, whenever FT is about to put an item into
any bin that has one item so far, it will from time to time put such an item into a new, empty bin
instead, creating a special bin which is specifically reserved for a large item; no other item will be
packed into it.

It is possible that no large items arrive after all, so FT needs to be conservative about creating
these special bins, since they are initially less than half full. In fact, we need to be extremely careful
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about the conditions for creating new special bins, in order to be able to deal with any possible
input.

1.4 Overview of the analysis

In Section 2 we present the algorithm FT, classification of the bins it creates and some basic
properties. The analysis of FT then splits into three main cases. A technical problem in all cases is
that there may exist a single non-special 1-bin that has a small item (e.g., if this item arrives near
the end of the input and is followed only by large items that do not fit with it). This complicates
both the size-based and the weight-based analysis methods that we describe below.

If no special bin is ever created, FT behaves as FF throughout, and (due to our conditions for
creating special bins), FF is 5/3-competitive in this situation (Section 3). This case is relatively
easy, but note that it includes the instances that prove the tight lower bound. The main technical
difficulties occur in the next two cases.

If all special bins have large items (Section 4), it means that these bins are relatively full. For
this case, we use a weight-based analysis. Each item is assigned a weight which is a measure for
how much space this item needs in any packing. In order to prove an upper bound of 5/3 instead
of 1.7, we modify the weight function used by Dósa and Sgall [5]. The idea is that each optimal
bin has total weight packed into it of at most 5/3, whereas FT packs an average weight of at least
1 per bin, implying the desired result. In the end, the weight-based analysis leaves one case open,
where only one special bin is created; for this case, we use size-based arguments.

Finally, if there exists a special bin that does not contain a large item at the end of the input
(Section 5), it means that all large items in 1-bins are relatively large, since FT always puts large
items in existing special bins and special items in existing 1-bins with large items if they fit. For
this case, we use a size-based analysis, showing that the bins of FT are on average at least 3/5 full.
The way of proving this depends on how many 1-bins there are compared to the number of special
bins. At the end, some small cases need to be examined in detail to get the desired result.

In an abuse of notation, we will use some variables to denote specific items as well as their sizes.

2 The algorithm

2.1 Classification of bins

At each time, FT maintains a partition of all bins into a set of special bins and a set of regular
bins. FT will maintain the following two properties of special bins.

Property 2.1 A special bin holds exactly one small item (which is called a special item) and at
most one other item, which must be large.

Property 2.2 A regular bin can become a special bin, but any special bin stays special until the
end of the instance.

Thus, special bins that have only one item are specifically reserved for large items that may
arrive later, and will not receive any other item. A special bin can be created in three ways, all of
which we later use in our algorithm: (i) a regular bin with a single small item can be declared a
special bin, (ii) upon creating a new bin with a small item, this bin can be declared a special bin,
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and (iii) when packing a small item in a bin with a single large item, this bin can be declared a
special bin.

The following subtypes of regular bins are important in our algorithm.

Definition 2.3 A regular 2-bin is critical if it does not contain a large item and has level less
than 3/4.

A regular 2+-bin without a large item is interesting if its first two items have total size less
than 3/4, else it is quick.

A regular bin is good if it contains a large item, it has level at least 5/6, or its first two items
have total size at least 3/4.

Figure 1 illustrates the relations of the bin types defined above and their possible evolution
during the run of our algorithm.

Figure 1: Types of bins. Green (shaded) boxes denote good bins. Arrows depict all possible changes
of bin types when an item is packed, or a regular bin is declared special. The bounds on the level
of special bins follow from Lemma 2.10.

2.2 Ordering and matching

Our algorithms opens bins one by one. Whenever we speak about first, last, next bin (etc.), or
when we consider an ordered list of bins, we will always be referring to the order in which bins were
opened by our algorithm.

In our analysis, we will often consider pairs of bins, for which we can prove that the bins in
each pair have a total packed size strictly more than 1. We will say that the bins of such a pair are
matched to each other. Every newly opened bin is initially unmatched.

One type of matching is done by FT itself. This matching additionally guarantees that the
matched bins have large total weight (see Section 5 for a definition of the weights). Every new
bin is initially unmatched. Whenever FT creates a special bin, it will be matched to an existing
unmatched critical bin. To be precise, we always use the last such critical bin. In the algorithm, as
a necessary condition for creating a special bin we require that an unmatched critical bin exists, so
the matching is well-defined. A bin that is matched to a special bin remains matched even if the
bin stops being critical at some point, however note that this bin remains interesting.

2.3 Description of the algorithm

A detailed description of the algorithm FT is shown in Figure 2. The variable s counts the number
of special bins. In this algorithm and throughout the paper, we abuse notation and let some
variables refer both to specific items and to their sizes.

In Step 2, we decide whether we should create a new special bin or not. First we check what
FF would do with the current item, while “hiding” the special bins from FF. That is, FF makes its
decision based only on the current sequence of regular bins and the item a. The bound max(3, 4s+1)
means that after a slightly irregular initial phase, roughly every fifth time that FT opens a new
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Initialize s to 0.
For each item a on the input, do the following:

1. If a is large, pack a by FF into the collection of all bins, opening a new bin if needed.

2. Otherwise, let B be the bin that FF would pack a into if the collection of existing bins were
restricted to the regular bins. (B is possibly a new bin.) If after packing a into B, there
are at most max(3, 4s+ 1) interesting bins, or B is not critical, or B is the only unmatched
critical bin, pack the item into B.

3. Otherwise, if before packing a there exists a regular 1-bin with a large item where a fits,
pack a into the first such bin B′; declare B′ to be a special bin where a is the special item.
Match the special bin to the last unmatched critical bin. Increase s by 1.

4. Otherwise pack a into a new bin A. Let b be the only item previously packed in B. If a ≤ b,
let A be a special bin while B remains regular. Else, change B to a special bin and let A
be regular. The single item packed into the special bin is a special item. Match the special
bin to the last unmatched critical bin. Increase s by 1.

Figure 2: Algorithm FT

interesting bin (i.e., ignoring bins that quickly reached a level of 3/4 or that contain large items),
one bin (the new one, or an existing one) may be turned into a special bin instead. If the bin B
used by FF is acceptable (that is, one or more of the conditions listed in Step 2 hold), then we pack
the new item into B in this step.

If a new special bin is created, this is done in Step 3 or in Step 4. In Step 3, note that B′ 6= B,
because B′ has a large item and B does not (since it would become critical on receiving a). In fact,
B′ comes after B, because a fits in B′ but FF did not suggest it. Regarding Step 4, note that item
b is indeed unique, since packing a into B would make B critical, i.e., a 2-bin. Hence, B must have
been a 1-bin before.

