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Abstract 
Zinc finger proteins specifically recognize DNA sequences and, therefore, play a crucial role in living organisms. In this study 
the Zn(II)-, and DNA-binding of 1MEY#, an artificial zinc finger protein consisting of three finger units was characterized 
by multiple methods. Fluorimetric, circular dichroism and isothermal calorimetric titrations were applied to determine the 
accurate stability constant of a zinc finger protein. Assuming that all three zinc finger subunits behave identically, the obtained 
thermodynamic data for the Zn(II) binding were ΔHbinding site =  − (23.5 − 28.0) kcal/mol (depending on the applied protona-
tion state of the cysteines) and logβ’pH 7.4 = 12.2 ± 0.1, being similar to those of the CP1 consensus zinc finger peptide. The 
specific DNA binding of the protein can be characterized by logβ’pH 7.4 = 8.20 ± 0.08, which is comparable to the affinity of 
the natural zinc finger proteins (Sp1, WT1, TFIIIA) toward DNA. This value is ~ 1.9 logβ’ unit higher than those determined 
for semi- or nonspecific DNA binding. Competitive circular dichroism and electrophoretic mobility shift measurements 
revealed that the conditional stability constant characteristic for Zn(II) binding of 1MEY# protein increased by 3.4 orders 
of magnitude in the presence of its target DNA sequence.
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Introduction

Zinc finger proteins (ZFPs) are involved in DNA transcrip-
tion, translation, error correction, metabolism, stimulus gen-
eration, cell division, and cell death by interacting with other 
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proteins, small molecules, RNA or DNA in cells [1–6]. Usu-
ally zinc finger (ZF) motifs are responsible for the recogni-
tion of the target molecules, while the other protein domains 
for their actual function [7–13]. Commonly, the structure of 
a ZF motif is stabilized by the tetrahedral coordination of a 
Zn(II) ion and by the formation of a hydrophobic core [14]. 
The Cys2His2-type ZFs were first identified from Xenopus 
laevis by Aaron Klug’s research group in 1985 [3]. They 
form the most populous family of specific DNA recogni-
tion proteins [15]. The biotechnological significance of ZFs 
is given by the fact that a ZF unit recognizes and binds to 
three subsequent nucleotides in DNA, while several ZF 
units can be linked together to increase the specificity of the 
interaction. Furthermore, the DNA recognition of the ZF 
units can be reprogrammed. The designed ZF arrays were 
the first to be applied as DNA recognition domains fused to 
the FokI restriction endonuclease domain in artificial zinc 
finger nucleases (ZFNs) [16]. Since then, gene modification 
experiments are being performed with nucleases of this type 
further increasing their importance [17–23].

The Cys2His2 ZFPs can specifically bind DNA only in 
their Zn(II)-bound form. The coordination of Zn(II) to 2 
cysteine and 2 histidine amino acid sidechains induces the 
protein folding into a characteristic ββα secondary structure. 
Therefore, their metal ion affinity is crucial in Zn(II) seques-
tering and proper functioning. Numerous studies have been 
addressed to investigate the coordination chemical and bio-
physical properties of ZFPs [11, 24–26], but to date there is 
a large deviation in the published metal-binding affinity data. 
The literature data on quantitative metal-binding properties 
of various single-unit ZF peptides were summarized [27] 
(Table S1), but there are very few data related to metal-bind-
ing properties of ZFPs larger than a single ZF unit (Table 1, 
vide infra). Furthermore, a limited number of studies on 
Zn(II)-binding of ZFPs bound to their molecular targets 
(e.g., DNA) is published, although this may significantly 
modify their properties [28–31]. Furthermore, the improve-
ment of the measurement methods over the years necessi-
tates the reinvestigation of these systems [27]. The precise 
knowledge of the strength of the ZFP–Zn(II) interaction is 

also a prerequisite of understanding the effects of competi-
tive toxic metal ions [32, 37].

Recently, we have purified a consensus peptide 1 (CP1)-
based ZFP, 1MEY# by immobilized metal ion affinity chro-
matography followed by Ni(II) induced cleavage of the 
affinity tag [38]. This procedure yielded an amino-terminal 
Cu(II)/Ni(II) binding (ATCUN) motif at the N-terminus of 
the protein. The additionally bound metal ion within this 
motif posed a further challenge to determine the Zn(II)-affin-
ity of the protein (for the details see Supplementary section 
S1, and Fig. S1). Here, we used fluorimetry, circular dichro-
ism spectroscopy, isothermal calorimetric titration, mass 
spectrometry and electrophoretic mobility shift assay as 
independent methods to investigate the metal ion and DNA 
binding of the 1MEY# protein under various conditions.

Experimental

Materials

The construction of the genes as well as the expression and 
purification of the 1MEY# protein are detailed in Supple-
mentary Experimental Sections S2 and S3. The procedures 
were monitored by tricine–sodium dodecyl sulfate–poly-
acrylamide gel electrophoresis (SDS PAGE) [39] using 
three-layered polyacrylamide gels. The bands were visual-
ized by Coomassie Brilliant Blue staining, and Unstained 
Protein Molecular Weight Marker (Thermo Scientific) 
served as a reference.

Mass spectrometric identification of the cleaved 
protein

Intact protein analysis was performed on an LTQ-Orbitrap 
Elite (Thermo Scientific) mass spectrometer coupled with 
a TriVersa NanoMate (Advion) chip-based electrospray ion 
source as described previously [40]. During top-down analy-
sis R = 30,000 resolution was used at 400 m/z.

