A New and Improved Algorithm for Online Bin
Packing

Janos Balogh

Department of Applied Informatics, Gyula Juhész Faculty of Education,
University of Szeged, Hungary

balogh@jgypk.u-szeged.hu

Jb6zsef Békési

Department of Applied Informatics, Gyula Juhész Faculty of Education,
University of Szeged, Hungary
bekesi@jgypk.u-szeged.hu

Gyorgy Désa
Department of Mathematics, University of Pannonia, Veszprém, Hungary
dosagy@almos.vein.hu

Leah Epstein
Department of Mathematics, University of Haifa, Haifa, Israel
lea@math.haifa.ac.il

Asaf Levin

Faculty of Industrial Engineering and Management, The Technion, Haifa, Israel
levinas@jie.technion.ac.il

—— Abstract

We revisit the classic online bin packing problem studied in the half-century. In this problem,

items of positive sizes no larger than 1 are presented one by one to be packed into subsets called
bins of total sizes no larger than 1, such that every item is assigned to a bin before the next
item is presented. We use online partitioning of items into classes based on sizes, as in previous
work, but we also apply a new method where items of one class can be packed into more than
two types of bins, where a bin type is defined according to the number of such items grouped
together. Additionally, we allow the smallest class of items to be packed in multiple kinds of bins,
and not only into their own bins. We combine this with the approach of packing of sufficiently
big items according to their exact sizes. Finally, we simplify the analysis of such algorithms,
allowing the analysis to be based on the most standard weight functions. This simplified analysis
allows us to study the algorithm which we defined based on all these ideas. This leads us to
the design and analysis of the first algorithm of asymptotic competitive ratio strictly below 1.58,
specifically, we break this barrier by providing an algorithm AH (Advanced Harmonic) whose
asymptotic competitive ratio does not exceed 1.57829.

Our main contribution is the introduction of the simple analysis based on weight function to
analyze the state of the art online algorithms for the classic online bin packing problem. The
previously used analytic tool named weight system was too complicated for the community in
this area to adjust it for other problems and other algorithmic tools that are needed in order
to improve the current best algorithms. We show that the weight system based analysis is not
needed for the analysis of the current algorithms for the classic online bin packing problem. The
importance of a simple analysis is demonstrated by analyzing several new features together with
all existing techniques, and by proving a better competitive ratio than the previously best one.

2012 ACM Subject Classification Theory of computation — Scheduling algorithms
Keywords and phrases Bin packing, online algorithms, competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.5

© Janos Balogh, Jozsef Bekesi, Gyorgy Dosa, Leah Epstein, and Asaf Levin;
37 licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).

Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 5; pp. 5:1-5:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:balogh@jgypk.u-szeged.hu
mailto:bekesi@jgypk.u-szeged.hu
mailto:dosagy@almos.vein.hu
mailto:lea@math.haifa.ac.il
mailto:levinas@ie.technion.ac.il
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

A New and Improved Algorithm for Online Bin Packing

1 Introduction

Bin packing [5, 6] is the problem of packing a set of items of rational sizes in (0, 1] into
subsets of items, which are called bins, of total sizes no larger than 1. In the offline variant
the list of items is given as a set, and in the online environment items are presented one by
one and each item has to be packed into a bin irrevocably before the next item is presented.

For an algorithm A, we denote its cost, that is, the number of used bins in its packing on
an input I by A(I). The cost of an optimal solution OPT, for the same input, is denoted
by OPT(I). The asymptotic approximation ratio allows to compare the costs for inputs
for which the optimal cost is sufficiently large. The asymptotic approximation ratio of A is

defined as follows. Ry = lim sup %TI()I) . In this paper we only consider the
N—=co \ noPT(I)>N
asymptotic approximation ratio, which is the common measure for bin packing algorithms.
Thus we use the term approximation ratio throughout the paper, with the meaning of
asymptotic approximation ratio. Moreover, the term competitive ratio often replaces the
term “approximation ratio” in cases where online algorithms are considered. We will use
this term for the asymptotic measure. When we discuss the absolute measure sup; O’;‘,#TI()I)
(the absolute approximation ratio or the absolute competitive ratio), we will mention this
explicitly. A standard method for proving an upper bound for the asymptotic approximation
ratio or the asymptotic competitive ratio for an algorithm A is to show the existence of a
constant C' > 0 independent of the input, such that for any input I, A(I) < R-OPT(I)+C
(and then the value of the asymptotic measure is at most R). Most work on upper bounds
on the asymptotic competitive ratio provide in fact an upper bound using this last method,

and we will follow this approach as well.

For the offline problem, algorithms with an approximation ratio of 1 4+ ¢ can be designed
[10, 17, 9, 13] for any € > 0. If the first definition is used, a 1-approximation is known [17],
where the cost of the solution computed by the algorithm is OPT(I) + o(OPT(I)) (see also
recent work on improving the sub-linear function of OPT(I) [21, 12]).