An item always gets packed in Step 2 (by using FF) if the bin B proposed by FF does not
become critical after packing a, e.g., if a opens a new bin or if B was already a 2+-bin. The earliest
possible time that a special bin could be created is the following: FF is about to create the fourth
interesting bin, this bin becomes a critical 2-bin, and at least one earlier interesting bin is critical.
After creating the first special bin, we allow at least 4s+ 1 = 5 regular bins in total before possibly
creating another special bin. It is possible that it takes much longer for the first special bin to be
created, and there are not always four regular bins between two successive special bins.

As an example, it could happen that first, a large number of non-critical regular bins are created.
(These bins are critical when they contain two items but they then receive additional items.) Then,
a bin B1 becomes critical by receiving its second item a1. At this point, no unmatched critical bin
is available, so still no special bin is created. For the next item a2, a new bin B2 is opened, and it
is turned into the first special bin when item a3 arrives (which is packed into its own new bin B3).
The bin B2 is matched with B1. Item a4 is then packed into B3, making it critical, but not special,
because again no unmatched critical bin exists. Then, another bin B4 is opened for item a5, and
it is turned into the second special bin (matched with B3) when the next item a6 arrives (which is
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packed into its own new bin B5). In the end, the special bins B2 and B4 are separated by only one
regular bin in this example.

2.4 Properties of the algorithm

Let us recall Figure 1 that summarizes possible development of bin types; it is easy to verify that it
covers all the possibilities given by the algorithm. In particular, note that a bin can become critical
only when the second item is packed into it, but a critical bin loses this property if the bin receives
a third item later. However, it remains interesting throughout the run of FT, unless it receives a
large item. An interesting bin with level above 1/2 will therefore always remain interesting. The
following observation states the important properties of bin types.

Observation 2.4 A good bin remains good, a regular 2+-bin remains regular, and an interesting
bin that is at least half full remains interesting.

All critical bins are interesting, and all quick bins are good.

Lemma 2.5 (First Fit property) If an item is packed into a regular bin then it does not fit in
any earlier regular bin.

Proof. Consider an item a that is packed into a regular bin. This does not happen in Step 3. If
a is packed in Steps 1 or 2, it is packed by FF into a regular bin and the claim follows. Note that
ignoring special bins does not affect this property.

It remains to handle the case when a is packed into a new regular bin in Step 4. FF would pack
a into B which contains a single item b < a, and FT makes B a special bin instead, packing a into
a new bin A. Since FF packs a into B, it follows that a does not fit into any regular bin before B.
Now consider any existing (i.e., not A) regular bin C after B and an item c in C. Using Property
2.2, the bins B and C were regular when c was packed into C. Then c does not fit into B, using
the lemma inductively on c which comes before a. We have 1 < b + c < a + c and thus in turn a
does not fit into C, so a indeed does not fit into any existing regular bin.

Corollary 2.6 At any time, there is at most one regular bin that is at most half full.

Lemma 2.7 At any time, if x is a large item in a 1-bin, and y is a special item in a (special)
1-bin, then x+ y > 1.

Proof. A large item is always placed in an existing bin if possible in Step 1. Thus if y arrived first,
x+ y > 1.

A small item is always placed in existing bin if possible in Step 2 or in an existing bin with a
large item if possible in Step 3. Thus the lemma holds also if x arrived first.

Lemma 2.8 When FT creates a special bin in Step 3 or Step 4, each interesting bin precedes bin
B defined in Step 2 and will remain interesting throughout the run of FT.

Proof. Consider a time when FT creates a special bin. Since bin B from Step 2 has a single small
item in this case, B is the unique bin that is at most half full (Corollary 2.6) at this time. So all
regular bins after B (if any) contain a large item. This means all interesting bins are before B.
Furthermore, their level is above 1/2, so they will remain interesting.
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Lemma 2.9 Let J be a set of regular bins of cardinality j = |J | ≥ k + 1, of which at least the last
j − k bins are regular k+-bins. Then the total level of the bins in J is more than

jk

k + 1
.

Proof. Consider any k+ 1 bins of J with the smallest levels, denoted by B1, . . . , Bk+1 in the order
of the packing of FT. It is sufficient to show that their total level is more than k, as any other bin
then has level more than k/(k + 1). Note that Bk+1 is a k+-bin by the assumption of the lemma.
Let the smallest level among B1, . . . , Bk be x. Then any item in Bk+1 is larger than 1 − x, thus
the total level of the k + 1 bins is more than kx+ k(1− x) = k.

Lemma 2.10 The total size of a special item and the first two items in the bin it is matched to is
more than 1. Each special item has size more than 1/4 but less than 3/8.

Proof. Consider the situation when a special item is created, on arrival of item a. By Lemma 2.8,
the critical bin C that is matched to the new special bin must be before the bin B that FF suggests.
Thus a does not fit in C, as otherwise FF would suggest C. This proves the first bound. We have
a > 1/4, as C has level less than 3/4 by the definition of a critical bin. Furthermore, also the item
b in B does not fit into C by the First Fit property (Lemma 2.5). Thus also b > 1/4, and the lower
bound on the size of the special item follows.

For the upper bound, we know that a+ b < 3/4 since B would be critical if a were packed into
it. If the special bin is created in Step 4, the smaller one of a and b becomes the special item, and
we are done. If a is packed into a 1-bin B′ in Step 3 and becomes a special item, note that B and
B′ are 1-bins (before packing a). Thus b does not fit in B′ by the First Fit property (Lemma 2.5).
It follows that a < b, and a < 3/8 holds as well.

2.5 Additional assumptions and definitions

For the analysis, we assume for contradiction that there exists an instance I for which FT (I) >
5
3opt(I). We fix such an instance I and abbreviate FT (I) by FT and opt(I) by opt. Let size
be the total size of all the items in I.

For a set of items A and a set of bins A, let size(A) and size(A) denote the total size of all
items in A or A. For a bin B, let level(B) be the total size of the items packed into B.

Because FT and opt are integers, our assumption is equivalent to assuming

FT ≥ 5

3
opt +

1

3
. (3)

Let us denote the number of regular 1-bins in the final packing of FT by δ. Furthermore, let
δ0 and δ1 be the number of these bins with a small and large item, respectively. By Lemma 2.5,
we have δ0 ≤ 1. If such a regular 1-bin with a small item exists, we denote this bin by D0 and the
item in it by d0. Lemma 2.5 also implies that d0 does not fit in a bin with any other item from the
remaining δ1 regular 1-bins and thus

opt ≥ δ. (4)

We also have the following useful property, which follows immediately from the First Fit property.

Lemma 2.11 Let A be a nonempty set of regular bins, D0 /∈ A. Then size(A∪D0) > (|A|+ 1)/2.

In the next three sections, we analyze the three different cases that may occur.
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3 No special bin is created

Theorem 3.1 If no special bin is created, then FT ≤ 5
3opt.

Proof. Suppose that no special bin is created. It follows that at any step of algorithm FT we
accepted the proposal of FF, thus finally we get just the FF packing. For FF, we already know
that FF ≤ 1.7 · opt holds.

