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a b s t r a c t

In this paper we will consider a special relaxation of the well-known online bin
packing problem. In a batched bin packing problem (BBPP) – defined by Gutin et
al. (2005) – the elements come in batches and one batch is available for packing
in a given time. If we have K ≥ 2 batches then we denote the problem by K-
BBPP. In Gutin et al. (2005) the authors gave a 1.3871 . . . lower bound for the
asymptotic competitive ratio (ACR) of any on-line 2-BBBP algorithm. In this paper
we investigate the 3-BBPP, and we give 1.51211 . . . lower bound for its ACR.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the classical one-dimensional bin packing problem a list L of a1, a2, . . . , an elements from the interval
(0, 1] is given, and we want to assign each item to a unit capacity bin. The objective is to minimize the
number of bins. In case of online problems the input is not known completely in advance: items come one by
one, and an online algorithm assigns them to a bin immediately, irrevocably. These online algorithms have
been studied widely in last decades. Their performance may be measured by the asymptotic performance
ratio, which is defined as follows.

For a list L, let OPT(L) denote the number of bins in an optimal packing and let A(L) denote the number
of bins that algorithm A uses for packing L. If RA(N) denotes the supremum of the ratios A(L)/OPT(L)
for all lists L with OPT(L) = N , then the asymptotic competitive ratio (ACR) is defined as

R∞A := lim supN→∞RA(N).
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From asymptotic point of view the best known on-line algorithm is due to Heydrich and van Stee [1]
with asymptotic performance ratio at most 1.5815, while the best lower bound is 1.54037 given by Balogh
et al. in [2].

The algorithms can be distinguished from each other according to the number of bins can be used while
packing the actual item. If the algorithm can use only one open bin then we get the Next Fit algorithm for
which R∞NF = 2. If we keep open every bin while packing the actual item we can define several algorithms.
Among these the most known are the First Fit and the Best Fit. These algorithms put the element into
the first bin into it fits, or into that bin where the item fits the best, respectively. For these algorithms
R∞FF = R∞BF = 17/10, (see [3]). The so-called bounded space algorithms were introduced by Lee and Lee [4].
They defined the Harmonic Fit algorithm, which gets the elements online, but only limited number of bins
are available to put the item. They proved that R∞HF = 1.69103 . . ..

To relax the strict online condition several relaxations have been investigated. The so-called lookahead
algorithms were considered by Grove [5]. A k-bounded lookahead algorithm delays to pack an element until
the next k − 1 items arrive. Grove proved that the 1.69103 . . . ACR is achievable by these algorithms.

An updated overview on the state of art of the bin packing algorithms can be found in [6].
In this paper we are dealing with another relaxation of the online problem. The batched bin packing

problem (BBPP) was defined by Gutin et al. (see [7]): the elements come in batches and one batch is
available for packing in a given time. Each batch may contain different sizes of items, and any batch can be
empty. If we have K ≥ 2 batches then we speak about K-BBPP.

A batched algorithm packs the batch completely before the next batch arrives. It is clear that if each
batch contains one element, then we have the classical online problem, and if only one batch is coming then
the problem is the general (offline) one-dimensional BBPP.

Let us consider an input sequence L, which is a batched sequence, i.e. L = {B1, B2, . . . , BK}, where Bj is
a set of elements, 1 ≤ j ≤ K. The set of all batched sequences exactly with K batches is denoted by B(K).
Let A be a batched algorithm, then for BBPP the ACR is defined as follows.

R∞A,K := lim sup
N→∞


A(L)

OPT(L) : L ∈ B(j), j ≤ K, OPT(L) = N

.