The classic bin packing problem, which we study here, was presented in the early 1970’s
[25, 14, 15, 16]. It was introduced as an offline problem, but many of the algorithms initially
proposed for it were in fact online. Johnson [14, 15] defined and analyzed the simple algorithm
Next Fit (NF), which tries to pack the next item into the last bin that was used for packing,
if such a bin exists (in which case such a bin is called “active”) and the item can be packed
there, and otherwise it opens a new bin for the item. The competitive ratio of this algorithm
is 2 [14, 15]. Any Fit (AF) algorithms, as opposed to the behavior of NF which only tests
at most one active bin for feasibility of packing a new item there, pack a new item into a
nonempty bin unless this is impossible (in which case a new bin is opened). Such algorithms
have competitive ratios of at most 2. Next, consider a sub-class of algorithms where one
may not select a bin with smallest total size of currently packed items for packing a new
item, unless this minimum is not unique or this is the only bin that can accommodate the
new item except for an empty bin. The last class of algorithms is called Almost Any Fit
(AAF), and they have competitive ratios of 1.7 [16, 15]. A well-known algorithm, which is in
fact a special case of AAF is Best Fit (BF), which always chooses the fullest bin where the
new item can be packed. First Fit (FF) is another important special case of AF (but not of
AAF) which selects a minimum index bin for each new item (where it can be packed). The
competitive ratio of FF is 1.7 [16, 7].

The pre-sorted versions of these algorithms, called NFD, FFD, BFD, and AFD, were
studied as well. Here items are still presented one by one, but they are sorted in a non

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

increasing order of sizes. For example, the approximation ratio of NFD is (approximately)
1.69103 [2] and that of FFD is 4 ~ 1.22222 [14]. For AFD in general, the approximation
ratio is at most 1.25 [14, 15, 16]. These pre-sorted variants are not online algorithms.

We design and analyze a new algorithm AH (Advanced Harmonic) for online bin packing,
and show that its competitive ratio does not exceed 1.57828956. This is the first algorithm
whose asymptotic competitive ratio is below 1.58. We use a new type of analysis of algorithms
which allows us to split the analysis into cases, while for every case we define only three
values (and even just one value in a large number of cases), and based on those we calculate
weights for items. The analysis is split into cases in recent previous work as well, but the
analysis of each case is much more difficult. Items are partitioned into classes according to
sizes. As in previous work, we sometimes do not pack the maximum number of items of

some class into a bin, and leave space for items of another class (possibly arriving later).

One new feature of AH is that in previous papers, in the algorithms there were at most two
options for every class. For any given class, one option was a bin with the maximum number
of items of this class fitting into a bin. For some of the classes there was a second option
consisted of a very small number of items from this class (with reserved spaces for items of
another class, possibly arriving later). We allow intermediate values as well with more than
two options for some classes and not only two kinds of bins for a given class.

We use simple weight functions for the analysis, rather than the much more complicated
tool called weight systems [23]. Weight functions are an auxiliary tool used for the analysis
of bin packing (and other) algorithms (this technique is also called dual fitting). In this
method, a weight is defined for each item (usually, based on its size, and sometimes it is
also based on its role in the packing). If there are multiple kinds of outputs, it is possible
to define a weight function for each one of them. The total weight of items is then used to
compare the numbers of bins in the output of the algorithm and in an optimal solution. The
list of weights of one item for different output types, also called scenarios, can be seen as
a vector associated with the item. Thus, the weights can be seen as one function from the
items to vectors whose dimension is the number of scenarios. Briefly, a weight system is a
generalization where the weight function also maps items (or item sizes) to vectors, but in
order to compute the weight of some item for a given scenario, another function, called a
consolidation function, is used. This last function is a piecewise linear function (mapping
real vectors to reals). The slightly simplified approach is to use convex combinations of
weights according to subsets of scenarios. It has not been proved that weight systems are
a stronger tool than just weights defined for the different scenarios. However, for simple
weights every scenario can be analyzed independently from other scenarios. We exploit the
simplicity of weight functions to obtain a clean and full analysis, which is easier to implement
and verify (compared to the analysis resulting from weight systems). The main advantage
is that every case is analyzed in a separate calculation using a standard knapsack solver
without considering any other cases at that time. This simplicity allows us to analyze the
new features that we introduce. Obviously, as these are cases for one algorithm, they have a
common set of parameters, but once the algorithm has been fixed, there is no connection
between the various cases.

The significance of our approach is that we combine many existing methods, including
that of Babel et al. [1] (recently used by Heydrich and van Stee [22, 11] for classic bin
packing), adding several new features, and applying a simple analysis, which can be verified
easily and is robust to further changes of the algorithm. We define the action of our algorithm
AH, we prove a number of invariants and properties of AH in detail, and then we provide the
specific parameters and compact representations of the lists of weights. For every possible

5:3

ESA 2018

5:4

A New and Improved Algorithm for Online Bin Packing

output type and scenario, there is a small number of values used for the calculation of weights
for it that we choose based on solving an auxiliary linear program. We also provide explicit
lists of weights calculated based on the values and the parameters.