If opt ≤ 9, the stronger inequality FF ≤ 5
3opt is true according to Table 1.

opt 1 2 3 4 5 6 7 8 9
1.7 · opt 1.7 3.4 5.1 6.8 8.5 10.2 11.9 13.6 15.3
b1.7 · optc 1 3 5 6 8 10 11 13 15

Table 1: Calculation of the competitive ratio of FF for small instances.

Now suppose that opt ≥ 10. First observe that the number of 2+-bins is at least 7. Indeed,
the number of 1-bins is at most opt by (4). From (3) and opt ≥ 10, we get that the number of
2+-bins is at least 2

3 · opt + 1
3 ≥ 7.

Our plan is to account carefully for the total level of the bins in the final packing of FT and
reach a contradiction by showing that it is more than opt. We partition the bins into three sets: D
containing all 1-bins, with at most opt bins and average level at least 1/2, E containing all critical
bins, with exactly three bins and average level at least 2/3, and G with bins of average level at
least 3/4. The exact definitions are based on various observations and possible special cases. We
first define the sets provisionally and later slightly modify them for easier accounting. The formal
proof follows.

We initialize the sets as follows:

• D contains all 1-bins;

• G contains all 2+-bins with level at least 3/4;

• E contains all interesting bins with level below 3/4.

Let B0 be the first 2+-bin with a large item and level below 3/4, if such a bin exists. Any
following bin contains only items larger than 1/4, as they do not fit into B0, and it follows that it
belongs to D, E , or G, depending on the number and size of the items in it.

Hence B0 is the only 2+-bin with a large item and level below 3/4, and it is the only bin which
is not in D,G, or E (if it exists). If B0 is the first 2+-bin, we add it to D, otherwise we add it to G.
Now all bins are included in exactly one of the sets D, E , G.

Lemma 3.2 The set E contains at most three bins.

Proof. All bins in E except for possibly the first one contain only items larger than 1/4, as these
items do not fit in the first bin of E . Thus these bins contain only two items (as their level is below
3/4) and they stay critical after their second item arrives. Suppose E contains more than 3 bins
and consider the moment when a fourth bin from E receives the second item. At that point s = 3
and a critical unmatched bin exists, as among the three bins in E with at least two items only the
first one can have more items. Thus in Step 2 of the algorithm we would not pack the item in the
regular bin but we would have created a special bin instead.
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Now we make our two final modifications of the sets. First, if |D| = 1 and this single bin has
level at most 1/2 (i.e., it is the 1-bin D0 with a small item), we remove the last bin from G and add
it to D. Second, we assure that |E| = 3 by moving up to three last bins from G to E (if necessary).
Note that G has sufficiently many bins for both of these modifications, since the number of 2+-bins
is at least 7, as we observed above. Furthermore, the first bin is not removed from G.

Lemma 3.3 size(E) > 2.

Proof. After the second modification, E contains exactly three 2+-bins. The claim follows by
Lemma 2.9.

Lemma 3.4 size(G) ≥ 3
4 |G|.

Proof. All bins in G have level at least 3/4 except possibly B0. In particular, the lemma holds if
G does not contain B0.

If B0 ∈ G, then let B be the first 2+-bin; by the condition on putting B0 into G, bin B is distinct
from B0 and precedes it. Bin B0 is either in E or in G. By its definition, B0 contains a large item
and at least one item x < 1/4 that does not fit into B. Thus B ∈ G (and it is not removed from G
during the modifications, as it is the first bin). Furthermore level(B) + x > 1 and together with
the large item in B0 this gives level(B) + level(B0) > 3/2. The lemma now follows by adding
the levels of the remaining bins in G.

Lemma 3.5 size(D) ≥ 1
2 |D| and |D| ≤ opt.

Proof. Each bin in D contains a large item, except D0 if it exists. Due to our first modification,
D0 is never the only bin in D, so we can apply Lemma 2.11, and the size bound follows.

If D does not contain B0, then (4) implies |D| = δ ≤ opt and the second part of the lemma
follows. If B0 ∈ D then we show that δ < opt; this implies the second part of the lemma as
|D| = δ + 1 in this case. The condition on putting B0 into D implies that B0 is the first 2+-
bin. Each item in the remaining 2+-bins has size more than 1/4, since B0 has level less than 3/4.
By (4), there are at most opt 1-bins, so by assumption (3) the number of 2+-bins is more than
2
3opt > 1

2opt + 1 (using opt ≥ 10). Hence the 2+-bins after B0 contain more than opt items
larger than 1/4. We also have at least δ large items (including the one in B0). As the large items
are in distinct bins of the optimum and each can combine with at most one item larger than 1/4,
this implies that opt > δ and the lemma follows.

Since each bin is in exactly one set and |E| = 3, we have |G| = FT − 3 − |D|. Using this, the
previous three lemmata and also (3) for the final inequality, we obtain

opt ≥ size = size(E) + size(D) + size(G) > 2 +
1

2
|D|+ 3

4
(FT − 3− |D|)

≥ 2− 9

4
− 1

4
|D|+ 3

4

(
5

3
opt +

1

3

)
≥ −1

4
− 1

4
opt +

5

4
opt +

1

4
= opt ,

a contradiction.
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4 Each special bin contains also a large item

In this and the following section, we have opt ≥ 3, since no special bin is created until there
are at least three interesting bins and any three interesting bins have total level larger than 2 by
Lemma 2.9.

In this section all 1-bins are regular. So, recalling the notation, the number of 1-bins is δ =
δ1 + δ0, where δ1 is the number of 1-bins with a large item. If δ0 > 0, then δ0 = 1 and there exists
a single bin with a small item, D0 and d0 denote that bin and its item.

We introduce a weight function that is a natural modification of the one that was used in the
tight analysis of FF [5]. This modification ensures that every optimal bin (i.e., a bin in an optimal
solution) has weight at most 5/3 (see Lemma 4.2). We no longer have that FF has a weight of 1
per bin (because it is not 5/3-competitive, after all), but we can show that the amortized weight
of a bin of FT is at least 1.

Definition 4.1 For any item a we define its regular weight as r(a) = 6
5a. We also define the

bonus of the items that is denoted by b(a) as follows:

b(a) =


0 if 0 < a ≤ 1/6
2
5(a− 1

6) if 1/6 < a ≤ 1/3

1/15 if 1/3 < a ≤ 1/2

2/5 if a > 1/2.

The weight of the item a is defined as w(a) = r(a) + b(a).

Note that the bonus function is monotonically non-decreasing in a, and large items always have
weight larger than 1.

For a set of items A and a set of bins A, let w(A) and w(A) denote the total weight of all items
in A or A; similarly for r and b.

Note that if we have a set A of k items with sizes in (1/6, 1/3], then the definition implies that
its bonus is exactly b(A) = 2

5

(
size(A)− k

6

)
. If A contains k items, each of size ∈ (1/6, 1/2], then

we get an upper bound b(A) ≤ 2
5

(
size(A)− k

6

)
.