In [7] the authors gave a 1.3871 . . . lower bound for the ACR of any on-line 2-BBPP algorithm. It is clear
that

R∞A,i ≤ R∞A,j ≤ · · · , if 1 ≤ i < j <∞,

and such an A algorithm is interesting for which R∞A,i < 1.5815 holds, where 1.5815 is the best known upper
bound for the one-dimensional online bin packing algorithms [1]. In a recent paper [8] Dósa published an
upper bound of 19

12 = 1.58333 . . . for 2-BBPP.
In this paper we investigate the case 3-BBPP, and we give a 1.51211 . . . lower bound for its ACR. The

structure of the paper is the following. First we define a concatenated list of batches which we will use to
prove a lower bound and we give tight bounds for the optimal packing of the batches of given instances.
In Section 3 we filter those algorithms which are working bad on our instance. Section 4 investigates the
possible strategies of the 3-BBPP algorithms. To simplify our later discussions we make some reductions in
Section 5 on packing patterns of the algorithms under investigation. In Section 6 we introduce an LP model
to get the desired lower bound for R∞A,3. Based on our LP model, in Section 7 we give our lower bound for
the ACR of any 3-BBPP algorithm. We determine this bound as a solution of a linear optimization problem,
and we use theoretical analysis. We close the paper with some conclusions and suggestions for the future
research.
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2. Construction for K = 3 batches

The construction is the following:

• The first batch B1 contains n1 = 6jn pieces of small items – denoted by a1 – with equal sizes. Let j ≥ 4
be a fixed integer, then the size of each element in the batch is s(a1) = 1/6j = ε.
• In the second batch one of the lists B2,k will be given to be packed. List B2,k contains n2,k = 6j

j−kn pieces
of a2,k medium items with size s(a2,k) = 1

3 + kε− ε3 = 1
3 + ε 3k−1

3 , and 1 ≤ k ≤ j − 1.
• The third batch B3,k follows the batch B2,k. The number of elements in B3,k depends on the second

batch. If we pack in the second step the list B2,k then B3,k contains n3,k = 6j
j−kn pieces of a3 large items

with sizes s(a3) = 1
2 + ε

3 .

To understand this structure it is important to see: the kth list among the second batches and the third
batch with n3,k elements belonging to B2,k form an inseparable “couple”. If the list B2,k has been chosen
then B3,k contains n3,k items. To get a lower bound we investigate those three batches which consist of the
concatenated lists (B1, B2,1, B3,1), (B1, B2,2, B3,2), . . . , (B1, B2,j−1, B3,j−1). In fact, we will prove later, that
we do not need to take into account all of these batches. It is enough to consider only a part of them. It is
obvious that OPT(B1) = n, and the following lemmas are also true.

Lemma 2.1. For any k, 1 ≤ k ≤ j − 1, OPT (B1, B2,k) = 3j
j−kn.

Proof. Since 1
3 < s(a2,k) ≤ 1

2 , so packing only the items of the second batch we need at least n2,k
2 = 3j

j−kn

bins. Therefore

OPT(B1, B2,k) ≥
3j
j − k

n. (1)

Let us pack the medium items of B2,k into bins, 2 in each bin. Then every bin will have

1− 2s(a2,k) = 1
3 − 2ε3k − 1

3
empty space. Since 2(j − k)ε = 1

3 −
k
3j therefore

2ε3k − 1
3 = 1

3j
3k − 1

3 <
k

3j .

So, we can pack 2(j− k) elements from B1 into each bin which has 2 pieces from the batch B2,k. Thus, into
the 3j

j−kn bins we can put all the 2(j − k) 3j
j−kn = 6jn items from the batch B1. Therefore

OPT(B1, B2,k) ≤
3j
j − k

n. (2)

So, (1) and (2) give together the statement of the lemma. �

Lemma 2.2. For any k, 1 ≤ k ≤ j − 1, OPT (B1, B2,k, B3,k) = 6j
(j−k)n.

