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Abstract. Optical Coherence Tomography (OCT) is one of the most
advanced, non-invasive method of eye examination. Age-related macu-
lar degeneration (AMD) is one of the most frequent reasons of acquired
blindness. Our aim is to develop automatic methods that can accurately
identify and characterize biomarkers in OCT images, related to AMD.
We present methods for quantizing hyperreflective foci (HRF) with deep
learning. We also describe an algorithm for determining pigmentepithe-
lial detachment (PED) and localizing outer retinal tubulation (ORT)
that appears between the layers of the retina.
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1 Introduction

Age-related Macular Degeneration (AMD) is a health problem worldwide, that
is the leading cause of vision loss in the Western World. While symptoms are
rare in patients below 50 years of age, an increasing prevalence of AMD can
be detected in the elderly population. AMD means degeneration of the macula,
the region of the retina responsible for central vision. Since only this specific
part of the retina is affected by AMD, untreated patients lose their fine shape-
and face recognition, reading ability, and central vision [4]. AMD can be divided
into two subtypes; the dry (non-exudative) and the wet (exudative, neovascular)
form. The latter one causes rapid and serious visual impairment and accounts for
10% of the cases. In this more acute, neovascular type of the disease, abnormal
angiogenesis causes fluid and blood leakage into the retinal layers thus resulting
in photoreceptor lesion. Albeit the exact pathomechanism of the disease is still



Fig. 1. Optical Coherence Tomography (SD-OCT) image of the retina with biomarkers

unclear, it is known that the vascular endothelial growth factor (VEGF) plays
crucial role in the pathogenesis [10]. The first choice of treatment in neovascular
AMD is anti-VEGF intravitreal injection, a periodic injection into the eye.

During the last decade, optical coherence tomography (OCT) has become
a basic tool in diagnosing and monitoring neovascular AMD and its response
to anti-VEGF treatment. With the help of OCT, we are capable of detecting
the layers of the retina, and also the effects of the disease, the so-called OCT
biomarkers, such as subretinal/intraretinal fluid accumulation, pigmentepithe-
lial detachment (PED), outer retinal tubulation (ORT) or hyperreflective foci
(HRF) (Fig. 1). These markers help the clinical decision-making process for
observing/treating/re-treating a patient. To improve the treatment procedure,
there is a need for more precise measurements, hence our aim was to create
algorithms which can automatically identify and quantify some of the above
mentioned biomarkers, namely PED, ORT and HRF.

A large number of publications in the scientific literature deal with cysts,
subretinal fluid detection and retinal layer segmentation, however only a small
number of papers are available on PED. Haq et al. [3] defined 12 retinal layer
with a multi resolution graph-search method and the PED was calculated from
the relative position of the lower two layers. The algorithm of Shi et al. [9] applied
machine learning for PED detection. We have not come across any papers about
automatic segmentation of ORT. In case of the HRFs there are some simple
techniques for the detection (see, e.g., [8]), but we have not found any methods
in use related to AMD.

2 Materials and methods

In this section, we present several algorithms to detect HRF, PED and ORT. The
OCT images were acquired using Heidelberg Spectralis (Spectralis, Heidelberg
Engineering, Heidelberg, Germany) OCT scans on wet age-related macular de-
generation. Patients were either treated naively or with anti-VEGF intravitreal



injections. The annotated images contained many biomarkers, such as subreti-
nal fluid, PED, subretinal and hyperreflective material. The currently used data
consist of images of different patients taken at different times. All image se-
quences consisted of 49 slices taken with a 6 × 6 mm pattern size and 122µm
slice distance. The slices were generated by averaging 30 frames on each B-scan.
Slices had a resolution of 512×496 pixels with pixel sizes 11.45 and 3.87µm and
a quality score above 16 dB.

We evaluated our PED and ORT segmentation method by comparing the
results to manual segmentations of ophthalmologists for 2 image sequences. The
database of HRF consisted of 11 image sequences taken from 7 clinical patients.
The annotation was performed by two clinical doctors, independently marking
the hyperreflective foci.

2.1 PED detection and ORT localization

Pigment epithelium detachment (PED) can be an important medical feature
of the disease. PED estimation can be made relatively easily after the retinal
pigment epithelium (RPE) layer is detected. Determining the outer boundaries,
such as the internal limiting membrane (ILM) and RPE layers are defined in
our previous work [5]. We calculated a possible normal layer boundary using
the known RPE boundaries to characterize the detachment. We took 1% of the
points from both sides of the image and we fitted a smoothed cubic spline to
these points, giving the possible boundary.

In many cases, even for doctors, it is difficult to see the ORTs, they can only
guess their place and extent. Consequently, an approximate segmentation result
can also help.