First we analyze the weight of the optimal bins, which is the easy part of the proof. This proof
is what we based the definition of our weight function on.

Lemma 4.2 For every optimal bin A its weight w(A) can be bounded as follows:

(i) w(A) ≤ 5/3.

(ii) If A contains no large item, then w(A) ≤ 7/5.

Proof. In all cases r(A) ≤ 6/5, thus it remains to bound b(A).
If A contains no large item, we distinguish two cases. If A contains at least four items with

non-zero bonus, then their total bonus is at most

b(A) ≤ 2

5

(
level(A)− 4

6

)
≤ 2

5
· 1

3
=

2

15
.
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If A contains at most three items with non-zero bonus, then b(A) ≤ 3/15 = 1/5. In both cases, (ii)
and thus also (i) holds.

If A contains a large item, note that the bonus of the large item is 2/5. In addition, A contains
at most two items larger than 1/6 of total size y < 1/2. If there are two such items then we have

b(A) ≤ 2

5
+

2

5

(
y − 2

6

)
<

2

5
+

2

5
· 1

6
=

7

15
.

If there is at most one such item then b(A) ≤ 2/5 + 1/15 = 7/15 again. In both cases w(A) ≤
6/5 + 7/15 = 5/3 and (i) holds.

Throughout this section, we will assume (3) and derive a contradiction. Together with (3), by
adding up the weight of all the optimal bins, Lemma 4.2 implies that

w(I) ≤ 5

3
· opt ≤ FT − 1

3
. (5)

In the following lemma, we exclude some extreme cases by a simple calculation of total volume.

Lemma 4.3 The following three properties hold.

(i) If d0 exists, then d0 > 1/3.

(ii) There exists at least one 1-bin with a large item.

(iii) No 2+-bin has level 1/2 or smaller.

Proof. For all three statements, we will use that the level of any special bin is more than 3/4 by
Lemma 2.10 and because each special bin has a large item.

(i) Suppose d0 = 1/3−x with some 0 ≤ x ≤ 1/12. Then the level of any other regular or special
bin is bigger than 2/3 + x. By FT ≥ 2 and (3), we get for the total size that

opt ≥ size >

(
2

3
+ x

)
(FT − 1) +

(
1

3
− x
)

=
2

3
FT − 1

3
+ (FT − 2)x

≥ 2

3

(
5

3
opt +

1

3

)
− 1

3
= opt +

1

9
(opt− 1) ≥ opt,

a contradiction. If d0 is even smaller, i.e. d0 ≤ 1/4, then the level of any other bin is bigger than
3/4, and hence we get opt ≥ size > 3

4 (FT − 1) ≥ 3
4

(
5
3opt−

2
3

)
= opt + 1

4(opt − 2) ≥ opt, a
contradiction.

(ii) Suppose there is no 1-bin with a large item. If D0 exists, we consider it together with the
first special bin; their total level is above 1 using (i) and the first line of this proof. There are at
least three regular 2+-bins since there exists a special bin. We can apply Lemma 2.9, the first line
of this proof and (3), and we get for the total size that

opt ≥ size >
2

3
(FT − 2) + 1 =

2

3
FT − 1

3
≥ 2

3

(
5

3
opt +

1

3

)
− 1

3
=

10

9
opt− 1

9
≥ opt,

a contradiction.
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(iii) Suppose to the contrary that there exists a 2+-bin, say B0, such that the level of B0 is at
most 1/2. Then there is an item a in B0 with size at most 1/4, and B0 is regular. By Lemma 2.5,
the level of any earlier regular bin is bigger than 3/4. Moreover, any later regular bin is a 1-bin
since any item in these bins must be large.

There is at least one 1-bin by (i). The total level of any 1-bin and B0 is bigger than 1. We get
that there are δ + 1 ≥ 2 bins with total level bigger than (δ + 1)/2, and the level of any other bin
is bigger than 3/4. Then the next estimation is valid for the total size:

opt ≥ size >
3

4
(FT − δ − 1) +

1

2
(δ + 1)

=
3

4
FT − 1

4
δ − 1

4
≥ 5

4
opt +

1

4
− 1

4
opt− 1

4
= opt,

which is a contradiction. Here we have used δ ≤ opt.

For the analysis of the bins of FT, we partition them in several sets. We use s to denote the
final value of s, after all items are packed. Recall that we assume there are no special 1-bins in this
section. Let D be the set of 1-bins. Let B be the set of all 2+-bins. The set B is further partitioned
into three parts:

• Let S be the set of special bins and their matches; note that |S| = 2s.

• Let G be the set of good bins in B \ S.

• Let C = B \ (S ∪ G). These bins are either critical bins or interesting 3+-bins with level
below 5/6. We number the bins in C according to their order in the packing of FT: C =
{C1, . . . , C|C|}. Let τ be the number of critical bins among C2, . . . , C|C| (τ = 0 if |C| ≤ 1).

Note that τ counts only bins that are still critical at the end of the execution of FT, excluding C1.
We start by estimating the weight of D, G, and S, which are the easy cases.

Lemma 4.4 We have w(D)− δ > −δ0/3.

Proof. If there is no item d0, each bin in D has weight more than 1, since each large item has
weight more than 1 by the definition, and we are done. Else, by Lemma 4.3, d0 > 1/3 and δ1 ≥ 1.
Now the total size of the items in 1-bins is greater than δ/2, thus the total regular weight of these
bins is greater than 3δ/5. The bonus of any of the δ1 large items in 1-bins is 2/5, and the bonus of
d0 is 1/15. Thus the total weight is w(D) > 3δ/5 + 2

5(δ − 1) + 1/15 = δ − 1/3.

Lemma 4.5 For every bin G ∈ G, we have w(G) ≥ 1, thus w(G)− |G| ≥ 0.

Proof. If G contains a large item, or the level of the bin is at least 5/6, the weight is at least 1.
Else, G has two items of combined size at least 3/4 but no large item, so the largest item has size
in [3/8, 1/2] and bonus 1/15 and the second largest item has size at least 1/4 and thus bonus at
least 1/30. Thus w(G) = r(G) + b(G) ≥ 6

5 ·
3
4 + 1

15 + 1
30 = 1.