Proof. The proof is similar to the one in the previous lemma. Any item from the third batch needs its own
bin. Therefore

OPT(B1, B2,k, B3,k) ≥
6j
j − k

n. (3)

Into each bin we can pack a further item from the second batch. As n2,k = n3,k, all items from the second
batch can be packed into these bins. Now in each bin 1−a2,k−a3,k = 1/6−kε empty space remained. Since
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(j − k)ε = 1
6 −

k
6j , j − k items will fit here from the batch B1. So, all (j − k) 6j

j−kn = 6jn items from the
batch B1 can be packed into the existing bins. Therefore

OPT(B1, B2,k, B3,k) ≤
6j
j − k

n. (4)

From (3) and (4) the statement of the lemma follows. �

Let us denote by (i1, i2, i3)1, (i1, i2, i3)2,k, and (i1, i2, i3)3,k the type of a bin after packing the batch B1,
B2,k, and B3,k, respectively. If a bin is of the type of (i1, i2, i3)2,k then it is obvious that i3 = 0. We call a
triplet (i1, i2, i3) as valid packing pattern (or feasible packing-pattern) if

i1s(a1) + i2s(a2,k) + i3s(a3,k) ≤ 1.

The set of all feasible packing-patterns will be denoted by V . We define the subsets

Vt = {v ∈ V | it > 0 and ir = 0, for r < t}, t = 1, 2, 3.

Clearly, Vt ∩ Vr = ∅ if t ̸= r.
Let us denote by V2,k the set of all opened bins after having packed the medium items of B2,k. There will

be bins which belong to V1, and some of them will belong to V2. Then

V2,k = V1 ∪ V2.

We can define similarly V3,k, and

V3,k = V1 ∪ V2 ∪ V3.

It is important to emphasize that if we open a bin while we pack the small items of the batch B1, then
its type is (i1, i2, i3)1 and it belongs to V1 i.e. (i1, i2, i3)1 ∈ V1. If we put medium items from B2,k into this
bin, then i2 > 0, therefore its type will be changed to (i1, i2, i3)2,k, and it will belong to V2,k ⊃ V1 i.e. its
type will be (i1, i2, i3)2,k, but this bin henceforward will belong to V1.

Let xki1,i2,i3 denote the number of bins which contain exactly i1, i2, i3 pieces from the lists B1, B2,k, B3,k,
respectively.

To understand the following proofs we remind the reader that among the batches any batch may be empty,
so it is possible that after the first (second) batch the 3-batched algorithm will not receive any element.

3. Filtering the less efficient algorithms

Lemma 3.1. Let A be a batched algorithm. If A packs the elements of B1 and B2,k batches, and it does not
open a new bin while packing the elements of B2,k then R∞A,3 ≥ 3.

Proof. If the condition holds then we know that

A(B1) = A(B1, B2,k) ≥ OPT(B1, B2,k) = 3jn
j − k

.

Then

R∞A,3 ≥
A(B1)

OPT(B1) = A(B1)
n
≥ 3j
j − k

≥ 3. �

Lemma 3.2. Let A be a batched algorithm. If A packs the elements of B1, B2,k and B3,k batches, and it does
not open a new bin while packing the elements of B3,k then R∞A,3 ≥ 2.

Proof. If the condition holds then we know that

A(B1, B2,k) = A(B1, B2,k, B3,k) ≥ OPT(B1, B2,k, B3,k) = 6jn
j − k

.
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Then

R∞A,3 ≥
A(B1, B2,k)

OPT(B1, B2,k)
≥ 6jn
j − k

· j − k3jn = 2. �

In the remaining part of the paper it is enough to investigate only those batched algorithms for which
R∞A,3 < 2. On the other hand, from theoretical point of view, we are interested in those algorithms, for which
R∞A,3 ≤ 1.6.

4. Reduction on packing patterns

Lemma 4.1. Let A be a batched algorithm for which R∞A,3 ≤ 1.6. After packing the elements of B2,k by A,
at least one (0, 2, 0)2,k type bin must be created.