To explain the new features of our work, we discuss the harmonic type algorithms. Already
in much of the previous work on online algorithms for bin packing, items were partitioned
into classes by size. The simplest such classification is based on harmonic numbers, leading
to the Harmonic algorithm of Lee and Lee [18]. In the harmonic algorithm of index k (for
an integer parameter k > 2), subset j is the intersection of the input and (Jﬁ, %] (where
1 <j<k-—1), and subset k of tiny items is the intersection of the input and (0, %]

In these algorithms each subset is packed independently from other subsets using NF (so
for j < k — 1, any bin for subset j, except for possibly the last such bin, has j items, but
for subset k, every bin except for the last bin for this subset has a total size of items above
%), and for k£ growing to infinity, the resulting competitive ratio is approximately 1.69103
[18]. The drawback of those algorithms is that bins of subsets with small values of j can
be packed with small sizes of items (for example, a bin of subset 2 may have total size just

above % and a bin of subset 1 may have just one item of size just above %)

The first idea which comes to mind is to try to combine items of those two subset into
common bins. However, if items of class 2 arrive first, one cannot just pack them one per
bin, as this immediately leads to a competitive ratio of 2 (if no items of subset 1 arrive
afterwards). Lee and Lee [18] proposed the following method to overcome this. A fixed
fraction of items of subset 2 (up to rounding errors) is packed one per bin and the remaining
items are packed in pairs. Thus, there are two kinds of bins for subset 2. The items we refer
to here can only be sufficiently small items, so there is a threshold A € (%, %) such that items
of sizes in (A, 1] and (1 — A, 1] are packed as before, while the algorithm tries to combine an
item of size in (3,1 — A] with an item of size in (3, A]. Even if those two items (one item of
each one of the two intervals) are relatively small, still their total size is above % ~ 0.83333.
This last algorithm was called Refined-Harmonic, and its competitive ratio is smaller than
1.636. Ramanan et al. [19] designed two algorithms called Modified Harmonic and Modified
Harmonic-2. The first one has a competitive ratio below 1.61562, and it allows to combine
1 (and at most A). The second algorithm
does not use only a single value of A, but splits the interval (%, 1] further, allowing additional
kinds of combinations. Its competitive ratio is approximately 1.612. For most subsets of
items (where k is chosen to be in [20,40] in all these algorithms), the last two algorithms
pack some proportion of the items in groups of smaller sizes, to allow it to be combined with
an item of size above % Intuitively, for an illustrative example, assume that A = 0.6, and
consider the items of sizes in (ﬁ, 1—10] The items that are not packed into groups of ten items
should be packed into groups of four items (the parameters of the algorithms are different
from those of this example). For some of the subsets the proportion is zero, and they are
still packed using NF. The drawback of such algorithms (as it is exhibited by Ramanan et al.
[19]) is that no matter how many thresholds there are, there can be pairs of items that can
be combined into bins of optimal solutions while the algorithm does not allow it as it has
fixed thresholds. Specifically, such algorithms allow to combine items of different intervals
only in the case that the largest items of the two intervals fit together into a bin. This is the

case with the next two harmonic type algorithms as well.

The next two papers, that of Richey [20] and that of Seiden [23] deal with a more
complicated algorithm where many more subsets can be combined. The general structure
is proposed in [20], and a full and corrected algorithm with its analysis is provided in [23].
For illustration, the items packed into smaller groups are called red and those packed into

items of many subsets with items of sizes above

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

bins with maximum numbers of items of the subset are called blue. The goal is to combine
as many bins with blue items with bins having red items as possible. Bins with red items
always have small numbers of items, to allow them to be combined with relatively large items
of sizes above % The analysis is far from being simple, though it leads to a competitive
ratio of at most 1.58889 (Heydrich and van Stee [22, 11] mention that this last value can be
decreased very slightly). The analysis of [23] is based on a complicated notion called weight
system. The complicated details of this analytic tool basically did not allow the research

community to introduce new algorithmic methods for dealing with the online bin packing

problem. We expect that our simplified analysis will not suffer from this major disadvantage.

The carefully designed subset structure eliminates many worst-case examples, but the
drawback mentioned above still remains. Recently, Heydrich and van Stee [22, 11] proposed
to use a method introduced by Babel et. al [1], where some items are packed based on their
exact size rather than by their subset. The approach of [22, 11] which we adopt is to apply
the methods of Babel et. al [1] on the largest items, of sizes in (%, 1]. This approach means
to combine items of sizes above 3 with items of sizes in (%, 1
Moreover, the approach involves combining pairs of items of subsets of sizes contained in
(%, %] while keeping the smallest items of such a subset to be matched with items of sizes
above % (and larger items of such a subset are used to be packed into pairs), as much as
possible. Prior to the work of [22, 11], all previous algorithms for classic bin packing that
partition items into classes always assumed that an item of a certain subset has the maximum
size when its possible packing was examined. This method simplifies the algorithm and its
analysis, but it is not always a good strategy as this excludes the option of combining items
that can fit together into a bin in many cases. This approach is very different from that of
AF algorithms and even from NF. Moreover, an approach similar to that of Babel et. al
[1] was used in an online algorithm designed in [3]. Heydrich and van Stee [22, 11] claim a

competitive ratio of 1.5816 but we were not able to verify this claim.

In algorithm AH, we do not just have red and blue items, but we potentially allow several
kinds of bins (that is, several and potentially a large number of colors for items of a given
class, and furthermore items may change their colors once further items arrive. Due to
these differences we will not use the illustration via colors of items in the description of
our algorithm). For example, for the subset of items of sizes in (3, 1]
into subsets of 14 items or three items or just one item. We also use bins of the smallest

we group items

items (our value of k is 43) where the total size of items is at most %, to allow them to be
combined (among others) with items of sizes in (1, £3]. These two features are possible due

to the simple nature of our analysis, and they are crucial for getting the improved bound.
| are treated together (by the algorithm and its analysis).