The ORT has hyperreflective contour and contains hyper- hyporeflective
points. The procedure is based on finding hyperreflective points. As we can
see in Fig. 1, the input image is noisy, so we used a Wiener filter with a 3×5
pixel kernel. Our input image size was 509x496, so a smaller kernel was suf-
ficient. Reflective points were localized using a Hessian detector [1]. Then, we
performed a non-maximum suppression and considered the 100 highest points.
The result image may also contain a several points that are not relevant for ORT
localization.

For filtering the false points, we used some prior information about the
biomarkers. Firstly, we calculated the retina thickness and we kept only those
points which are located in the lower third of the retina. Since we know that
ORT is close to the RPE layer and in the distorted retina region or nearby sur-
roundings, by estimating the beginning and end of the distortion on the slices
additional points can be removed. We used our published algorithm [5] to detect
the extent and location of the distortion of the retina and the detection of cyst
and liquid areas. Limiting the specific extent of the ORT in many cases is very
difficult, because there is no clear distinction between the hyperreflective wall
and its surroundings. We performed adaptive histogram equalization in the im-
age so that at least a part of the possible contours became separable by hysteresis
thresholding. The two threshold values are given as the lower and upper third



Fig. 2. Flowchart of the proposed PED detection and ORT localization algorithm.

of the maximum intensity value in the image. At the end of the last filtering, we
kept only those points which were part of an object in the binary image. Then,
we calculated distance map for the points, thresholded and finally computed the
convex hull of the objects. he key stages of the procedure are summarized in
Figure 2.1.

2.2 Quantifying change in HRFs using Deep Neural Networks

One of the aims of this work was to quantify the number of HRF pixels in the
OCT slices. Although this included the segmentation of HRF pixels, our goal
was not a detection, but rather the tracking slight changes in the amount of
HRFs. This can help the doctors to objectively track the progress of the disease
and aid the treatment planning. For this task, we used Deep Neural Networks
(DNNs), which were trained using annotated images by ophthalmologists.

We applied several types of networks, namely the standard Artificial Neural
Networks with one hidden layer, Deep Rectifier Neural Networks (DRNs) [2] and
Convolution Neural Networks (CNNs) [7], which were successfully used in many
previous medical studies [6]. The goal of these networks was to classify one single
pixel from a given feature vector. The full image classification was performed by
classifying each pixel of the image, seperately. We gave the networks two types
of input data. The first one was the raw pixel data, which consisted of raw pixel
intensities in 25 × 25 pixel vicinity of the pixel to classify. The other type of
input consisted of feature vectors extracted from the OCT images. These features
were:

– Weighted sum of pixel intensities in the neighborhood weighted with a Lapla-
cian of Gaussian (LoG) kernels of different σ values. LoG filter σ value ranged
from 1 to 2 with a step of 0.1;

– Distance of the pixel from the ILM and RPE layers;

– Distance from subretinal fluid;

– To help the networks recognize shadows of veins we added 25 average inten-
sity values of 40 pixel long vertical strips under the pixel in question, i.e.,{∑40

j=1 I(x− i, y − j) , i ∈ {−12,−11, . . . , 11, 12}
}
, where I(x, y) is the

pixel of question with x and y coordinates.



The marked targets by ophthalmologist were the bright spots of the images
having equal or higher reflectivity than the RPE band, and a diameter of ap-
proximately 20− 40µm (2-4 pixels). The annotation consisted of the delineation
the HRF pixels of the slices. Before the training phase, we separated the dataset
into two partitions, 7 out of 11 sequences were used for training the networks.
The other 4 sequences were kept for testing. The images in the test set were
taken from 4 different patients. The data of these patients were not included
in the training dataset in any way (i.e., the training data set was taken from
other patients). Within the training dataset, we used 1 out of every 7 slices for
development purposes (i.e. hyperparameter tuning).

We trained an ANN and a DRN using only the pixel data. Furthermore,
we also changed the network structure by splitting the first hidden layer of the
DRN; half the neurons were connected to the raw pixel input and the other half
was connected only to the extracted features.

The structure of the networks were determined empirically by seeking the
structures giving the best results. The ANNs had only one hidden layer and
7000 hidden neurons, the DRNs had 5 hidden layers each having 1000 rectifier
neurons. To train the ANNs and the DRNs we applied stochastic gradient descent
(i.e. backpropagation) training with a mini-batch size of 100. The initial learn
rate was set to 0.001, which was halved after each iteration if the performance
on the validation set did not improve. During the preliminary experiments we
found that the optimal value of the sampling parameter (λ) was 0.8.

The CNN had 3 convolutional layers having a kernel size of 5× 5 and output
size of 32, 32 and 64, respectively, followed by a fully connected layer of 2 neurons,
and a softmax layer. The CNN was trained with backpropagation method with
a fixed learning rate of 0.001, momentum of 0.9, and weight decay of 0.004.
The batch size was 128. Before training and evaluation we normalized the data
to the interval [−1, 1]. The net was initialized with random values of uniform
distribution, and we did not use any pre-training.