Table 1   Average logβ’ values related to the interaction of various 
ZFPs with Zn(II); RT spectroscopic reverse titration, CDc competi-
tion with complexones monitored by circular dichroism spectroscopy, 

cITC competition with complexones monitored by ITC, ED equilib-
rium dialysis, PAR spectroscopic measurement of the competition 
with 4-(2-pyridylazo) resorcinol (PAR)

*Recalculated to pH 7.4 by Kluska et al. [27]

ZFP Conditions logβ’ pH 7.4 Reference

1MEY# full 10 mM HEPES pH 7.4 12.2 (cITC) Present work
12.0 (CDc) Present work

TFIIIA full 50 mM HEPES, pH 7.4, 50 mM KCl 8.0 (ED) [34]
MTF1 full 100 mM HEPES, pH 7.0, 50 mM NaCl 11.3 (RT)* [28]

10 mM HEPES, pH 7.4, 100 mM NaClO4 9.1 (PAR) [79]
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Circular dichroism (CD) spectroscopy

CD spectra were recorded on a J-1500 Jasco spectrometer 
under constant nitrogen flow with a 20 nm/min scanning 
speed in the wavelength range of 180–330 nm. Synchro-
tron radiation (SR) CD spectra were recorded over the range 
of 170–330 nm at the CD1 beamline of the storage ring 
ASTRID at the Institute for Storage Ring Facilities (ISA), 
University of Aarhus, Denmark [31, 42].

All spectra were recorded with 1 nm steps and a dwell 
time of 2 s per step, using l = 0.1 or 0.2 mm quartz cells 
(SUPRA-SIL, Hellma GmbH, Germany). Each sample 
containing 10–20 µM protein was prepared separately in 
10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) buffer (pH 7.4 or pH 8.2) and incubated at room 
temperature for 5 min prior measurement.

Electrophoretic mobility shift assay (EMSA)

EMSA experiments were carried out as described previously 
[43] using 34 bp DNA probes including none (S0 DNA) or a 
single (S1 DNA) target sequence (5’-GAG​GCA​GAA-3’) of 
1MEY#. The S0 DNA probe was obtained by hybridization 
of the Forward-S0: 5’-CTA​GTT​TGC​TGA​ACT​GGG​GTC​
ACA​TAG​ATT​AATA-3’ and Reverse-S0: 5’-TAT​TAA​TCT​
ATG​TGA​CCC​CAG​TTC​AGC​AAA​CTAG-3’ oligonucleo-
tides, while to construct the S1 DNA probe the Forward-
S1: 5’-GAA​TTC​CTG​CTG​AGAG​GCA​GAA​ACA​TAG​GGG​
TCG​-3’ and Reverse-S1: 5’-CGA​CCC​CTA​TGT​TTC​TGC​
CTC​TCA​GCA​GGA​ATTC-3’ oligonucleotides (the target 
sequence of 1MEY# is underlined) were hybridized. Oligo-
nucleotides were obtained by solid phase synthesis (Invit-
rogen). FastRuler Ultra Low Range DNA Ladder (Thermo 
Scientific) was used as reference. The gels were stained in 
0.5 ng/µl EtBr solution for 15 min and visualized by a Uvitec 
BTS 20MS gel documentation system.

Isothermal titration calorimetry (ITC)

ITC experiments were carried out at 25 ± 0.1 °C in a Low 
Volume Nano ITC instrument (TA Instruments) in overfilled 
mode with stirring at 350 rpm. 50 µl of the titrant was injected 
at 0.5–2.5 µl aliquots (100–20 data points per titration) into 
170 µl volume of the sample solution. 10 mM HEPES (pH 7.4) 
served as a working buffer, which was initially treated with 
5 mg/dm3 Chelex® 100 cation exchange resin (Sigma-Aldrich) 
for 30 min at 25 °C, filtered through MF-Millipore 0.22 µm 
mixed cellulose ester membrane filter (Merck) and degassed. 
Protein samples were transferred into the working buffer using 
Amicon 3 K 0.5 ml filters (Merck) at 14,000×g at 15 °C for 
6 × 5 min. This procedure yielded typically a protein solution 
of ~ 20 μM concentration, while the flow through during the 
last step of ultrafiltration served as background during the ITC 

titrations. The titrant was prepared by dilution of ethylenedi-
aminetetraacetic acid (EDTA) stock solutions with the working 
buffer. The concentration of EDTA stock solution was deter-
mined complexometrically by titrating a known amount of 
Pb(II)-salt. Three parallel titrations were carried out. Between 
each protein–EDTA titration water–water and Ca(II)–EDTA 
reference systems were also measured. Sufficient waiting time 
(5–24 min) was applied between injections to allow the equi-
librium to be reached (i.e., to allow the signal to return to the 
baseline heat level). As the burette was immersed throughout 
the solution, diffusion of the titrant needed to be considered 
during the slow equilibrium process. This was achieved by the 
reference titrations, which showed a strong negative Pearson 
correlation (r =  − 0.715) between the measured heat and the 
injection interval time (Fig. S2). Therefore, heat corrections 
were applied if a measurement included longer than 5 min 
injection intervals. The heat effect of dilution was measured 
by titrating the corresponding protein flow through solution. 
These values were subtracted from the measured heat changes.

ITC data evaluation

The Nano Analyze program (TA Instruments) includes various 
binding models. However, due to its limitations, it was only 
used for the evaluation of the water–water and Ca(II)–EDTA 
titrations, as well as to integrate the raw heat vs. time data sets. 
During the titrations of the holo-1MEY# protein with EDTA 
reactions (1–3) were supposed to occur:

where EDTA∗ represents the actual protonated state of 
EDTA under the measurement conditions. Assuming that 
the three ZF units behave identically and independently, the 
reaction can be simplified to Eq. (4), where 1MEY#� is a 
single ZF unit of 1MEY# ZFP.

Based on Eq. (4), a competition model can be used. The 
free concentrations can be calculated analytically, while the 
ΔH and logβ’ values can be fitted using Solver add-in of 
Excel (Microsoft). Detailed derivations used in this work 
were described by Bent [44]. The equation describing the final 
heat change after every injection ( ΔQi ) has been modified to 
be applicable to the overfilled titration cell of NanoITC (see 
Eq. 5).