1
> 43
In order to use just a small number of values (one or three) for each scenario that we

Note that all items of sizes in (0

choose by solving an auxiliary linear program, we use the concept of containers. A container
is a set of items of one class (in the partition of potential inputs into items of similar sizes,
called classes), and it can be complete if its planned number of items has arrived already or
incomplete otherwise (but it is treated in the same way in both cases). Containers are of
two types, where a container is either positive or negative, and a bin may contain at most
one of each of them. The goal is to have as many bins as possible with both a positive and
a negative container. Roughly speaking, positive containers have total sizes above % and
negative containers have total sizes of at most % This last statement is imprecise as in most
cases we consider volumes and not exact sizes, where volumes are based on the maximum
sizes for the corresponding classes. There is one exception which is containers with one item

of size above %, where the exact size is taken into account (both by the algorithm and the

] based on their exact sizes.

5:5

ESA 2018

5:6

A New and Improved Algorithm for Online Bin Packing

analysis), and it is defined to be the volume. A positive container and a negative one fit
together if their total volumes does not exceed 1, and does not depend only on the classes.
Our positive containers and negative containers have some relation to concepts used in [23].

In our weight based analysis, we assign weights to containers, where the number of
different weights is small. Specifically, let the minimum volume of any positive container not
packed with a negative container be denoted by a. We have two cases. In the simple case
where all positive containers packed without negative containers have volumes of at least %
(i.e., a > %), we define weights as follows. Assign weights of 1 to positive containers packed
without negative containers and negative containers packed without positive containers.
Since we later base our weights of items on sizes, we assign these weights of 1 to all positive
containers of volume at least a and all negative containers of volumes above 1 — a. We have
a variable w (0 < w < 1) such that other positive containers have weights of w and other
negative containers have weights of 1 — w. Those weights are called the required weights
of containers (the actual weights can be larger but not smaller). Given the approximate
proportions of items of each class packed in every type of container, we compute a weighted
average (based on the containers of every item) to define weights of items using the required
weights of containers. The case where a < % is more interesting as a negative container
with one item of size in (%, %] and a positive container with one item of size above % can be
packed into one bin if the total size of the two items does not exceed 1 (i.e., the volumes of
their containers are the exact sizes of these two items). Thus, the exact value a is crucial
and not only its class, and additionally the class and even the exact value of 1 — a play an
important role. This is indeed more interesting as the analysis cannot be done for an infinite
set of scenarios and thus we need to analyze intervals of a together. Here, for other classes
we do the same as in the previous case, but for one class we perform a more careful analysis.
This is the class containing the value 1 — a. For this class we define weights of items directly.
We let the weight of an item of this class of size at most 1 — a be a variable u, and otherwise
it is a variable v, where v > u (this class is contained in (%, 1]). For the analysis, we found
suitable values for the variables for all scenarios (this was done separately for each scenario),
that is, for all possible values of a (the number of scenarios is still finite, as they are based
on the dividing points of the algorithm, though not only on the classes). For every scenario
where a < %, there are additional constraints on u, v, and w. As we do not use weights of
containers in this case (for the class containing 1 — a), while the packing of pairs of items of
classes contained in (%, %] is performed carefully for all such classes. After selecting suitable
values for those variables, all other item weights are also computed using the parameters of
the algorithm.

There are also improved algorithms based on First Fit. Yao [27] designed a %—competitive
algorithm where certain size based subsets are packed separately. Later, an algorithm of
absolute competitive ratio g was designed [3], which is the best possible with respect to
this last measure [28] (see also [24, 7, 8]). The (asymptotic) competitive ratios should be
compared to lower bounds on the competitive ratio. The current best such lower bound is
1.5403 [4] (see also [26]).

2 Algorithm AH

Notation and definitions. Similarly to previous algorithms’ definitions, AH has a sequence
of boundary points that are used in its precise definition: 1 =1tg > t; = % >ty > >ty =
> >ty >tyq1 =0. That is 1/2 and 1/3 are always boundary points, and there is no
boundary point in (1/2,1).

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

For every j, all items of sizes in the interval (¢;,t;_1] are called items of class j. We say
that a class of items (and every item of this class) is huge if j = 1, it is large if 1 < j <b
(these are all items of sizes above 1/3 and at most 1/2), small if b < j < M, and tiny if this
is the class of items of size at most ¢5; (i.e., the last class which is the class of tiny items is
class M + 1, and in general the index of a class corresponds to the index j such that ¢; is
the infimum size of any item of the class).

Our algorithm will pack items into containers and pack containers into bins. As the
algorithm is online, a container will be packed into a bin immediately when it is created, even
though it may receive additional items later. In the last case, when we say that an item is
packed into a container, this means that the bin containing the container receives that item.
Any container will contain items of a single class, and at most two different containers can
be combined (packed) into a bin. We provide additional details on combining two containers
into a bin later. Every container of items that are not tiny has a cardinality associated with
it, and this is the (maximum) number of items that it is supposed to receive.