Lemma 4.6 Let S be a special bin with a special item a and let M be its match. Let b and c
denote the first two items in bin M . Then the total weight of these three items is more than 4/3.
Consequently w(S) + w(M) > 7/3 and w(S)− |S| > s/3.
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Proof. By Lemma 2.10, a+ b+ c > 1, so the regular weight of these three items is more than 6/5.
We claim that the bonus of the three items is at least 2/15. If there is a large item among them,

or there are two items of size at least 1/3 among them, the claim holds. Otherwise each item is of
size at most 1/2, and there is exactly one of size more than 1/3. Denote the largest size by x and the
other two by y and z. Then 1/3 < x ≤ 1/2, thus y+z > 1/2, and both y and z are in [1/6, 1/3). For
the total bonus, we get b(x)+b(y)+b(z) = 1

15 + 2
5(y− 1

6)+ 2
5(z− 1

6) = 2
5(y+z)− 1

15 >
2
5 ·

1
2−

1
15 = 2

15 .
Thus the total weight of the three items is more than 6/5 + 2/15 = 4/3.
Regarding the second claim we only need to recall that in any special bin there exists also a

large item, and this item has weight more than 1. Hence, for every pair (S,M), the total weight of
the two bins is more than 4/3 + 1 = 7/3. Finally, recall that |S| = 2s.

In the previous parts, we have shown that the weight per bin is typically at least 1. One
exception is D0, in which we have less weight and this constitutes the hard case later. Another
exception are the special bins in which together with their matches we have 1/3 extra weight per a
matched pair. Later it turns out that on each critical bin in C we have about 1/15 too little weight.
So, the next claim which relates τ to s is essential in our proof and in fact gives some justification
for creating special bins at regular intervals. Recall that τ is the number of critical bins in C \{C1}.

Claim 4.7 τ ≤ 3s.

Proof. There are at most 4s+1 interesting bins and s of them are matched, and therefore contained
in S instead of C. As C1 is not counted in τ , we have τ ≤ |C| − 1 ≤ (4s+ 1)− s− 1 = 3s.

Now we estimate the weight of the bins in C. We need the next amortization lemma.

Lemma 4.8 Let Ci and Cj be two bins in C, i < j.

(i) If the level of Ci is at least 2/3 and Cj is a 3+-bin, then the regular weight of Ci plus the
bonus of Cj is at least 1.

(ii) If the level of Ci is at least 2/3 and Cj is a 2+-bin, then the regular weight of Ci plus the
bonus of Cj is at least 14/15.

(iii) If the level of Ci is 2/3 + ε/2, for some ε > 0, and Cj is a 2-bin with level at least 2/3, then
the regular weight of Ci plus the bonus of Cj is at least 14/15 + 2ε/5.

(iv) If Ci has level 2/3 − ε, for some ε > 0, then Cj is critical and the weight of Cj is at least
14/15 + 12ε/5.

Proof. (i) Since Ci is not good, its level is less than 5/6. Let its level be 5/6 − x for some
0 < x ≤ 1/6. Then each item in the 3+-bin Cj is larger than 1/6 + x, so

r(Ci) + b(Cj) ≥
6

5

(
5

6
− x
)

+ 3 · 2

5
x = 1.

(ii) We follow the proof of (i), and we now get a weaker bound as follows:

r(Ci) + b(Cj) ≥
6

5

(
5

6
− x
)

+ 2 · 2

5
x = 1− 2

5
x ≥ 14

15
.
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(iii) Items in Cj must have size more than 1/3 − ε/2. Additionally, at least one of them must
have size more than 1/3. Then

r(Ci) + b(Cj) ≥
6

5

(
2

3
+
εi
2

)
+

2

5

(
1

6
− εi

2

)
+

1

15
=

14

15
+

2εi
5
≥ 14

15
+

2ε

5
.

(iv) Cj contains exactly two items each of size larger than 1/3 + ε, so it is a 2-bin and therefore
must be critical. Its weight is at least w(Cj) = r(Cj) + b(Cj) > 12/15 + 12ε/5 + 2/15.

Lemma 4.9 If τ = 0, then

w(C)− |C| ≥ −2

5
. (6)

If the level of C|C| is at least 2/3 then

w(C)− |C| ≥ −3− τ
15

. (7)

If τ > 0 and the level of C|C| is 2/3− ε for ε > 0 then

w(C)− |C| ≥ −3− τ
15

+

(
2

5
τ − 8

5

)
ε. (8)

Proof. First note, that in case |C| = 0, set C is empty, so τ = 0 and (6) and (7) hold trivially.
If |C| = 1, again τ = 0, and both of (6) and (7) follow from Lemma 4.3(iii) by considering the

weight of the only bin in C. Thus let us suppose that |C| ≥ 2.
To bound w(C), we apply Lemma 4.8 (|C| − 1)-times for j = 2, . . . , |C|, typically with i = j − 1,

and to the sum of the inequalities we add the regular weight of C|C|. We use Lemma 4.8(i) |C|−τ−1
times, for all pairs of consecutive bins where the second bin is a 3+-bin.

In case τ = 0 we add these |C| − 1 inequalities; then we use level(C|C|) > 1/2 and r(C|C|) ≥
6
5 ·

1
2 = 3

5 to obtain (6) and r(C|C|) ≥ 6
5 ·

2
3 = 4

5 to obtain (7).
It remains to deal with the case when τ > 0. The situation is a bit more complicated if there

is a bin of size smaller than 2/3. According to this, we will distinguish three cases.

Case 1: Ci has level at least 2/3 for i = 1, . . . , |C|. We need to prove (7). We apply Lemma 4.8(ii)
τ times, and for the final bin use that r(C|C|) ≥ 6

5 ·
2
3 = 4

5 . Thus we get

w(C) ≥(|C| − τ − 1) +
14

15
τ +

4

5
= |C| − 1

5
− 1

15
τ,

and (7) holds.

Case 2: Ck has level 2/3 − ε for some 1 ≤ k < |C| and ε > 0. Note that k is unique, as any
following bin must contain two items larger than 1/3 + ε. (We can also conclude from this that
ε < 1/6.) Again, we need to prove (7).

We use Lemma 4.8(iv) to bound the total weight of Cj , for any j > k (no amortization here),
i.e. we use this inequality |C| − k times, where |C| > k by case assumption. We get the regular
weight of Ck which is 4/5− 6ε/5.
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The number of applications of Lemma 4.8(ii) is now τ − (|C| − k), since all bins in C following
Ck are critical. As previously noted, we use Lemma 4.8(i) |C| − τ − 1 times. We get

w(C) ≥ |C| − τ − 1 +
14

15
(τ − (|C| − k)) + (|C| − k)

(
14

15
+

12

5
ε

)
+

(
4

5
− 6

5
ε

)
= |C| − τ − 1 +

4

5
+

14

15
τ + (|C| − k)

12

5
ε− 6

5
ε

≥ |C| − 1

5
− τ

15
.

using |C| − k ≥ 1 in the last inequality, and (7) holds.

Case 3: C|C| has level 2/3− ε for some ε > 0. (Since this is the last critical bin, it could even be
that ε > 1/6.) We need to show (8). Since C|C| contains at least two items, it contains an item of
size at most 1/3− ε/2 and thus Ci has level at least 2/3 + ε/2 for all i = 1, . . . , |C| − 1.