(1)Zn31MEY# + EDTA∗ = Zn21MEY# + ZnEDTA∗

(2)Zn21MEY# + EDTA∗ = Zn1MEY# + ZnEDTA∗

(3)Zn1MEY# + EDTA∗ = ZnEDTA∗ + 1MEY#

(4)Zn1MEY#� + EDTA∗ = ZnEDTA∗ + 1MEY#�
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where V0 is the initial cell volume, vi is the ith injection vol-
ume, cZn(II),0,i is the total concentration of Zn(II) after the ith 
injection, cZn(II),0,i−1 is the total concentration of Zn(II) after 
the (i − 1) th injection, x[

Zn1MEY#
�
]

,i
 is the molar fraction of 

the Zn(II)-bound finger unit after the ith injection, x[ZnEDTA],i 
is the molar fraction of ZnEDTA* complex after the ith injec-
tion, ΔH[ZnEDTA] is the enthalpy change during the formation 
of ZnEDTA* complex, which was obtained from the refer-
ence titrations and ΔHITC is the overall enthalpy change dur-
ing the Zn(II) complexation of the ZF unit. The calculation 
of the actual Zn(II) binding enthalpy of the ZF subunit 
( ΔHZn1MEY#� ) from the overall ΔHITC enthalpy value can be 
found in the Supplementary Section S4.

Fluorimetric measurements

2 - [ 2 - [ 2 - [ 2 - [ b i s ( c a r b o x y l a t o m e t h y l ) a m i n o ] -
5-methoxyphenoxy]-ethoxy]-4-(2,7-difluoro-3-oxido-
6-oxo-4a,9a-dihydroxanthen-9-yl)anilino]acetate (Fluo-
Zin-3), a Zn(II) selective fluorescent dye was applied to 
monitor Zn(II) release from 1MEY# in competition titrations 
by a CLARIOstar Plus plate reader (BMG Labtech). The 
absorption maximum of FluoZin-3 is at 494 nm, while it 
exhibits fluorescence at 516 nm when bound to Zn(II) with 
a pH independent stability constant of: logβ = 8.16 [45]. The 
concentration of FluoZin-3 was determined spectrophoto-
metrically (λmax = 491 nm, εmax = 71,143 M–1 cm–1, pH 7.4). 
FluoZin-3 samples (200 µl each) containing increasing 
amounts of holo-1MEY# or ZnCl2 (as reference) were sep-
arately assembled followed by 30 min incubation at 25 °C. 
Measurements were performed in 96 well polystyrene non-
binding flat-bottom black microplates (Greiner Bio-One) 
at 25 °C using 480–490 nm excitation and 510–520 nm 
emission filters. The relative fluorescence of the holo-
1MEY#–FluoZin-3 samples were calculated using the cor-
responding Zn(II)–FluoZin-3 value as a reference.

Fluorescence anisotropy

Fluorescence anisotropy measurements were performed by 
CLARIOstar Plus plate reader (BMG Labtech). 474–490 nm 
excitation and 510–550 nm emission filters were applied to 
monitor the fluorescence of 6-carboxyfluorescein (FAM) in 

ΔQi =

(

V0 ⋅ cZn(II),0,i ⋅ x
[

Zn1MEY#
�
]

,i
−
(

V0 − vi
)

⋅ cZn(II),0,i−1

⋅x[
Zn1MEY#

�
]

,i−1

)

⋅ΔHITC+

(5)

(

V0 ⋅ cZn(II),0,i ⋅ x[ZnEDTA],i −
(

V0 − vi
)

⋅ cZn(II),0,i−1

⋅x[ZnEDTA],i−1
)

⋅ΔH[ZnEDTA]

200 µl DNA–protein samples in 96 well polystyrene non-
binding flat-bottom black microplates (Greiner Bio-One). 
The 28 bp labelled double-strand DNA probe containing 
two 1MEY# target sequences (underlined) was assembled 
by hybridization of the Forward-S1: 5’-FAM-CCGAG​GCA​
GAA​TTC​GTT​CTG​CCT​CAG​-3’, fluorescein-labelled and 
Reverse-S1: 5’-TAMRA-CTGAG​GCA​GAA​CGA​ATT​CTG​CCT​
CGG​-3’, tetramethylrhodamine-labelled oligonucleotides. 
Oligonucleotides were obtained by solid phase synthesis 
(Invitrogen).

Results and discussion

Zn(II) binding of 1MEY# ZFP

A new purification strategy of the 1MEY# protein (Fig. 1) 
was applied in the present work as described in Supplemen-
tary Sections S2 and S3, as well as in Fig. S3. The protein 
was purified by immobilized Ni(II)-affinity chromatogra-
phy similar to the previously described procedure [39], but 
instead of the Ni(II)-promoted hydrolysis the affinity tag 
was cleaved off by the specific ULP1 protease [46]. The 
SDS PAGE images shown in Fig. S4 demonstrated the suc-
cess of the protein purification. As a result, we expected 
to avoid the metalation of the ATCUN motif formed upon 
ULP1 cleavage. ESI–MS measurements (Fig.  S5) sup-
ported the SDS–PAGE results concerning the purity of the 
preparation. The deconvoluted experimental monoisotopic 
mass (11,479.6 Da) for acidified protein solution was in 
agreement with the calculated value for the apo-1MEY# 
MH+ ion (11,479.5 Da). On the other hand, a Ni(II) ion 
was detected in holo-1MEY# beside the three Zn(II) ions 
(experimental: 11,726.2 Da vs. calculated: 11,726.2 Da). 
This demonstrated the high capability of the ATCUN motif 
to bind Ni(II) ions. Thus, 1MEY# could acquire Ni(II) from 
the Ni(II)–NTA resin during the purification procedure. 
Nevertheless, this is in line with the stabilities of the Ni(II) 
complexes of XXH-type peptides as models being in the 
range of (logβ = 19.19–23.37) [47–57] compared to that of 
the Ni(NTA) complex logβ = 10.75–11.54 [58, 59]. Further-
more, the metal complexes of the ATCUN motif are kineti-
cally inert (33% of Ni(II) was still complexed in ATCUN 
even after treatment with 1 (v/v)% formic acid for 10 min) 
[38, 60] and it took ~ 400 h to completely remove it by 66 eqs 
EDTA at 25 °C (Fig. S1 b,). Therefore, in most cases we did 
not attempt to remove Ni(II) and used the holoprotein in its 
purified form in the further experiments, except in case of 
ITC measurements, where Ni(II)-free proteins were inves-
tigated (for the details of the Ni(II) removal procedure, see 
supplementary section S1). The circular dichroism spectrum 
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of the purified 1MEY# protein was similar to that of 1MEY# 
previously purified by Ni(II)-induced hydrolysis [38] sug-
gesting the identity of the secondary structure compositions 
of the two products (Fig. S6).