Let v; = Lt]%lj for j < M. For class j that is either large or small (but not huge or tiny,
i.e., for values of j such that 2 < j < M holds), and for every i (where 1 < i < ~;) there is a
nonnegative parameter a;;, where 0 < a;; < 1. The value «;; will denote the proportion of
number of containers of cardinalities i of class j items among the number of containers of
class j (the term proportion corresponds to the property of the sum of proportions satisfies
>, a5 =1 for all j). Such containers that will eventually receive i items of class j (unless
the input terminate before this becomes possible) will be called type i containers of class j.
That is, intuitively if we let = denote the number of containers for items of class j, we will
have approximately o;; - type i containers each of which having exactly ¢ items of class j.
For every j such that 2 < j < M and every i, we let A; ; =4 -t;_1. While the values a;; are
defined so far only for large and small classes, we see one huge item as a type 1 container.
Note that the values of a;; are not proportions of items but of containers for class j, and
the resulting proportions of items can be computed from them (we will prove such bounds
accurately later).

For classes of large items the notion of the cardinality of a container is slightly more
delicate, and we will have exactly four possible types of containers. The first type is a reqular
type 2 container (already) containing exactly two items of this class. The second type is
a declared type 2 container, where this type consists of containers for which the algorithm
already decided to pack two items of this class in the container (so the planned cardinality
of the container is 2) but so far only one such item was packed into the container (one of the
few next arriving items of this class, if they exist, will be packed there, in which case the
type will be changed into a regular type 2 container). The third is a regular type 1 container,
where such a container has one item of the class and cannot ever have (in future steps) an
additional item of this class (such a container will be already combined with a container of
another class that is packed into the same bin). The fourth and last type of a container of
large items is a temporary type 1 container. A container of this last type currently has one
item of the class but sometimes it will get an additional item of this class in future steps
(and in this case its type will be changed at that time to regular type 2, its type can change
to declared type 2 or regular type 1 as well, but in those cases it does not happen as a result
of packing a new item to this container). Given a class of large items, the number of declared
type 2 containers will be at most four throughout the execution of the algorithm (as we
will prove below) while the numbers of containers of type 1 (of both kinds) and containers
of regular type 2 can grow unbounded as the length of the input grows, though we will

show certain properties on the relations between their numbers maintained by the algorithm.

5:7

ESA 2018

5:8

A New and Improved Algorithm for Online Bin Packing

The set of the union of containers of regular type 2 and declared type 2 are called type 2
containers, and the set of the union of containers of regular type 1 and temporary type 1
are called type 1 containers. The parameters ay; and ag; of a large class j determine the
approximate proportions of type 1 containers and type 2 containers, respectively.

For class M + 1 (of the tiny items), instead of the definitions above, there is a sequence
of p possible upper bounds on the total sizes of items packed into containers of this class:
1> Apm+1 > Ap—im+1 > -+ > Ay v 2> tu, and we let the positive parameters
o pm41 > 0 for i =1,...,p denote the proportion of numbers of containers of class M + 1
with items of total size in the interval (A; pr+1 — tar, Ai ar+1] (this is the planned total size
of items for such a container). Such containers will be called type i containers of class M + 1.
The values of a;; for all 4, j are selected heuristically via a search procedure carried out by a
computer program. Any such set of parameters give a different algorithm and our proof of
the numerical value of the upper bound is for one specific set of parameters that we provide
explicitly.

The volume of a container of type 7 of class j is defined as follows: If i=1and 1 < j<b
(that is, for items of sizes above 1/3), the volume of the container is the size of its (unique)
item, and otherwise ({ =2and 2 < j <bori>1andj>b)itis A; ;. That is, the volume
is usually simply the largest total size that the container can occupy, but for a container
that contains a single large or huge item, the volume is the ezact size of the item (there is
one exception where the bin already contains one large item and it is planned to contain
another item of the same class). In most cases we would like the volume of a container to be
known when it is created, which is possible for containers such that their planned contents
are known (in the sense that for example type 4 containers of a non tiny class j are planned
to contain ¢ items finally). However, for large items such containers with a single item may
be temporary type 1 containers, in which case there is still no planning of contents for them.
In this last case, the volume of the container is the size of its unique item. However, the
volume of such a container may change in the case the algorithm will decide to pack another
item of the same class (no matter if it packs that other item immediately at the time of
decision or whether we decide to pack such an item later) into this container and transform it
into a type 2 container. The volume of a declared type 2 container of class jis A ; =2-t;_1
(the volume is based on its complete contents, no matter whether they are present already or
not, as it is the case for classes of small or tiny items).

We say that a container is negative if its volume is at most 1/2 and otherwise it is positive.
Obviously, two positive containers cannot be packed into one bin. We will also not pack two
or more negative containers into a bin together. Thus, a bin containing two containers will
contain one positive container and one negative container, and no bin will contain more than
two containers.

The rules for packing containers. The algorithm AH which we define next will pack items
into containers and pack containers into bins according to rules we will define. Recall that
the packing of containers into bins will be such that every bin will have at most one positive
container and at most one negative container. Obviously, a bin is nonempty if it has at least
one container and at most two containers. We say that a nonempty bin is negative if it has a
negative container and does not have a positive container, it is positive if it has a positive
container and does not have a negative container, and it is neutral if it has both a negative
container and a positive container.