Proof. Because of Lemma 3.1, we know that new bins have been opened while the elements of B2,k have
been packed. Their type is either (0, 1, 0)2,k or (0, 2, 0)2,k. If the statement of the lemma is false then all
new-opened bins are (0, 1, 0)2,k type. Let us suppose that after the first batch and after the second batch
the algorithm uses y1 and y2 bins, respectively. Then for a fixed constant C, 0 < C < ∞, the following
inequalities are true.

OPT(B1) ≤ y1 ≤ R∞A,3 ·OPT(B1) + C, (5)
OPT(B1, B2,k) ≤ y2 ≤ R∞A,3 ·OPT(B1, B2,k) + C (6)

and the total sum of the sizes in the first two batches is

n+ 6j
j − k

n ·


1
3 + 3k − 1

3 ε


.

On the other hand – since we have only (0, 1, 0)2,k type new-opened bins – the maximal size of the items
which can be put into the used bins is

y1 +


1
3 + kε


(y2 − y1).

Therefore

n+ 6j
j − k

n ·


1
3 + 3k − 1

3 ε


≤ y1 +


3k − 1

3 ε


(y2 − y1).

The right hand side takes its maximum if y1 and y2 are maximal. Therefore

n+ 6j
j − k

n


1
3 + 3k − 1

3 ε


≤ R∞A,3(OPT(B1) + C) +


1
3 + 3k − 1

3 ε


×

R∞A,3 ·OPT(B1, B2,k)−R∞A,3 ·OPT(B1)


(7)

is a valid inequality. Substituting the values of the optimal packing of the batches we get

n+ 6j
j − k

n


1
3 + 3k − 1

3 ε


≤ (R∞A,3n+ C) +


1
3 + 3k − 1

3 ε


R∞A,3n

3j
j − k

−R∞A,3n

.

Let us divide by n both sides and take into account that R∞A,3 ≤ 1.6. If n→∞, the C/n→ 0, therefore
we get

1 + 6j
j − k

·


1
3 + 3k − 1

3 ε


≤ 16

10 + 16
10


1
3 + 3k − 1

3 ε


3j
j − k

− 1

.

So 1
3 + 3k − 1

3 ε
 6j
j − k

− 16
10

 3j
j − k

− 1

≤ 6

10 .
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Since 3k−1
3 ε > 0, we get 

6j
j − k

− 16
10

 3j
j − k

− 1

≤ 18

10 ,

and so we get that 10j + 2k ≤ 0 which is a contradiction since 1 ≤ k ≤ j − 1. �

Lemma 4.2. If A is a batched algorithm with R∞A,3 ≤ 1.6, there always exists such an algorithm A′ which does
not use more bins than A does, and it does not create bins with types (i1, 1, 1)3,k ∈ V1 nor (i1, 0, 1)3,k ∈ V1,
where i1 > 0.

Proof. Let us suppose that we packed all items. Now, we replace bins of some types by other bins step by
step. By Lemma 4.1, a bin of type (0, 2, 0) must exist (note that such a bin does not receive a large item,
so such a bin still has type (0, 2, 0) after all items have been packed). We execute each replacement step as
follows. A pair of (i1, x, 1) and (0, 2, 0) types of bins will be replaced by a pair of (i1, x + 1, 0) and (0, 1, 1)
types of bins, where x ∈ {0, 1}, and i1 > 0.

After applying such step once, Lemma 4.1 holds again, because the original algorithm A can be
transformed in a straightforward way to repack the items considered here. Note that this transformation
can be performed in an online manner, leading to a new online algorithm that uses the same number of
bins. We can repeat the replacement step until there are no more bins of type (i1, x, 1) for any i1 > 0 and
x ∈ 0, 1. �

Lemma 4.3. Let A be a batched algorithm with R∞A,3 < 2. If A packs the items of the batches B1, B2,k, B3,k
in such a way that at least one (0, 1, 0)2,k type bin will be produced after finishing the packing of all the
batches, then always exists an A′ online batched algorithm which does not create (0, 1, 0)2,k type bins and
uses less bins than A.