Investigation of the Zn(II) binding affinity of ZFPs needs 
consideration of several limiting factors, especially in direct 
experiments. Visible absorption spectrometry is not applica-
ble due to the closed d-shell of Zn(II), while in the UV range 
of the thiolate to Zn(II) charge transfer band [63] the absorb-
ance is strongly affected by e.g., any change in the buffer, 
ionic strength, eventual oxidation of the tiol groups. The 
concentration range is limited by the Zn(II) contamination of 
the environment that makes the measurements ambiguous at 
low concentrations, while Zn(OH)2 precipitate forms above 
pH 7.4 in the mM range. Furthermore, the Zn(II)-free ZFPs 
are unstable, aggregate easily, and their cysteine residues are 
sensitive to oxidation. Most of these difficulties may be over-
comed by starting the experiments with the holoprotein [64]. 
Depending on the buffer conditions, precipitation of the 
protein may occur above 20 μM concentration. Competitors 
shall be used if the apparent cumulative stability constant is 
higher than 109; however, the time to reach the equilibrium 
might be long [27, 65]. Only a few quantitative studies were 
published about the Zn(II) binding of ZFPs constructed from 
more than one ZF subunit, and the determined values were 

greatly dependent on the conditions and methods applied 
(see Table 1).

FluoZin-3, a selective Zn(II)-sensing fluorescent probe 
[45] was applied as a competitor to determine the appar-
ent stability constant of the Zn1MEY# binding sites. How-
ever, the fluorimetric titration results shown in Fig. S7 
indicated that FluoZin-3 could not be an effective competi-
tor for Zn(II). From these data only an rough estimate on 
the Zn(II) affinity of 1MEY# was obtained. Accordingly, 
β’Zn1MEY# bs pH=7.4 should be larger than 109. Thus, a stronger 
chelator than FluoZin-3 was needed for further experiments. 
In the lack of such commercially available fluorescent 
probe, CD spectroscopy was an obvious choice to follow 
the collapse of the characteristic ββα secondary structure 
of the holo-1MEY# ZFP upon removal of the Zn(II) ions 
by a non-chiral competitor. The results of the titrations with 
EDTA (logβZnEDTA = 16.5) suggested a quantitative reac-
tion (Fig. S8), which was useful to monitor the metalation 
status of the protein, but did not allow the calculation of 
the affinity constant. As a weaker chelator, ethylene glycol-
bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) 
seemed to be applicable (logβZnEGTA​ = 14.5), but the equi-
librium was extremely slow with this competitor. Even 600-
fold EGTA excess was insufficient to obtain the CD spec-
trum similar to that of completely unfolded 1MEY# (Fig. 
S9) within 1 h incubation time.

Fig. 1   a Alignment of the amino acid sequence of 1MEY# ZFP 
(derived from 1MEY ZFP [61]) with CP1, the 26 amino acid long 
consensus Cys2His2 model peptide established and investigated by 
Berg et  al. [62]. The differences observed in the DNA recognition 
region (highlighted by red background) presumably do not affect the 
metal ion binding by the conserved cysteine and histidine sidechains. 

Green background indicates identity with CP1. b Cartoon representa-
tion of crystal structure of the CP1-based ZFP in complex with DNA. 
1MEY# is a modified version of this protein [38]. ZFP: blue, Zn(II): 
grey sphere, DNA: yellow (PyMOL representation of 1MEY PDB 
[61])
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As an alternative, 1MEY# was titrated with the solution 
of the MgEDTA complex. The competition of Mg(II) and 
Zn(II) for EDTA occurred (Fig. 2a) within 30 min at 6.5 
eqs of MgEDTA. Yet the separately assembled samples 
were incubated for 12 h to assure that the equilibrium was 
reached. Assuming three identical Cys2His2 Zn(II)-binding 
sites in 1MEY# the species distribution diagram was calcu-
lated and shown in Fig. 2b. The apparent stability constant 
logβ’pH 7.4 = 12.0 ± 0.1 was obtained from the evaluation of 
the CD titration data using the PSEQUAD program.

Isothermal calorimetric titrations were also carried out 
to confirm the above stability by an independent method. 
It has been previously suggested that competitive ITC 
measurements with a chelator might be suitable for study-
ing high-stability ZF motifs [27, 65]. The Zn(II) binding of 
metallothioneins was investigated [67], but to the best of our 
knowledge, this is the first time to determine the thermody-
namics of a ZFP complex by this method.

The sensitivity of the sigmoidal curve of ITC close to the 
equivalence point allowed for titration of the holo-1MEY# 
with EDTA. Competitive ITC has several advantages: envi-
ronmental Zn(II)-contamination, Zn(OH)2 precipitation, 
and cysteine oxidation do not occur to a measurable extent 
and, therefore, do not interfere with the measurement (Sup-
plementary Section S5 and Fig. S10), while low volumes 
(≥ 190 µl) and concentrations (≥ 10 µM) can be used. The 
only real limiting factor may be slow kinetics. While the 
CD spectra revealed that the equilibrium was established 
rapidly in the 1MEY#–EDTA system, 30 min intervals 
between the injections (Fig. 3a) were necessary in the ITC 
experiments close to the equivalence point instead of a typi-
cal 5 min ITC interval. The published data on the kinetics 

Fig. 2   a Series of the CD spectra of 1MEY# recorded in the pres-
ence of increasing amounts of MgEDTA complex. Black dashed line: 
1MEY# in the presence of 5  eqs EDTA (1.67  eqs to 1MEY# bind-
ing site) after 5  min incubation (c(holo-1MEY#) = 7  µM in 10  mM 
HEPES (pH 7.4); l = 0.1 mm) Reaction mixtures were prepared sepa-
rately and were incubated for 12  h at 25  °C. b Species distribution 

diagram showing the partition of 1MEY# binding site calculated 
from the ellipticity values between the 187–194  nm range by the 
PSEQUAD program (full lines) [66]. Measured average ellipticity 
values between 187 and 194 nm range (black dots) are presented for 
comparison. 1MEY# bs notation refers to the 1MEY# binding site