We use Lemma 4.8(iii) τ − 1 times, namely for every pair of consecutive bins where the second
bin is critical apart from the last such pair, which involves C|C|. We apply Lemma 4.8(i) |C|− τ − 1
times as usual, noting that j < |C| in every pair for which this lemma is applied. Finally, we apply
Lemma 4.8(ii) once for j = |C|. We note that r(C|C|) = 4/5− 6ε/5, and obtain

w(C) ≥ |C| − τ − 1 + (τ − 1)

(
14

15
+

2

5
ε

)
+

14

15
+

4

5
− 6

5
ε

= |C| − τ

15
− 1

5
+

(
2

5
τ − 8

5

)
ε.

Thus (8) holds.
Note that the bound (8) is stronger than the bound (7) only in the case that τ > 4, it is the

same if τ = 4, otherwise it is weaker. We are now ready to derive the desired contradiction to (5)
in almost all cases.

Lemma 4.10 (i) If s ≥ 2 or δ0 = 0 then w(I)− FT > −1/3 (and consequently FT ≤ 5
3 · opt).

(ii) If s = δ0 = 1 then w(I)− FT > −7/15.

Proof. For τ = 0, by Lemma 4.9 combined with the bounds for D (Lemma 4.4), S (Lemma 4.5)
and G (Lemma 4.6), we obtain (i) as follows:

w(I)− FT > s/3− 2/5− δ0/3 ≥ −2/5 .

Furthermore, for δ0 = 0 or s ≥ 2 we get

w(I)− FT > 1/3− 2/5 > −1/3

if
If C|C| has size at least 2/3 or τ ≥ 4, we have w(C)− |C| ≥ −3−τ15 by Lemma 4.9. Together with

the other bounds we get

w(I)− FT >
s

3
+
−3− τ

15
− δ0

3
=

5s− 3− τ
15

− δ0
3
≥ 2s− 3

15
− δ0

3
≥ − 6

15
,
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using that τ ≤ 3s by Claim 4.7. Furthermore, using δ0 = 0 or s ≥ 2 in the last inequality, we get
an improved bound

w(I)− FT > −4/15 > −1/3.

If C|C| has size 2/3− ε and 0 < τ ≤ 3, we obtain, using ε < 1/6 (Lemma 4.3),

w(I)− FT >
s

3
+
−3− τ

15
+

(
2

5
τ − 8

5

)
ε− δ0

3

>
s− δ0

3
+
−3− τ

15
+

1

15
τ − 4

15
=
s− δ0

3
− 7

15
≥ − 7

15
.

Again, using δ0 = 0 or s ≥ 2 in the last inequality, we get an improved bound w(I) − FT >
1/3− 7/15 > −1/3.

Lemma 4.10 shows that FT is 5/3-competitive if each special bin contains a large item, except
for the single remaining case s = δ0 = 1, where we have to work a bit harder.

4.1 The case s = δ0 = 1

In this remaining case, we typically achieve a contradiction by computing the total size of the
instance and also by carefully counting the number of items of size at least 1/4. To be able to
count these items, we first revisit Lemma 4.10 to further restrict the remaining case and prove that
all optimal bins contain a large item. Later in the proof we also use some of the specific choices of
FT, namely the fact that a special bin is matched to the last critical bin and also the exact timing
of the creation of the first two special bins.

For s = 1, using Lemma 4.2(ii) and Lemma 4.10, we have

FT < w(I) +
7

15
≤ 5

3
opt +

7

15
.

If opt 6≡ 1 (mod 3) then this and integrality of opt and FT is enough to conclude that FT ≤ 5
3opt.

Thus in the remaining case opt = 3k + 1 for some k ≥ 0; fix such k. We have

FT <
5

3
(3k + 1) +

7

15
= 5k + 2 +

2

15
, (9)

implying that FT ≤ 5k+ 2. In fact, we have FT = 5k+ 2 since (5k+ 1)/(3k+ 1) < 5/3 for k ≥ 0.

Claim 4.11 Each optimal bin contains a large item, so there are exactly 3k + 1 large items in I.
There are at most 3k + 1 items with size in [1/4, 1/2] in I.

Proof. If there is an optimal bin without a large item, then by comparing Lemma 4.2(ii) to
Lemma 4.2(i), w(I) decreases by 4/15 compared to (9), implying that FT < 5k+2, i.e., FT ≤ 5k+1.
It follows immediately that each optimal bin can contain at most one item of size in [1/4, 1/2].

There is a large item in the special bin, but no large item in D0. Using Claim 4.11 and
Lemma 4.3(ii), the final packing of FT therefore has the following bins:

• one special bin with a large item, and

• 3k + 1 bins that are either regular 2+-bins with a large item or 1-bins (including D0), and

• 2k bins that are either interesting or quick (i.e., regular 2+-bins without large items).
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Since s = 1, we have at least three interesting bins in the final packing by Lemma 2.8. Thus k ≥ 2.
Also note that each quick bin contains at least two items with size in [1/4, 1/2], as its first two
items are not large and have total size at least 3/4.

Claim 4.12 The first interesting bin in the final packing has level more than 3/4.

Proof. Suppose for a contradiction that the first interesting bin has level at most 3/4. Using the
First fit property, the remaining interesting bins contain each two items with size in [1/4, 1/2], as
do all the quick bins. Thus the number of items with size in [1/4, 1/2] in interesting and quick
bins is at least 2(2k − 1), there is one such item in D0 (Lemma 4.3(i)) and one in the special bin.
Altogether we have 4k such items, contradicting Claim 4.11, as k ≥ 2 implies 4k > 3k + 1.

Claim 4.13 The final packing of FT contains at least four interesting bins with level at most 3/4.
At least three of these bins are critical and contain two items with size in [1/4, 1/2].

Proof. Suppose to the contrary that there are at most three interesting bins with level at most 3/4.
We apply Lemma 2.9 to the three interesting or quick bins with lowest level to conclude that their
total size is at least 2; note that the total number of the considered bins is 2k ≥ 4, so we indeed can
apply the lemma. There are 3k+1 bins with large items and D0 with average level more than 1/2 by
Lemma 2.11. All other bins, i.e., the special bin and 2k−3 interesting and quick bins, have level at
least 3/4. Thus we get for the total size that opt ≥ size > 2+ 1

2(3k+1)+ 3
4(2k−2) = 3k+1 = opt,

a contradiction. We conclude that there are at least four interesting bins with level at most 3/4.
Each of these four interesting bins apart from possibly the first one is critical, as each bin after

the first contains only items larger than 1/4. It can therefore receive only two items, none of them
large, as otherwise its level would be more than 3/4.

Claim 4.14 The final packing of FT contains exactly five interesting bins.

Proof. By Claim 4.12 and Claim 4.13, there are at least five interesting bins.
Consider the time when the last interesting bin is created by packing the second item into it

and making it critical. At this time, by Claim 4.13 at least two of the interesting bins are critical,
excluding the new one. At most one of the critical bins is matched as s ≤ 1, thus there is an
unmatched critical bin. By rules of FT and using s ≤ 1 again, in such a case, if a special bin was
not created, the number of interesting bins including the new one is at most max(3, 4s+ 1) ≤ 5.