Proof. Since R∞A,3 < 2, therefore – if n is large enough – A opens at least one (0, 1, 0)2,k type new bin.
Suppose that while A packs the items of B2,k more than one (0, 1, 0)2,k type bin will be produced.

Let us change the strategy by packing two items into each new opened bin. If the number of (0, 1, 0)2,k
type bins was even, then the contents of two such bins always can be packed into one bin, and we are ready.
Otherwise, one (0, 1, 0)2,k type bin remains. Since at least one (0, 0, 1)3,k type bin were created, therefore
the contents of the bin (0, 1, 0)2,k and a (0, 0, 1)3,k bin can be put into one bin, and so the new A′ algorithm
will use less bins than A. �

Corollary 4.4. It is enough to investigate those algorithms which pack the batches B1, B2,k, B3,k in such a
way that they create only bins of types

(i1, 0, 0)1, (i1, 1, 0)2,k, (i1, 2, 0)2,k, (0, 1, 1)3,k, (0, 2, 0)2,k, (0, 0, 1)3,k.

5. An LP model

Now we will construct a linear program problem to minimize the ACR of any online 3-BBPP algorithm.
We will give conditions for the number of elements in the batches and we also give lower bounds for the
possible values of the ACR of the algorithms. To simplify the notation, instead of R∞A,3 we will use R. The
first condition concerns the number of elements in the first batch B1.

(i1,i2,i3)∈V1

i1x
k
i1,i2,i3 =

6j
i1=1
i1x
k
i1,i2,i3 = n1 (8)
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where xki1,i2,i3 denote the number of (i1, i2, i3) type bins while we pack the batches B1, B2,k, B3,k. Let us
remind the reader: xri1,i2,i3 and xsi1,i2,i3 (1 ≤ r, s ≤ j − 1) are the same variables, their upper indices sign
only the type of batches we used. Since the number of items in the first batch is independent of k, so we
have here one equality.

We can give conditions for the number of items in the batch B2,k. If we put only one element instead of
two items from the second batch in a bin, then this bin must contain at least 2j − 2k + 1 items from the
first batch and it may not contain more items than 4j − k. Since in this case i1 > 0 then – because of the
Lemma 4.2 – we get that in these type of bins i3 = 0.

Similarly, if a bin contains 2 pieces from B2,k then the number of the items from the first batch may not
be more than 2j − 2k. For these type of bins i3 = 0 is also valid, since we cannot put any item from the
batch B3,k if a bin contains 2 items from the batch B2,k. Therefore

4j−k
i1=2j−2k+1

xki1,1,0 + 2
2j−2k
i1=1
xki1,2,0 + xk0,1,1 + 2xk0,2,0 = n2,k, k = 1, 2, . . . , j − 1. (9)

The last j − 1 equations concern to the number of elements in the batch B3,k while we pack the third
batch:

xk0,1,1 + xk0,0,1 = n3,k, k = 1, 2, . . . , j − 1. (10)

Now we give three lower bounds for the ACR.
6j
i1=1
xki1,i2,0 ≤ R ·OPT(B1) (11)

6j
i1=1
xki1,i2,0 + xk0,1,1 + xk0,2,0 ≤ R ·OPT(B1, B2,k) (12)

6j
i1=1
xki1,i2,0 + xk0,1,1 + xk0,2,0 + xk0,0,1 ≤ R ·OPT(B1, B2,k, B3,k). (13)

Let us consider the linear programming problem which has as conditions the 2(j + 1) inequalities of
(8)–(13) and its objective function to minimize the value of R.

Now, we will eliminate the variables xk0,1,1, xk0,2,0, and xk0,0,1. Therefore we do the following calculations.
For k = 1, 2, . . . , j−1 we add the appropriate pairs of (12) and (13), and substitute the appropriate equalities
(9) and (10).

We remind the reader that

n1 = 6jn, n2,k = 6j
j − k

n, and n3,k = 6j
j − k

n.

