
ar
X

iv
:1

70
8.

03
22

8v
1

 [
cs

.D
S]

 1
0

A
ug

 2
01

7

Lower bounds for several online variants of bin packing∗

János Balogh † József Békési ‡ György Dósa§ Leah Epstein¶ Asaf Levin‖

Abstract

We consider several previously studied online variants of bin packing and prove new and
improved lower bounds on the asymptotic competitive ratios for them. For that, we use a
method of fully adaptive constructions. In particular, we improve the lower bound for the
asymptotic competitive ratio of online square packing significantly, raising it from roughly 1.68
to above 1.75.

1 Introduction

In bin packing problems, there is an input consisting of a set of items, and the goal is to partition
it into a minimum number of subsets called bins, under certain conditions and constraints. In the
classic variant [28, 19, 20, 31, 24], items have one-dimensional rational numbers in (0, 1], called sizes,
associated with them, and the total size of items of one bin cannot exceed 1. In online variants
items are presented as a sequence and the partition is created throughout this process in the sense
that any new item should be assigned to a bin before any information regarding the next item is
provided. The conditions on the partition or packing remain as in the offline problem where the
items are all given at once as a set. Using an algorithm A to partition the items into subsets, which
is also seen as a process of packing items into bins, the number of partitions or bins used for the
packing is defined to be the cost of A.

Algorithms for bin packing problems are normally studied using the asymptotic approximation
ratio, also called asymptotic competitive ratio for the case of online algorithms (and we will use
this last term). For an algorithm A and an input I, let A(I) denote the number of bins used by A
for I, that is, the cost of A for I. Let OPT (I) denote the number of bins that an optimal solution
uses for I, that is, the cost of an optimal (offline) algorithm OPT for I. Consider the set of inputs
JQ of all inputs for which the number of bins used by OPT is Q. For the problems studied here
(and non-empty inputs for them), Q will be a positive integer. Let c(Q) = maxI∈JQ A(I) (where for

reasonable algorithms this value is finite), and let RA = lim supQ→∞
c(Q)
Q . The absolute competitive

ratio of A is defined by supI
A(I)

OPT (I) , that is, this is the supremum ratio between the cost of A and
the optimal cost, over all inputs, and the asymptotic competitive ratio is the superior limit of the

∗Gy. Dósa was supported by VKSZ 12-1-2013-0088 “Development of cloud based smart IT solutions by IBM
Hungary in cooperation with the University of Pannonia” and by National Research, Development and Innovation
Office – NKFIH under the grant SNN 116095. L. Epstein and A. Levin were partially supported by a grant from
GIF - the German-Israeli Foundation for Scientific Research and Development (grant number I-1366-407.6/2016).

†Department of Applied Informatics, Gyula Juhász Faculty of Education, University of Szeged, Hungary.
balogh@jgypk.u-szeged.hu

‡Department of Applied Informatics, Gyula Juhász Faculty of Education, University of Szeged, Hungary.
bekesi@jgypk.u-szeged.hu

§Department of Mathematics, University of Pannonia, Veszprem, Hungary, dosagy@almos.vein.hu.
¶Department of Mathematics, University of Haifa, Haifa, Israel. lea@math.haifa.ac.il.
‖Faculty of Industrial Engineering and Management, The Technion, Haifa, Israel. levinas@ie.technion.ac.il.

1

http://arxiv.org/abs/1708.03228v1

absolute competitive ratios for fixed values of Q = OPT (I) when Q grows to infinity. Since the
standard measures for online bin packing problems (and offline bin packing problems, respectively),
are the asymptotic competitive ratio (and the asymptotic approximation ratio), we also use the
terms competitive ratio (and approximation ratio) for them, and always use the word absolute when
we discuss the absolute measures. To prove lower bounds on the (asymptotic) competitive ratio
one can use inputs where the optimal cost is arbitrarily large, and we use this method. The study
of lower bounds on the competitive ratio for a given problem characterizes the extent to which the
performance of the system deteriorates due to lack of information regarding the future input items.