It is unknown whether a temporary type 1 container will eventually be positive or negative.
Therefore, such a container will not be combined in a bin with another container as long as

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

its type is not changed. Moreover, it is seen as a negative container until it changes its type
(so its bin is negative as long as the container is of temporary type 1). Specifically, it remains
a negative container if a positive container joins it (and its bin becomes neutral), and in this
case it becomes a regular type 1 container (and remains negative), and it becomes a positive
container if its type changes to type 2. It can also happen that a temporary type 1 container
will remain such till the termination of the input and the action of AH (and its bin remains
negative). It is important to note that the difference between regular type 1 containers of
a large class and temporary type 1 containers of the same class is that each of the former
containers is already packed into a bin with a positive container (of some class), while the
latter are not packed with other containers (in fact, the corresponding items are placed into
their own bins, one item per bin).

For every class j, we denote by n; the number of containers of class j. Let n;; denote
the number of containers of type i of class j. We also let IV; denote the number of items of
class j at that moment. We often consider the values n; and n,; just prior to the packing of
a new item, when NN; was already increased but the new item not packed yet so the values
n; and n;; are not updated yet.

We say that two containers fit together if their total volume is at most 1. In what follows,
when we refer to packing an item e - or more precisely, packing a container containing e
(which was just created and therefore contains only e) into existing bins using Best Fit - we
refer to packing e (or the container containing e) into the bin with a container of largest
volume where the existing container and e (or the container containing e) fit together. For
the original version of Best Fit, actual sizes are taken into account, but here we base this rule
on volumes (as for a container with a single large or huge item the volume is equal to the
size of the item, if we select one such container among a set of this last kind of containers,
our action is equivalent to the standard application of Best Fit).

Packing rules of a new item. Next, we define the packing rules of the algorithm when a
new item of class j arrives. The algorithm is defined for each step, based on the class of the
new item.

A huge item. Recall that a huge item is immediately packed into a positive container
containing only this item. Use Best Fit (applied on volumes, as explained above) to pack
the created container into an existing bin, out of existing negative bins, such that the two
containers (the new one with the huge item and the negative one of the negative bin) fit
together. The only case where the new huge item joins a bin with a large item of some
class j’ is the case where the container of class j' is a temporary type 1 container, and in
this case the type of this container of class j is changed into regular type 1. If no bin can
accommodate the container of the new item according to those packing rules, that is, for
every negative bin, the total volume together with the new item is too big (or there is no
negative bin at all), then use a new bin for the positive container of the new item (this new
bin becomes a positive bin).

An item of a class of small or tiny items. For these classes we define the concept of an
open container. Informally, an open container (of class j) can receive at least one additional
item of class j. As a new container is introduced in order to pack an item, any container (of
any type and class) already has at least one item of the corresponding class. If b < j < M,
an open type ¢ container of class j is one where the total number of the items in the container
is strictly smaller than i. Once such a container receives ¢ items, it is closed. For j = M + 1,

5:9

ESA 2018

5:10

A New and Improved Algorithm for Online Bin Packing

a type i container of this class will be open starting the time it is created and while the total
size of items in it is positive and at most A; ar+1 — tar. Once it reaches a total size above
A; a1 — tar, it will be closed. For all cases of packing a small or tiny item, a new container
of some class will be used only if there is no open container of the same class, and thus, in
particular, there will be at most one open container for each j (and the corresponding value
of i will always be one such that a;; > 0).

When a new item of class j (such that j > b) arrives, if there is an open container of
some type i of class j, then pack the item there (there can be at most one such container, so
there are no ties in this case). Otherwise, open a new container for it (the details of the type
are given below). After packing the new item into the container (and packing its container
into a bin if it is a new container), close the container if necessary, based on its type and the
rules above.

In the case that a new container is used for the item, we define the process of packing
the item in more detail. Prior to packing the item, we define the type of the new open
container. As the item is not packed yet, n; is the number of containers of class j excluding
the container opened for the new item. Find the minimum value of 7 such that a;; > 0 and
so far there are at most |a;; - n;| type ¢ containers of class j (i.e., ni; < |aj - n;|, where the
values n;; do not include the new container which will be opened). Such an index i exists as
otherwise there are more than n; containers of class j. More precisely, since), o, ;j = 1,
there is always a value of ¢ satisfying that c;; > 0 such that so far we opened at most
la; ;- mj] type ¢ containers of class j. Open a new type i container of class j containing the
new item (increasing both n; and n;;). Observe that this opening of a new container defines
its volume as well as whether it is a positive container or a negative container.

Next, we decide where to pack this new container. First consider the case where this
container is a negative container. Then, if there is a positive bin, such that the new container
fits into the bin according to its volume, then use that bin to pack the new container. This
last case includes the possibility that the positive container is a type 2 container of a large
class (regular or declared). If there are multiple options for choosing a bin, one of them is
chosen arbitrarily.

Otherwise (there is no positive bin where the new negative container can be added), the
algorithm checks the option of using a bin with a temporary type 1 container of some class
of large items. Assume that there is a negative bin B such that the following two conditions
are satisfied. The first condition is that the bin B has a temporary type 1 container of class
j' such that a positive container of class j’ (with two items) will fit together with the new
(negative) container. The second condition is that there are at most |agjs - njr | — 1 type 2
containers of class j' (before the packing of the new item is performed). Then, pack the new
negative container into B, and define the container of class j packed into B as a declared
type 2 container. This last container of class j’ will get one of the next items of class 7’ that
will arrive, which will happen before any new container is opened for any new class j item,
see below. If there are multiple options for choosing B, one of the classes of large items is
chosen arbitrarily (among those that can be used), and a temporary type 1 container of this
class with maximum volume is selected, i.e., we use Best Fit in this case. This last packing
step is possible as a temporary type 1 container is never packed with another container into
a bin (if another container joins it, its type is changed).