Claim 4.15 We have k = 3.

Proof. By Claim 4.14, there are exactly five interesting bins, so 2k ≥ 5 and k ≥ 3. By Claim 4.13,
there are at least three critical bins, each containing two items with size in [1/4, 1/2]. There are
2k − 5 quick bins, each containing two such items as well. Finally, there is one such item in
the special bin and one in D0. Altogether the number of items with size in [1/4, 1/2] is at least
6 + 2(2k − 5) + 2 = 4k − 2. Using Claim 4.11, we have 4k − 2 ≤ 3k + 1, which yields k ≤ 3.

Thus in the remaining case opt = 3k+ 1 = 10 and FT uses 5k+ 2 = 17 bins. We calculate the
total size of the bins to obtain a final contradiction.

We note that the match of the special bin is not the first interesting bin: Claim 4.13 guarantees
that one of the critical bins with final level at most 3/4 is among the at least three interesting bins
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present when the special bin is created; it is not the first interesting bin. As FT always use the last
critical bin as a match, it does not use the first interesting bin in this case.

The first interesting bin has level more than 3/4 by Claim 4.12. The total size of the special bin
and its match is more than 3/2 by Lemma 2.10. The total size of the remaining three interesting
bins is more than 2 by Lemma 2.9. The single quick bin has level at least 3/4. Finally the total
size of the 10 remaining bins, i.e., 9 bins with large items and D0, is more than 5 by Lemma 2.11
Altogether the total size is more than 3/4 + 3/2 + 2 + 3/4 + 5 = 10 = opt, a contradiction.

Having shown a contradiction in all cases, we conclude the following.

Theorem 4.16 If every special bin has a large item after all items have been packed, then FT ≤
5/3 · opt.

5 There exists a special 1-bin

In this case we again reach a contradiction by comparing the size packed into bins of FT to opt.
This is based on two crucial facts. First, there are many more interesting bins than special bins
(Observation 5.1). Second, the large items in special bins have size at least 5/8 (Lemma 5.3). In
general, we may have many special 1-bins and need to account for them. It turns out that it is
more advantageous to match them, if possible, to 1-bins with large items rather than to use the
matching provided by FT. The matched bins may have average level only about 1/2, but this is
balanced out by the fact that the interesting bins have typically average level at least 2/3. In fact,
the frequency of creating the special bins is sufficiently low so that these two quantities balance
out for a large s. These ideas leave out some special cases with a small s that need to be examined
separately. Our accounting of sizes is very precise to limit the number of these small cases.

We start by the following fact that follows immediately from the description of FT and Lemma
2.8.

Observation 5.1 At any moment of the run of FT, if there are s ≥ 1 special bins, then there are
at least 4(s− 1) + 1 = 4s− 3 interesting bins.

If s = 1, then there are at least 3 interesting bins.

Let q denote the total number of regular 2+-bins, including the bins with large items, in the
final packing of FT. As these bins include all the interesting bins, Observation 5.1 implies that

q = 4(s− 1) + 1 + k = 4s− 3 + k,

for some integer k ≥ 0; fix this k.
We now write FT in two forms. First, as all the regular bins are accounted in q + δ, we have

FT = q + s+ δ = 5s− 3 + k + δ. Second, fix an integer x ≥ 0 such that FT = 5
3opt + 1/3 + x/3;

such an x exists as we assume (3). Now, equating these two forms multiplied by 3, and rearranging
we obtain

5opt = 15s− 10 + 3k + 3δ − x. (10)

Let us also denote the number of special 1-bins and 2-bins by s1 and s2, respectively. Recall
that δ = δ1 + δ0, where δ0 = 1 if D0 and d0 exist and δ0 = 0 otherwise. Now we distinguish two
cases.
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s1 s2 s1 s2δ1 s1 − δ1 δ0

L L L

L L L

D0

s2

D0

spec

δ0

spec spec spec spec spec

int int int int

spec

FT Case a Case b

Figure 3: The matchings used in this section compared to the matching of FT. Variables below
bins indicate the numbers of these pairs that exist. L refers to large items, spec to special items,
int to interesting bins.

Case a: δ1 ≤ s1

We redefine the matching as follows. See Figure 3. We match arbitrarily all the δ1 regular 1-
bins with large items to some δ1 special 1-bins, replacing the matches of these special bins. The
remaining s1 − δ1 special 1-bins keep their match as defined by FT; note that they are matched to
interesting bins. We remove all the matches of the special 2-bins. Finally, if D0 exists, we match
it to an arbitrary unmatched interesting bin; such a bin exists by Observation 5.1, as at most s
interesting bins are matched.

Let q′ be the number of unmatched regular 2+-bins. Since exactly (s1− δ1) + δ0 regular 2+-bins
are matched, we have

q′ = q + δ1 − δ0 − s1 = 4s+ k + δ1 − δ0 − s1 − 3 . (11)

We also have s2 unmatched special 2-bins and 2(s1 + δ0) bins in s1 + δ0 matched pairs. The crucial
property of the matching is the following fact.

Lemma 5.2 Each pair of matched bins has total level more than 1.

Proof. For each special 1-bin that is matched with a 1-bin with a large item, the large item does
not fit together with the special item by Lemma 2.7. For the other special 1-bins, we apply Lemma
2.10, as the pair is matched by FT. Finally, for the pair with D0 the bound follows by First Fit
property, as both bins are regular.

If q′ ≥ 3, we apply Lemma 2.9 for the q′ unmatched 2+-bins. Each special 2-bin has level more
than 3/4 by Lemma 2.10; we actually use only a weaker bound of 1/3 in our calculation. Using
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Lemma 5.2 for the remaining bins and substituting (11), we get

3 · opt ≥ 3 · size > 3

(
2

3
q′ +

1

3
s2 + s1 + δ0

)
= 2(4s+ k + δ1 − δ0 − s1 − 3) + 3s1 + s2 + 3δ0

= 9s+ 2k + 2δ1 + δ0 − 6 .

Using the integrality of all variables and then multiplying by 5 we get

15 · opt ≥ 45s+ 10k + 10δ1 + 5δ0 − 25

which together with the first equality (10) gives

45s− 30 + 9k + 9δ − 3x ≥ 45s+ 10k + 10δ1 + 5δ0 − 25

or equivalently
4δ0 ≥ k + 3x+ δ1 + 5 .

Since δ0 ≤ 1 and the right hand side is at least 5, we have a contradiction.
Now consider the remaining case q′ ≤ 2. Using (11) and s1 ≤ s, we obtain

5 + δ0 ≥ q′ + δ0 + 3 = 4s+ k + δ1 − s1 ≥ 3s+ δ1 . (12)

It follows that 6 ≥ 3s, i.e., s ≤ 2.