Fig. 3   a Representative ITC curves of 10  µM holo-1MEY# ZFP 
(blue line), or 1MEY# flow through (red line) titrated by 2 µl 500 µM 
EDTA aliquots (10 mM HEPES (pH 7.4)); b integrated background-
corrected heat changes during 1MEY#–EDTA titration (blue dots), 
and the fitted heat change (black line); The very first experimental 
points (symbolized by red crosses) were avoided from the evaluation 
process. c Schematic representation of the competition process (for 
simplicity, the protonation of EDTA is not indicated)
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of the competition reaction are rather diverse in the litera-
ture. Sénèque and Latour reported that the equilibrium in 
the Zn(II):CP1:EDTA 1:1:1 system can be reached only in 
250 min at pH 7.35 (logβ’ZnCP1 pH 7.4 = 15.7) [65]. Heinz 
et al. found three-orders of magnitude faster exchange kinet-
ics using the CP1-Δ8 peptide, in which a glycine was deleted 
at 8th position (logβ’ZnCP1-Δ8 pH 7.4 = 11.4) [65, 68], indicating 
that small changes in the amino acid sequence may greatly 
affect the competition rate. Generally, the aforementioned 
CP1-like ZFs with higher thermodynamic stability tend to 
exert slower kinetics.

Based on the similarity of the amino acid sequences of 
all three subunits of 1MEY# with that of the CP1 model 
ZF peptide (Fig. 1) similar apparent stability constants were 
expected for the individual ZF subunits. Therefore, the inte-
grated ITC titration curves were fitted with a competition 
model considering three separate identical Zn(II) binding 
sites of 1MEY#. The good fit of the sigmoidal pattern of 
the 1MEY# titration curve supported the above hypothe-
sis (Fig. 3b). The evaluation of the ITC data yielded aver-
age results corresponding to a single ZF subunit. As the 
first step, the ZnEDTA reaction enthalpy was determined 
separately to be ΔHZnEDTA = –17.24 kJ/mol = –4.1 kcal/
mol, which is in a good agreement with the literature val-
ues ranging from − 14.98 to − 23.5 kJ/mol [69–73] (for 
the details of the calculations see Supplementary Sections 
S4). This and the logβ’pH 7.4 = 13.56 stability value [74] was 
applied for ZnEDTA formation in the subsequent fitting 
procedure. Previously, the protonation of ~ 0.5 eqs cysteine 
per ZF subunits was suggested [75]. Using this value in the 
evaluation process, the calculated ΔHbinding site =  − 23.5 ± 1
.3 kcal/mol enthalpy value for Zn(II) binding of a ZF unit 
was similar to the values reported by Blasie and cowork-
ers for the CP1 model peptide (ΔHCP1 =  − 22.9 ± 1.1 kcal/
mol [76]; ΔHCP1 =  − 23.4 ± 1.0 kcal/mol [75] in 200 mM 
PIPES (pH  7.0), 50  mM NaCl buffer). The enthalpy 
determined in HEPES buffer was slightly different 
(ΔHCP1 =  − 27.6 ± 0.6 kcal/mol; 200 mM HEPES (pH 7.0), 
50 mM NaCl) [75]. Very recently, Kluska et al. published 
a new investigation of CP1 model peptide variants, where 
the pKa values of the thiols in the peptide were determined 
to be pKa1

SH = 7.77; pKa2
SH = 9.15 [77], corresponding to an 

average protonation of 1.68 equivalents of cysteines per ZF 
subunit under the measurement conditions [77]. Applying 
this value in the calculations, ΔHbinding site =  − 28.0 ± 1.4 kc
al/mol enthalpy could be obtained, which is by 5.1–5.3 kcal/
mol larger than the values determined for the K/S mutant of 
CP1 peptide (–22.9 kcal/mol [76]; –22.68 kcal/mol [77]), 
while it is much closer to the enthalpy of the initial CP1 
in HEPES buffer. The determined enthalpy values indepen-
dently of the number of protonated cysteines are within the 
range of the values determined for the CP1 peptide variants 
over the years. Based on this, it cannot be claimed, that the 

linker sequences and the terminal overhangs would affect 
significantly the thermodynamics of Zn(II) binding.

The logβ’pH 7.4 = 12.2 ± 0.1 obtained for the Zn1MEY# 
ZF unit is close to the value determined from the MgEDTA 
competition experiments by CD. The logβ’pH 7.4 values deter-
mined for Zn(II)–CP1 system over the years vary between 
12.0 and 15.7 depending on the measurement method and 
buffer conditions (Table S1). The Zn(II)-affinity of 1MEY# 
is almost identical to the low-end stability constant value 
determined for the CP1 model peptide, [62, 78] (Table S1), 
while 3.5 units lower than the most recently determined 
logβ’ value [65]. The CP1-derived ZFP binds Zn(II) with a 
similar affinity to the model peptides of naturally occurring 
ZF subunits (Table S1) and to full ZFPs, such as TFIIIA and 
MTF1 (Table 1).

Mass spectrometric measurements suggested that there 
is no ZF subunit with paramount Zn(II) binding capacity 
in 1MEY# ZFP. Metal binding of 1MEY#, however, sig-
nificantly reduced the protein fragmentation rate and modi-
fied protein charge state under MS conditions (Fig. S11a). 
Fragmentation of the entire holoprotein was not feasible 
(data not shown), while the apoprotein yielded well-defined 
fragment peaks under the same measurement conditions 
(Fig. 4a) (Table S2). The fragmentation of Zn11MEY# ZFP 
species could be achieved in the presence of 12.5 eqs EDTA. 
Under these conditions only a few free protein or two Zn(II)-
containing protein was detected (Fig. S11b). The major frag-
mentation products lost only a few N- or C-terminal amino 
acids, while Zn(II) remained bound. Fragments in which 
Zn(II) coordinated to the third ZF, the third or second, or 
the first or second ZF units have been identified by compar-
ing the higher signal to noise ratio peaks with simulations 
(Fig. 4) (Table S3).