3 Evaluation and results

3.1 PED and ORT detection

For calculating accuracy, we used the Jaccard coefficient of similarity, which mea-
sures the overlap of the annotated segment and the detected biomarker region.
The result of the pigmentepithel detachment localization depends on the location
of the pre-determined RPE layer. It may also appear as subretinal hyperreflec-
tive material, which is not distinguished from the detachment, so this appears
as a false detected region in evaluation. Figure 3 represent the Jaccard values
for the two annotated sequences. It can be concluded that the procedure in most
cases closely approximates the PED area designated by the ophthalmologist.

In the case of ORT, we analyse the result in two different ways, because not
only the localization is important for the ophthalmologist, but sometimes it is
also appropriate to determine, if ORT appears on images or not. We achieved a
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Fig. 3. Jaccard histogram of 2 image sequences. Horizontal axis represents Jaccard
values and vertical axis is the number of slices with Jaccard index falling into the given
ranges.

Jaccard value of 0.530 for the two sequences, but we filtered images which do not
contain ORT with 97.6% success. Figure 4 illustrates the results of the proposed
methods.

Running time of the method was 0.401 ms, PED detection was 0.006 ms on
average and ORT localization took 0.091 ms per slice.

3.2 Tracking the amount of HRFs

The small size and the limited amount of the HRFs made the use of simple
(F1 score, or Dice coefficient-based) pixel-wise evaluation metrics meaningless,
since only a 1 pixel misalignment in the segmentation would show significant
error on the 2-4 pixel sized HRFs while the result is still useful. Also, segment-
ing HRF-s was not the goal of this study as the doctors wanted a method to
track the changes in the HRF amounts. For the comparison, we evaluated the
performance of the nets by calculating the Pearson’s correlation coefficient be-
tween the number of HRF pixels on the automatic and manual segmentations.
Using 196 slices, we pairwise compared the pixel counts got by the automatic
segmentations to those of the gold standard annotation. As a baseline for the
study, we also calculated the correlation between the manual annotations of the
two doctors. The results can be seen in Table 1.

We argue, that if a neural network can reach a higher correlation than the
one between the annotations of the doctors (0.812), then its outputs are useful,
since they reflect the number of HRFs on a slice as well as the annotation
of a medical expert would. In most of the cases, the networks were able to
provide good results as almost all of them achieved a correlation value above



Fig. 4. Illustration of detected and annotated PED and ORT. Upper images show PED
regions (magenta - detected, yellow - annotated) and lower pictures represent ORT (red
- detected, blue - annotated).

Table 1. Pearsons correlation coefficient between the automatic and manual segmen-
tations. In columns one can see the comparison of segmentations sources (NN - Neural
network; MD.# - physician).

Data (optimizer goal) NN ⇔ MD.1 NN ⇔ MD.2 MD.1 ⇔ MD.2

ANN - pixel (accuracy) 0.778 0.789

0.812

ANN - pixel&feature (accuracy) 0.698 0.775
DRN - pixel (accuracy) 0.812 0.783

DRN - pixel&feature (accuracy) 0.796 0.782
split DRN - pixel&feature (accuracy) 0.812 0.790

DRN - pixel&feature (dice) 0.802 0.788
CNN - pixel (accuracy) 0.845 0.862

0.78. Interestingly, using the extracted features did not improve the quality of
the segmentation, suggesting that the nets learned to extract those informations
from the raw data. Furthermore, switching the loss function to the Dice loss was
neither beneficial.

The best results were achieved by the CNN, with correlation coefficients over
0.845. This indicates that it can produce an acceptable, and reliable quantization.
We should also note that the hand made full delineation of HRFs in an OCT
sequence leading to an accurate quantization is time consuming, and our method
can give a quick automatic estimation of the amount of HRFs.

Based on the above results, we can say that our methods are capable of track-
ing the number of HRFs in OCT images, and they could aid the doctors during
the planning of the treatment, by speeding up the decision making process.



4 Conclusions

We have described procedures for analysing some OCT features of AMD patients.
The methods include detection of PED, localization of ORT between retinal
layers, and the quantization of HRF. We determined the possible normal layer
boundary for the characterization of PED and we introduced a method to localize
ORT. We compared our results with the annotated data by medical colleagues.
Furthermore, automatic detection of these specified biomarkers can be used not
only in AMD patients, so it can help the doctor during patient examination.

Our HRF quantization method achieved a correlation coefficient as good as
the one between the annotations by the ophthalmologists. Hence, we argue that
they are suitable for aiding the diagnosis and treatment planning process.
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