Case a1: s = 2. In this case (12) must hold with equality and thus we have s1 = s = 2, s2 = 0,
q′ = 2, δ1 = 0, and δ0 = 1. We have FT = q′ + 2(s + δ0) = 8. The total level of the bins in the
three matched pairs is more than 3, the total level of the remaining two regular bins is more than
1 by the First Fit property. Thus size > 4 and opt ≥ 5, a contradiction with FT > 5

3opt.

Case a2: s = 1. By Observation 5.1 there are at least three interesting bins. Using Lemma 2.9
for these bins we get size > 2 and thus opt ≥ 3. This in turn implies FT > 5

3opt ≥ 5 and thus
FT ≥ 6.

On the other hand, FT = q′ + s2 + 2(s1 + δ0) ≤ 6, as s1 ≤ s1 + s2 = 1 and δ0 ≤ 1. Thus these
bounds all hold with equality and the packing of FT has two pairs of matched bins and q′ = 2
regular bins. The total level of the bins in the matched pairs is more than 2, the total level of the
remaining two regular bins is more than 1 by First Fit property. Thus size > 3 and opt ≥ 4, a
contradiction with FT > 5

3opt.
This completes the proof of Case a, as we have obtained a contradiction in all subcases.

Case b: δ1 ≥ s1 + 1

In this case we discard the matching defined by FT completely. Instead, we match all special 1-bins
and also D0, if it exists, to regular 1-bins with large items arbitrarily; the case condition guarantees
that this is possible. See Figure 3. Each one of the s1 + δ0 pairs of matched bins has total level
more than 1 by Lemma 2.7, or by First Fit property in case of D0.

To bound the level of the remaining unmatched regular 1-bins with large items we use the
following lemma.
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Lemma 5.3 If there exists a special 1-bin after all items have been packed, then every large item
in a 1-bin has size more than 5/8.

Proof. This follows from Lemma 2.7 and Lemma 2.10.
As there are at least three interesting bins by Observation 5.1, we have q ≥ 3 and we apply

Lemma 2.9 for these bins. Each special 2-bin has level more than 3/4 by Lemma 2.10. Combining
all the bounds, we get

24 · opt ≥ 24 · size > 24

(
2

3
q +

3

4
s2 +

5

8
(δ1 − s1 − δ0) + s1 + δ0

)
= 24

(
2

3
q +

3

8
s1 +

3

4
s2 +

5

8
δ1 +

3

8
δ0

)
= 16(4s1 + 4s2 − 3 + k) + 9s1 + 18s2 + 15δ1 + 9δ0

= 73s1 + 82s2 + 16k + 15δ1 + 9δ0 − 48 .

By the integrality of all the variables we obtain

24 · opt ≥ 73s1 + 82s2 + 16k + 15δ1 + 9δ0 − 47.

Together with (10), this gives

120 · opt = 24(15s− 10 + 3k + 3δ − x)

= 360s1 + 360s2 + 72k + 72δ1 + 72δ0 − 240− 24x

≥ 5(73s1 + 82s2 + 16k + 15δ1 + 9δ0 − 47)

= 365s1 + 410s2 + 80k + 75δ1 + 45δ0 − 235 .

After rearranging we obtain

27δ0 ≥ 5s1 + 50s2 + 5 + 8k + 3δ1 + 24x .

This implies that we have δ0 = 1 and x = s2 = 0. After substituting, the inequality is

22 ≥ 5s1 + 8k + 3δ1 = 5(s1 + k) + 3(k + δ1) . (13)

Examining (10), using x = 0 and integrality of all variables, it follows that k+ δ is divisible by five.
Since δ0 = 1, we have k+ δ > 0. Also, k+ δ ≥ 10 would imply k+ δ1 ≥ 9 contradicting (13). Thus
the only possibility is k + δ = 5 and thus k + δ1 = 4. Substituting back into (13), we get that

2 ≥ s1 + k, . (14)

For s = s1 ≤ 1 we would get q = 4s+ k − 3 = 3s− 3 + (s+ k) ≤ 3− 3 + 2 = 2 contradicting q ≥ 3
from Observation 5.1. Thus (14) implies s1 = s = 2 and k = 0.

The only remaining case is therefore s2 = x = k = 0, s1 = 2, δ0 = 1, δ1 = 4, and q = 4s+k−3 =
5. Thus FT = q + s+ δ = 12. From (10) we obtain opt = 7.

Since we have at least five interesting bins when the second special bin is created, all five 2+-bins
are interesting. In particular there is no 2+-bin with a large item. Thus all the large items are in
1-bins and there are four of them, as δ1 = 4.
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Denote the first and second special items c1 and c2. As there is no special 2-bin, both special
bins are created in Step 5, where instead of creating a critical bin, FT packs the new item in a new
bin, and the 1-bin with a smaller item becomes special while the other 1-bin remains regular. Let
p1 resp. p2 be the packet in the regular 1-bin in Step 5 when c1 resp. c2 becomes special.

Observe that after c1 becomes special, we either have exactly three interesting bins, or we
have exactly one critical bin (among the more than tree interesting bins) that becomes matched.
This holds, as otherwise a special item would have been created earlier. Furthermore, all the
interesting bins precede the bins of c1 and p1 by Lemma 2.8. When c2 becomes special, we have
five interesting bins and one of them is an unmatched critical bin. Thus another bin must become
interesting between the times when c1 and c2 become special. We claim that the first such bin is
the bin of p1. No large item is packed with p1, as all the large items are in 1-bins. So the bin p1
remains the only regular 1-bin with a small item until another small item is packed into it. Thus
no other bin can newly become interesting, and the bin of p1 becomes interesting as all 2+-bins are
interesting in the end. This shows that at time when c2 becomes special, the bin of p1 is a 2+-bin,
and in particular c1, p1, c2, and p2 are four distinct items.

We claim that none of c1, p1, c2, and p2 fit into a 1-bin with a large item. This is true for c1
and c2 by Lemma 2.7. However, then it follows also for p1 and p2, as they are larger than c1 and
c2, respectively. Thus c1, p1, c2, p2 and the four large items have total size larger than 4. The bin
of p1 is not the first interesting bin, as we observed that three other interesting bins precede it.
There is another item in the bin of p1 which does not fit in the first interesting bin by the First
Fit property, accounting for volume at least 1. The remaining three interesting bins have total size
more than 2 by Lemma 2.9. Thus size > 4 + 1 + 2 = 7, contradicting opt = 7.

In all the subcases of Case b we have obtained a contradiction as well. Thus we have shown the
following theorem.

Theorem 5.4 If there exists a special 1-bin after all items have arrived, then FT ≤ 5/3 · opt.

Combining Theorems 3.1, 4.16 and 5.4 immediately leads to our main result.

Theorem 5.5 The algorithm FT has absolute competitive ratio 5/3.
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