DNA binding of 1MEY# ZFP

The ZFP published in ref. [61] (Protein Data Bank code: 
1MEY) recognizes the 5’-G(A/G)G(G/T)C(A/G)GAA-
3’ DNA sequence. Since it was cocrystallized with the 
5’-GAG​GCA​GAA-3’ DNA this was accepted as the main 
target sequence of 1MEY and 1MEY#, as well [38] but no 
DNA binding affinity was determined for this particular 
protein so far. Based on the quantitative evaluation of the 
electrophoretic gel mobility shift experiments (Fig. 5) the 
interaction of 1MEY# with specific DNA was found ~ 1.9 
logβ’ unit stronger than that with the nonspecific one 
(Table 2). The holo-ZFP binds nonspecific S0 DNA with 
logβ’ = 6.27 ± 0.02 and by increasing protein excess addi-
tional faint band appeared but the quantification of the 
intensity of this band was uncertain. Therefore, we could 
not calculate a reliable affinity value from it (Fig. 5a, c). 
Enhanced bandshift was observed with the 34 bp S1 DNA 
containing the underlined specific sequence (Fig. 5b, d, f) 
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and the 1:1 protein–DNA complex was characterized by 
logβ’ = 8.20 ± 0.08. This value was also supported by the 
results of the fluorescence anisotropy experiments (Fig. 5e) 
(Table 2). The above results are in good agreement with the 
literature data on the selectivity of designed ZFPs. The logK 
values increased to a similar extent when the nonspecific 
DNA was exchanged to a specific target sequence [80].

Since the 34 bp long S1 DNA contains a 25 bp guanine-
rich sequence in addition to the 9 bp target site, 1MEY# can 
also interact semi-specifically [82], i.e., by finding a partial 
recognition site, or nonspecifically with these DNA sections. 
Therefore, additional band evolved around 100 bp which can 
be characterized by logβ2’ = 14.26 ± 0.10 stability value. By 
subtracting the logK1 value dedicated for the specific bind-
ing, a logK2 = 6.06 value can be obtained, which is close to 
the nonspecific DNA-affinity; therefore, it can be concluded, 
that the additional binding is nonspecific (Fig. 5a, b, c, d).

Despite the different measurement conditions, the DNA 
binding affinity of 1MEY# is comparable or slightly higher 
to that of MTF-1—if that protein only binds four Zn(II)-ions 
and, therefore, recognizes a 12 bp sequence—and the Zn(II) 
binding affinity of 1MEY# is also comparable or slightly 
higher compared to MTF-1, as well (Table 1). On the other 
hand, TFIIIA with significantly weaker Zn(II) binding, has 
lower affinity for DNA probes. This might suggest a cor-
relation between the Zn(II) and DNA binding ability of the 
ZFPs.

1MEY#‑DNA competition with EDTA

The DNA binding of ZFPs may affect their interaction with 
Zn(II). Addition of EDTA excess to 1MEY# in the pres-
ence of specific DNA did not change the CD spectrum sig-
nificantly (dashed yellow spectrum, Fig. 6d). Treating the 

Fig. 4   a MS/MS analysis of apo-1MEY#. The precursor with 
m/z = 766 (z = 15) was selected for CID fragmentation. b MS/MS 
analysis of holo-1MEY# in the presence of 12.5  eqs EDTA. The 
precursor with m/z = 1451 (z = 8) corresponding to 1MEY# coordi-
nated by a Zn(II) and a Ni(II) ion was selected for CID fragmenta-
tion. Labels of 1MEY# fragments are color-coded according to the 

ZF subunits: yellow: first ZF; blue: third ZF; green: third ZF with a 
Zn(II); red: first and second ZF with a coordinated Zn(II); light blue: 
second and third ZF binding one Zn(II), black: other fragments. The 
presence of Ni(II) was observed in the N-terminal fragments due to 
the ATCUN motif. NH3 losses are represented by *, H2O losses by °. 
Assigned peaks are black, unassigned are grey
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DNA-free holo-1MEY# with the same amount of EDTA for 
the same time caused the collapse of the secondary struc-
ture (dashed black spectrum). Interestingly, the CD spectrum 
indicated the recovery of the ββα-like secondary structure 
upon mixing the EDTA treated unfolded protein sample with 
the specific S1-DNA (full yellow spectrum, Fig. 6d). This 
suggests, that the addition of the specific DNA template to 
apo-1MEY# could promote the uptake of Zn(II) ions from 
EDTA. Similar result was obtained in the EMSA titration 

experiments. Gel mobility shift was observed regardless 
of the order of sample assembly (Fig. 6a, b). DNA could 
only be completely liberated by increasing the EDTA excess 
to ~ 5000 fold (5 mM). By overlapping the quantified gel 
intensities of the samples assembled in different order (Pro-
tein → DNA → EDTA and Protein → EDTA → DNA), a 
good agreement of the data was observed (Fig. 6c, sepa-
rate points). The data could be simulated with the smallest 
error using logβ’pH 7.4 = 15.6 ± 0.15 value as the conditional 

Fig. 5   Representative electrophoretic mobility shift assays of a, non-
specific S0 DNA and b, specific S1 DNA in the presence of increas-
ing amounts of 1MEY# ZFP (c(DNA) = 0.88  µM, 10  mM  HEPES, 
150 mM NaClO4, 10 m/v % glycerol buffer (pH 7.4)). Marker: Fas-
tRuler Ultra Low Range DNA Ladder (Thermo Scientific). c Distri-
bution of S0  DNA or d, S1  DNA among various DNA–ZFP com-
plexes in the presence of increasing amounts of 1MEY# ZFP. DNA 
fractions (separate points) were calculated based on the intensities 
of four independent experiments. Band intensities were analyzed 
by ImageJ [81]. e Fluorescence anisotropy of specific S2 labelled 

DNA (with 2 ZFP recognition site) in the presence of increas-
ing equivalents of 1MEY# ZFP (c(DNA-binding-site) = 0.4  µM, 
10  mM  HEPES, buffer (pH  7.4)). 200  µl samples were separately 
assembled and incubated for 15  min at 25  °C and then loaded into 
the plate. Calculations (solid lines) were performed by PSEQUAD. 
Dashed lines indicate, that the simulation has higher uncertainty, 
since multiple bands appear on the gel, which are hard to quantify. f 
Sequence of S0, S1 and S2 DNA containing 0, 1 and 2 ZFP binding 
site. 5’-GAG​GCA​GAA-3′ 1MEY# ZFP binding site (green, under-
lined)
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Table 2   Logβ’ values related to the interaction of ZFPs with their specific or nonspecific DNA counterparts