Otherwise (if there is no suitable positive bin and no class of large items has a suitable
temporary type 1 container that can be used under the required conditions), pack the new
negative container into a new bin.

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

Finally, consider the case where the new container is a positive container. Then, if there
is a negative bin whose container is not a temporary type 1 container, such that the new
container fits together with it, then use such a bin to pack the new container. Otherwise,
if there is a temporary type 1 container with one large item of a class j' where the new
container fits, then pack the new positive container into this bin and define the container of
class 7' in this bin as a regular type 1 container. The class j' can be chosen arbitrarily if
there are multiple options, and among the temporary type 1 containers of class j’, one of

maximum volume (out of those that can be used) is selected, i.e., once again we use Best Fit.

Otherwise, pack the new positive container into a new bin.

A large item of a class j. If there is a declared type 2 container of class j, pack the
item there (as a second item) and change it into a regular type 2 container (breaking ties
arbitrarily). This packing rule is checked first, and we apply it whenever possible. We

continue to the other cases in the situation where there is no such declared type 2 container.

If the number of type 2 containers equals [ao; - n;] (that is, we should not increase the
number of type 2 containers at this stage), then pack the new item into a new negative
container. To pack the container into a bin, do as follows. If there is a positive bin where
the new negative container fits, then use Best Fit to pack it as a regular type 1 container of
class j (its volume is defined accordingly as the size of the new item) together with a positive
container (this positive container is not of large items, as three large items cannot be packed
into a bin together). Otherwise the new container is packed into a new bin, in which case it
is defined to be a temporary type 1 container.

Otherwise (that is, the number of type 2 containers is strictly smaller than |asg; - n;]),
we will increase the number of regular type 2 containers or the number of declared type 2
containers of this class in the current iteration as follows. If there is a negative bin B where
a type 2 container of class j fits, then pack the item into a new declared type 2 container of
class j and pack this container into this bin B. Otherwise, if there is a temporary type 1
container of class j, then we pack the new item using Best Fit (considering only temporary
type 1 containers of class j, and selecting such a container of largest volume) and change the
type of this container into a regular type 2 container. Otherwise (all containers of class j are
either regular type 1 or regular type 2, we should increase the number of type 2 containers,
and a new container with two items of this class cannot be packed into an existing bin), we
open a new declared type 2 container for the new item and open a new bin for this declared
type 2 container (and pack it there).

A sketch of the analysis. In the analysis, we see a pair of a negative container and a
positive container, packed together in a bin, as matched to each other, and each one of them
is seen as matched (while every container packed into a bin without another container is
unmatched). Let a’ =1 — spin/2 where sy, is the smallest item size in the examined input,
and let a be the smallest volume of a positive container that is unmatched, if it exists. If
no unmatched positive container exists, let a = a’. If a > o/, decrease the value of a to be
a'. A simple property of the algorithm is that it tries to match a positive container and a
negative container whenever possible. Thus every positive container of volume smaller than
a is matched and every negative container of volume at least 1 — a is matched.

We define a finite set of scenarios according to the value of a. To do that we define a set of
values V as follows. V ={A4; ;,1-A4,,:7=2,3,....,M+1,0;; >0} U{t1,t2, ..., tam,tmr+1}
and V' = {z € V : 2 < 1/2} (in particular, § € V’). Note that the set V' contains (among
other) all boundary points t; (for all j > 1), even for values of j for which a;; = 0. The

5:11

ESA 2018

5:12

A New and Improved Algorithm for Online Bin Packing

name of a scenario is an interval (x,y] between consecutive values in V’. Using this partition,
we ensure that if the scenario is (x,y], then there is no 4 > 2 and class j such that a;; > 0
and the volume of a container of type 4 of class j is in (z,y) or in (1 —y,1 — z).

The first step for analyzing each scenario is to obtain a good weight function for the
scenario, in the sense that the analysis will be as tight as possible and can be done using
a computer assisted proof within a small running time. The weight function defines size
based weights for values in (0,1]. The goal is to define weights such that the cost of the
algorithm is roughly the total weight of all input items (a weight function satisfying this
requirement is called here valid), and if the target competitive ratio is R, the cost of an
optimal solution is at least the total weight divided by R (this can be proved by showing
that no bin can contain items of total weight above R). Then, for an input I, letting w(I)
denote its total weight, (and as defined above, letting OPT(I) the optimal cost for I, and
A(I) the number of bins used by A), we will have A(I) < w(I)+ ¢, OPT(I) > %, which
shows that A(I) < R-OPT(I) + ¢. This last argument is the standard argument for weight
functions based analysis [14, 15, 16, 18, 19].

In order to define a suitable function, we will solve a linear program defined below (this
linear program has only four variables w, u, v and R, and in some cases it actually has only
two variables w and R). More precisely, we will provide a feasible solution for this linear
program that is very close to the optimal one (but we only use its feasibility and do not
prove that it is almost optimal). The weights of specific sizes will be based on the values
w, u, v (or just on w, if the others are undefined), and on some of the parameters of the
algorithm (the ay; values for the given class).