Let us substitute the values of OPT(B1), OPT(B1, B2,k), OPT(B1, B2,k, B3,k), n1, n2,k, and n3,k into the
right hand sides. So we get the following j + 1 conditions.

6j
i1=1
i1x
k
i1,i2,0 = 6jn (14)

6j
i1=1
xki1,i2,0 ≤ R · n (15)

2
6j
i1=1
xki1,i2,0 −

4j−k
i1=2j−2k+1

xki1,1,0 − 2
2j−2k
i1=1
xki1,2,0

≤ R ·


6j
2(j − k) + 6j

j − k


n− 12j
j − k

n, k = 1, 2, . . . , j − 1. (16)
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If we divide the inequalities by n, and introduce the following variables for every valid triplets:

zki1,i2,i3 =
xki1,i2,i3
n
,

then we get the following conditions.
6j
i1=1
i1z
k
i1,i2,0 = 6j (17)

6j
i1=1
zki1,i2,0 ≤ R (18)

2
6j
i1=1
zki1,i2,0 − 2

2j−2k
i1=1
zki1,2,0 −

4j−k
i1=2j−2k+1

zki1,1,0 ≤ (3R− 4) 6j
2(j − k) , (19)

k = 1, 2, . . . , j − 1.

We need to take into account that
6j
i1=1
zki1,i2,0 =

2j−2k
i1=1
zki1,2,0 +

4j−k
i1=2j−2k+1

zki1,1,0 +
6j

i1=4j−k+1
zki1,0,0.

So we get
6j
i1=1
i1z
k
i1,i2,0 = 6j (20)

6j
i1=1
zki1,i2,0 ≤ R (21)

4j−k
i1=2j−2k+1

zki1,1,0 + 2
6j

i1=4j−k+1
zki1,0,0 ≤ (3R− 4) 6j

2(j − k) , (22)

k = 1, 2, . . . , j − 1.

6. The lower bound

As we mentioned earlier, we need not consider all conditions from the k = 1, . . . , j − 1 possible ones.
We assume that d of them is enough, i.e. erasing the conditions for k = d + 1, . . . , j − 1, the lower bound
remains the same. Later we will give the optimal value for d. Moreover, we further make some calculations
and simplification. For each value of k, (k = 1, 2, . . . , d) we multiply Eqs. (20) by (−1), inequalities (21) by
2(j − d). Furthermore, for k = 1 we multiply (22) by 2j − d+ 2 and all the other ones (k = 2, . . . , d) by 2.

Lemma 6.1. Making the linear combination with the above coefficients, the left hand side of the inequality is
nonnegative.

Proof. For every k, k = 1, 2, . . . , d, according to the value of i1, 1 ≤ i1 ≤ 6j, we will distinguish five different
cases.

• Case 1. 1 ≤ i1 ≤ 2(j− d). Since zki1,i2,i3 does not appear in the last j− d inequalities, now the coefficients
are 2(j − d)− i1 ≥ 0.
• Case 2. 2(j − d) + 1 ≤ i1 ≤ 2j − 2. In this case for the coefficients we get

2(j − d)− i1 + 2⌈(i1 − 2j + 2d)/2⌉ ≥ 2(j − d)− i1 + 2(i1 − 2j + 2d)/2 = 0.
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• Case 3. 2j − 1 ≤ i1 ≤ 4j − d. In this case for the coefficients we get

2(j − d)− i1 + (2j − d+ 2) + 2(d− 1) = 4j − d− i1 ≥ 0.

• Case 4. 4j − d+ 1 ≤ i1 ≤ 4j − 1. In this case the coefficients are

2(j − d)− i1 + (2j − d+ 2) + 2 (d− (i1 − 4j + d+ 1)) + 4(i1 − 4j + d) = −4j + d+ i1 ≥ 0.