The binding constants for 1MEY# were calculated from the data shown in Fig. 5 by PSEQUAD. Literature stability values were recalculated to 
logβ’. SDNA Specific DNA, NSDNA nonspecific DNA, TFIIIA full native Xenopus laevis transcription factor, TFIIIA 1–3 first three ZF sections 
of TFIIIA, EGR1 or ZIF268 Early growth response protein 1, WT1 Wilms Tumor Protein, Sp1C Sp1 protein, where peptide backbone is altered to 
match consensus peptide-1, MTF-1 Metal regulatory transcription factor 1. DNA binding sites of 1MEY#: 5’-GAG​GCA​GAA-3’; WT1: 5’-GCG​
TGG​GCG​TGT​-3’; EGR1 and ZIF268: 5’-GCG​TGG​GCG-3’; TFIIIA  1–3: 5’-GGA​TGG​GAG-3’; MTF-1: 5’-GAG​CTC​TGC​ACT​CCG​CCC​
GAAAA-3’. EMSA electromobility gelshift assay, ANI Fluorescence anisotropy measurement, SPR Surface Plasmon Resonance measurement, 
FBA Filter Binding assay, FLU Fluorimetric measurement, ITC Isothermal Titration Calorimetry.a 5’-GAG​GCG​GGG-3’ DNA probe was used
b 5’-GGG​GCG​GGG-3’ DNA probe was used
c All MTF-1 ZF units loaded with Zn(II)
d Only the 4 strong Zn(II)-binding motif is loaded
e 72 bp probe probe was used
f 21 bp probe probe was used
g 13 bp probe probe was used
r logβ’ value has high uncertainty, since < 1 pmol DNA amounts were used with radiolabeled detection

ZF Conditions SDNA:Prot NSDNA:Prot Method Ref
1:1 1:1

1MEY# 3 10 mM HEPES, pH 7.4, 150 mM NaClO4, 10 m/v % Glycerol 8.20 ± 0.08 6.27 ± 0.02 EMSA Present work
1MEY# 3 10 mM HEPES, pH 7.4 8.0 ANI Present work
Sp1 3 25 mM Tris, pH 8.0, 100 mM KCl, 10 m/v % Glycerol

2 mM DTT, 50 µg/ml BSA, 2 µg/ml dI–dC
6.9a

7.6b
EMSAr [83]

10 mM Tris, pH 8.0, 50 mM NaCl, 100 µM ZnCl2, 1 mM β-Mercaptoethanol, 0.05 
v/v % NP-40, 5 v/v % Glycerol

7.4b EMSAr [84]

Sp1
1–2

2 10 mM Tris, pH 8.0, 50 mM NaCl, 100 µM ZnCl2, 1 mM β-Mercaptoethanol, 0.05 
v/v % NP-40, 5 v/v % Glycerol

6b EMSAr [84]

Sp1
2–3

2 10 mM Tris, pH 8.0, 50 mM NaCl, 100 µM ZnCl2, 1 mM β-Mercaptoethanol, 0.05 
v/v % NP-40, 5 v/v % Glycerol

6.8b EMSAr [84]

Sp1C 3 25 mM Tris, pH 8.0, 100 mM KCl, 10 m/v % Glycerol
2 mM DTT, 50 µg/ml BSA, 2 µg/ml dI–dC

7.3a

8.4b
EMSAr [83]

WT1 4 20 mM Tris, pH 7.5, 150 mM KCl, 1 mM MgCl2, 1 mM DTT, 1 mg/ml CM-Dex-
tran, 0.005 v/v % Surfactant P20

8.2 SPR [85]

4 20 mM Tris, pH 7.5, 100 mM KCl, 5 Mm MgCl2, 1 mM DTT, 5 µM ZnCl2, 5 µg/
ml dI-dC, 100 µg/ml BSA

8.94 FBAr [86]

WT1
1–3

3 20 mM Tris, pH 7.5, 150 mM KCl, 1 mM MgCl2, 1 mM DTT, 1 mg/ml CM-Dex-
tran, 0.005 v/v % Surfactant P20

7.75 SPR [85]

WT1
2–4

3 20 mM Tris, pH 7.5, 150 mM KCl, 1 mM MgCl2, 1 mM DTT, 1 mg/ml CM-Dex-
tran, 0.005 v/v % Surfactant P20

8.37 SPR [85]

WT1
2–3

2 20 mM Tris, pH 7.5, 150 mM KCl, 1 mM MgCl2, 1 mM DTT, 1 mg/ml CM-Dex-
tran, 0.005 v/v % Surfactant P20

6.65 SPR [85]

MTF-1 6 40 mM MOPS, pH 7.0, 20 mM NaCl 8.58c

8.04d
ANI [87]

EGR1 3 20 mM Tris, pH 7.5, 100 mM KCl, 5 Mm MgCl2, 1 mM DTT, 5 µM ZnCl2, 5 µg/
ml dI-dC, 100 µg/ml BSA

8.45 FBAr [86]

10 mM Tris, pH 7.5, 0.2 µM ZnCl2, 150 mM KCl 6.9 ANI [88]
8.2 ANI [89]

Zif268 3 15 mM HEPES, pH 7.8, 50 mM KCl, 50 mM K-Acetate, 50 mM K-Glutamate, 
5 mM MgCl2, 20 µM ZnSO4, 100 µg/ml BSA, 5 v/v% Glycerol, 0.1 w/v % NP-40

10.6 EMSAr [90]

TFIIIA
full

9 20 mM HEPES, pH 7.5, 50 mM KCl, 1 mM MgCl2, 5 mM DTT, 50 µM ZnCl2, 12 
v/v % Glycerol

5.34e EMSAr [91]

TFIIIA 1–3 3 20 mM HEPES, pH 7.5, 50 mM KCl, 1 mM MgCl2, 5 mM DTT 50 µM ZnCl2, 12 
v/v % Glycerol

5.75e EMSAr [91]
6.16f EMSAr [91]
6.54 g EMSAr [91]