We define a quantity for each container called the required weight of the container, and
its goal is to introduce a uniform value such that weights of items are defined based on these
values, in order to satisfy all requirements. This quantity is defined for a class that is not the
threshold class or is not a large class. If the threshold class k (the class containing 1 — a) is a
large class, we keep this quantity undefined for that class. For a positive container of volume
at least a, the required weight of the container is 1. For a positive container of volume in the
interval (1/2, a), the required weight of the container is denoted as w. This will be a decision
variable of the forthcoming linear program. The required weight of a negative container is 1
if its volume is larger than 1 — a and otherwise its required weight is 1 — w. We ensure that
the required weight of a container depends only on the index of the scenario (z,y] and not
the specific value of a in the interval [1 —y,1 —) and there are only few exceptions that are
handled separately.

The weight of a huge item is 1 if its size is at least a and w otherwise. The weight of an
item of class j < M such that either j # k or j > b is the ratio between the average required
weight of a container of class j and the average number of items in a container of class j.
The weight of a tiny item of size s is s times the ratio between the average required weight
of a container of tiny items and the average (lower bounds on the) total size of items in a
container of tiny items. The weight of items of class j = k that is a large class is as follows.
An item of this class has weight w if its size is at most 1 — a and otherwise a weight of v. We
find linear inequalities on the variables u, v, w that ensure that the resulting weight function
is valid. By solving a linear program we can find such values of u,v,w that minimize the
corresponding competitive ratio that can be proven using this weight function. In this linear
program the goal is to minimize R that is an upper bound on the total weight of items that
can fit into one bin subject to the additional constraints on u, v, w ensuring that the resulting
weight function is indeed valid.

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

In this way we get a table showing for each scenario the set of the values of u,v,w (or

only w for scenarios where the threshold class is not large) that define the weight function
that we use for the scenario. Using these weight functions we show the correctness of our
main result, namely that the competitive ratio of AH is at most 1.57828956.

—— References

1

10

11

12

13

14

15

16

17

L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing problems
with cardinality constraints. Discrete Applied Mathematics, 143(1-3):238-251, 2004.

B. S. Baker and E. G. Coffman, Jr. A tight asymptotic bound for next-fit-decreasing
bin-packing. SIAM J. on Algebraic and Discrete Methods, 2(2):147-152, 1981.

J. Balogh, J. Békési, Gy. Dodsa, J. Sgall, and R. van Stee. The optimal absolute ratio
for online bin packing. In Proc. of the 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA2015), pages 1425-1438, 2015.

J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain bin packing al-
gorithms. Theoretical Computer Science, 1:1-13, 2012.

E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing:
A survey. In D. Hochbaum, editor, Approzimation algorithms. PWS Publishing Company,
1997.

J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat and
G. J. Woeginger, editors, Online Algorithms: The State of the Art, pages 147-177, 1998.
Gy. Désa and J. Sgall. First Fit bin packing: A tight analysis. In Proc. of the 30th
International Symposium on Theoretical Aspects of Computer Science (STACS2013), pages
538-549, 2013.

Gy. Désa and J. Sgall. Optimal analysis of Best Fit bin packing. In The 41st International
Collogquium on Automata, Languages and Programming (ICALP201}), pages 429-441, 2014.
L. Epstein and A. Levin. A robust APTAS for the classical bin packing problem. Mathem-
atical Programming, 119(1):33-49, 2009.

W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 14¢ in linear
time. Combinatorica, 1(4):349-355, 1981.

S. Heydrich and R. van Stee. Beating the harmonic lower bound for online bin packing.
In Proc. of 43rd International Colloquium on Automata, Languages, and Programming
(ICALP2016), pages 41:1-41:14, 2016.

R. Hoberg and T. Rothvoss. A logarithmic additive integrality gap for bin packing. In
Proc. of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA2017),
pages 2616-2625, 2017.

K. Jansen and K.-M. Klein. A robust AFPTAS for online bin packing with polynomial
migration. In Proc. of the 40th International Colloquium on Automata, Languages, and
Programming (ICALP2013), part I, pages 589-600, 2013.

D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA,
1973.

D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences,
8:272-314, 1974.

D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal on
Computing, 3:256-278, 1974.

N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In Proc. of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS’82), pages 312-320, 1982.

5:13

ESA 2018

5:14

A New and Improved Algorithm for Online Bin Packing

18

19

20

21

22

23
24

25

26

27
28

C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the ACM,
32(3):562-572, 1985.

P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear time.
Journal of Algorithms, 10:305-326, 1989.

M. B. Richey. Improved bounds for harmonic-based bin packing algorithms. Discrete
Applied Mathematics, 34(1-3):203-227, 1991.

T. Rothvoss. Better bin packing approximations via discrepancy theory. SIAM Journal on
Computing, 45(3):930-946, 2016.

R. van Stee S. Heydrich. Beating the harmonic lower bound for online bin packing. The
Computing Res. Rep. (CoRR), abs/1707.01728, 2017. arXiv:1511.00876v3.

S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640-671, 2002.
D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Research Lo-
gistics, 41(4):579-585, 1994.

J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100,
Princeton University, Princeton, NJ, 1971.

A. van Vliet. An improved lower bound for online bin packing algorithms. Information
Processing Letters, 43(5):277-284, 1992.

A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207-227, 1980.

G. Zhang. Private communication.

http://arxiv.org/abs/1511.00876v3

	Introduction
	Algorithm AH