• Case 5. 4j ≤ i1 ≤ 6j. In this case the coefficients are

2(j − d)− i1 + 2(2j − d+ 2) + 4(d− 1) = 6j − i1 ≥ 0. �

As the left hand side of the linear combination with the given coefficients is nonnegative, we get the
following inequality:

6j ≤ 2(j − d)R+ 6j(2j − d+ 2) 3R− 4
2(j − 1) + (3R− 4) ·

d
k=2

6j
(j − k) . (23)

The following inequality is easy to prove, see [7].
d
k=2

1
j − k

< ln j − 2
j − d− 1 .

Since 3R− 4 > 0, using the inequality (23), and making some calculations we get

6j + 12j(2j − d+ 2)
j − 1 + 24j ln j − 2

j − d− 1 ≤


2j − 2d+ 9j(2j − d+ 2)
j − 1 + 18j ln j − 2

j − d− 1


R (24)

and therefore

30j2 + 18j − 12jd+ 24j(j − 1) ln j − 2
j − d− 1

≤


20j2 + 16j − 11j · d+ 2d+ 18j(j − 1) ln j − 2
j − d− 1


R. (25)

Ordering this inequality we get

f(j, d) =
30j2 + 18j − 12j · d+ 24j(j − 1) ln j−2

j−d−1

20j2 + 16j − 11j · d+ 2d+ 18j(j − 1) ln j−2
j−d−1

≤ R. (26)

Now we have a lower estimation on the asymptotic ratio R for our construction. Formula (26) has 2
parameters j and d, (d = 1, . . . , j − 2). For a fixed j we want to find such d, which maximizes the left hand
side of (26). In order to determine this d, we consider the function f(j, d) as a 1-variable continuous function
f(d) for a fixed j on the interval [1, j − 2] (see Fig. 1).
It is easy to see that f(d) has one maximum in the given interval. To decide the maximum value of d first
we need to derivate f(d) by d.

f ′(d) =
−12 j + 24 j(j−1)

j−d−1

20 j2 + 16 j − 11 jd+ 2 d+ 18 j (j − 1) ln

j−2
j−d−1


−


30 j2 + 18 j − 12 jd+ 24 j (j − 1) ln


j−2
j−d−1


−11 j + 2 + 18 j(j−1)

j−d−1




20 j2 + 16 j − 11 jd+ 2 d+ 18 j (j − 1) ln

j−2
j−d−1

2 .



J. Balogh et al. / Discrete Optimization 21 (2016) 14–24 23

Fig. 1. Graph of the function f(d) for j = 100.

Table 1
The values of f(j, d).

j d f(j, d)

5 1 1.480075901
10 3 1.494928787
20 6 1.503357743
50 15 1.508573181

100 30 1.510335641
200 60 1.511221192
500 152 1.511757013

1000 305 1.511935384

Now we can solve the equation f ′(d) = 0, so we get the value of d0 where the function takes its maximum.

d0 = 1
4

9 j − 4

W


−1,− 1

4
e
−1
8

23 j−2
j−1 (9 j−4)
j−2

 + j − 1

where W (−1, x) is the negative branch of the Lambert function. Substituting d0 into f(d) and taking its
limit while j →∞ we get the required formula for R.

R ≥
32W

−1,− 9

4 e− 23
8


+ 36

24W

−1,− 9

4 e− 23
8


+ 33

≈ 1.51211383.

Table 1 shows the lower bounds for different values of j and d. So, we have the following theorem.

Theorem 6.2. If A is a batched algorithm for 3-BBPP, then

R∞A,3 ≥ 1.51211383.
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7. Conclusion

In [7] Gutin et al. defined the batched bin packing problem, and they gave a 1.3871 . . . lower bound for
the ACR of any online 2-BBPP algorithm. In this paper we take a step ahead, and we investigated the
3-BBPP, and we give a lower bound for any on-line 3-BBPP algorithm. It would be interesting to construct
a good algorithm for this problem giving a narrow gap between the upper and lower bounds. The second
possibility is to investigate the K-BBPP for K ≥ 4. We note that we have promising efforts for K = 4, but
the analysis is much more complicated than any of the earlier cases.
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