50 mM K-phosphate, pH 6.67, 100 mM NaCl, 50 µM ZnCl2 6.88 FLU [92]
6.88 ITC [92]

YY1 4 20 mM HEPES, pH 7.5, 150 mM NaCl, 5 mM MgCl2, 100 µM 
Zn(Ac)2, 1 mM TCEP

6.25 ITC [93]

25 mM Tris, pH 8.5, 100 mM NaCl, 10 mM MgCl2, 5 mM DTT, 100 µM 
ZnCl2, 0.02 w/v % NaN3, 100 µg/ml BSA, 0.04 w/v % PEG-20000

6.78 4.44 ANI [94]

10 mM Tris, pH 7.9, 100 mM NaCl, 10 mM MgCl2, 5 mM DTT, 100 µM 
ZnCl2, 0.05 v/v % Surfactant P20

7.36 SPR [94]
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Zn(II)-affinity of 1MEY# ZFP (Supplementary Section S6 
and Fig. 6c, full lines), while in the absence of DNA, this 
value used to be logβ’pH 7.4 = 12.2 ± 0.1 (Table 1).

Previously, it was reported that 0.5 mM EDTA abol-
ished the DNA–MTF-1 interaction within 1 h [28, 29]; 
however, whole cell extracts were used in both cases, 
thus the exact ratio of EDTA to protein is unknown. A 
more significant effect was visible with Sp1, which has 
provoked the interest of researchers over the years. Peter-
ing et al. investigated the Zn(II)–Sp1–DNA system in the 
presence of EDTA and other chelators concluding that the 
ZFP–DNA complex is either kinetically inert or thermo-
dynamically stable, but using ~ 500 eqs EDTA excess the 
interaction could be ceased [30, 31]. Only electrophoretic 
mobility shift assay was applied in these studies. There-
fore, it was not clear whether the band shift in the experi-
ments with a protein → EDTA → DNA sample assembly 
order occurred, because EDTA could not remove all Zn(II) 
from ZFP in a given timeframe (kinetic aspect), or because 
the ZFP was able to recover Zn(II) from EDTA in the 

presence of DNA (thermodynamic aspect). The latter phe-
nomenon is difficult to confirm with Sp1, since its DNA 
binding affinity is not outstanding. In contrast, the modifi-
cation of the peptide backbone of the Sp1 protein to obtain 
the consensus peptide sequence, resulting Sp1C protein 
lead to much stronger DNA binding. If interpreted cor-
rectly, the observed band shift with the reaction mixture 
assembled in protein → EDTA → DNA order was hypothe-
sized to occur, because EDTA was unable to remove Zn(II) 
from the protein for both kinetic and thermodynamic rea-
sons [83]. Here, we demonstrated by applying CD and 
EMSA as independent methods that EDTA was indeed 
not able to remove Zn(II) from 1MEY# in the presence of 
DNA, furthermore, the apo-protein could recover Zn(II) 
from the ZnEDTA complex in the presence of specific 
DNA. Thus, the interaction with DNA increased the con-
ditional Zn(II) binding affinity of 1MEY# by 3.4 log units. 
Such stabilization or recovery of the holoprotein structure 
and function occurs most probably with other ZFPs bind-
ing tightly to their cognate DNA targets.

Fig. 6   a Electrophoretic gel mobility shift assay of 1MEY# with spe-
cific S1 DNA in the presence of increasing equivalents of EDTA. 
1  μM 1MEY# ZFP, 1  μM S1 DNA in 10  mM HEPES, 150  mM 
NaClO4 buffer (pH 7.4); b electrophoretic gel mobility shift assay 
of 1MEY# in the presence of increasing equivalents of EDTA. After 
1 h incubation 1 eq specific S1 DNA was added to the samples. 1 μM 
1MEY# ZFP, 1  μM S1 DNA in 10  mM HEPES, 150  mM NaClO4 
buffer (pH 7.4). c Distribution of S1-DNA among the free and pro-
tein-bound forms as calculated from the band intensities of the elec-
trophoretic gel mobility shift assay image; (P → D → E) represents the 

assembly order in which first the ZFP–DNA complex was assembled, 
then increasing amount of EDTA was added to the samples, while in 
case of (P → E → D), first, the ZFP was treated with EDTA for 1 h, 
then S1 DNA was added to the solution. Full lines: simulated dis-
tribution performed by PSEQUAD (Supplementary Section S6). d 
Comparison of the CD spectra of the holo-1MEY# ZFP, in the pres-
ence and absence of 3  eqs  EDTA, and S1  DNA. The CD spectrum 
of S1 DNA was subtracted from the relevant spectra. Protein con-
centrations were normalized to 18.8  µM. 10  mM HEPES (pH  7.4) 
l = 0.1 mm
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Conclusions

It is known, that Cys2His2 ZFPs are only able to recog-
nize their DNA target sequence in their appropriate ββα 
configuration, and Zn(II) is essential for the formation of 
such structure. As a result, Zn(II) binding plays a key role in 
biological function of ZFPs. Numerous competitor ligands 
inside the cell may affect the interaction between Zn(II) and 
ZFPs influencing their structure and function. The quan-
titative evaluation of the experimental data on Zn(II) and 
DNA binding of 1MEY#, a CP1-derived three finger ZFP 
suggested that the protein binds both the metal ion and DNA 
strongly, and that the presence of the specific DNA target 
may significantly increase the apparent Zn(II) affinity in a 
cooperative manner. This provides a favourable condition to 
perform their function in the cellular environment includ-
ing strong competitor molecules. Our findings are in good 
agreement with the qualitative electrophoretic gel mobil-
ity shift data in the literature, suggesting similar behav-
iour of the Sp1 ZFP in the presence of EDTA, N,N,N′,N′-
tetrakis(2-pyridinylmethyl)-1,2-ethanediamine, glutathione, 
4-(2-pyridylazo)resorcinol and metallothionein [29, 31, 33, 
83] competitors. Nevertheless, toxic metal ions could also 
compete with Zn(II) for the ZFP binding sites. Recently, we 
reported that DNA could not protect 1MEY# against Ag(I) 
attack [43]. Further studies are needed to fully understand 
the mechanism of these complex processes.
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