Here, we study three versions of the online bin packing problem, providing new lower bounds
on the competitive ratio for them. Previous constructions used for proving such lower bounds were
often inputs where items arrive in batches, such that the items of one batch all have the exact same
size (and the input may stop after a certain batch or it can continue to another one). In the known
lower bounds for classic bin packing, it is even known what the next batches will be, if they are
indeed presented [23, 29, 6]. While it may be obvious that adaptive inputs where the properties of
the next item are based on the packing of previous items are harder for an algorithm to deal with,
it was not known until recently how to use this idea for designing lower bounds, except for special
cases [9, 2, 17]. In cardinality constrained bin packing [22, 21, 12, 2, 8], items are one-dimensional, a
fixed integer t ≥ 2 is given, and the two requirements for a packed bin are that its total size of items
is at most 1, and that it contains at most t items. The special case analyzed in the past [9, 2, 17] is
t = 2, which can also be seen as a matching problem, as every bin can contain at most two items.
In [4] we showed that the overall competitive ratio (supremum over all values of t) is 2 (an upper
bound was known prior to that work [2, 8]), and provided improved lower bounds for relatively
small values of t. For standard bin packing, the best known lower bound on the competitive ratio
is 1.5403 [29, 6] and the best upper bound is 1.57829 [5].

Another lower bound presented in [4] is for the competitive ratio of vector packing in at least
two dimensions. For an integer dimension d ≥ 2, the items have d-dimensional vectors associated
with them, whose components are rational numbers in [0, 1] (none of which are all-zero vectors),
and bins are all-one vectors of dimension d. A subset of items can be packed into a bin if taking
no component exceeds 1 in their vector sum. This generalizes cardinality constrained bin packing,
and we showed a lower bound of 2.03731129 on the competitive ratio of the online variant for any
d ≥ 2 (prior to that work, no lower bound strictly above 2 for a constant dimension was known).

Our main goal here is to exhibit how to exploit adaptive constructions with some connection
to those used in [4] in order to obtain lower bounds for other variants. We focus on the following
three variants. In all three variants of online bin packing which we study, the input consists of
rational numbers in (0, 1], however there is additional information received with the input in some
of the cases and the input is interpreted in different ways. Two of the problems are one-dimensional
and the input numbers are sizes of items. The third variant is two-dimensional, and the numbers
are side lengths of squares. In our first variant called bin packing with known optimal cost, the
cost of an optimal (offline) solution is given in advance, that is, it is known how many bins are
required for packing the input. This problem is also called K-O (known-OPT). It is currently hard
to find an appropriate way to use this additional piece of information for algorithm design, but
in all lower bounds known for standard online bin packing [29, 6] the property that the optimal
cost is different for different inputs is crucial for achieving the result. For K-O, a lower bound of
1.30556 on the competitive ratio was presented [14] and later improved to 1.32312 [3]. We show
a new lower bound of 87

62 ≈ 1.4032258 on the competitive ratio, improving the previous result
significantly. This problem is related to the field of semi-online algorithms and to the so-called
model of online algorithms with advice [10, 1], where the online algorithm is provided with some
(preferably very small) pieces of information regarding the input.

In the square packing (SP) problem, the goal is to assign an input set of squares whose sides

2

are rational numbers in (0, 1] into bins that are unit squares in a non-overlapping and axis-parallel
way, so as to minimize the number of non-empty bins. We use the standard definition of this
packing problem, where two squares do not overlap if their interiors do not overlap (but they may
have common points on the boundaries of the squares). The offline variant is well-studied [7, 15].
The history of lower bounds on the competitive ratio of online algorithms for this problem is as
follows. Several such lower bounds were proved for the online version of SP, starting with a simple
construction yielding a lower bound of 4

3 on the competitive ratio by Coppersmith and Raghavan
[11], and then there were several improvements [25, 16, 18], all showing bounds above 1.6. In 2016
a copy of the thesis of Blitz [9] from 1996 was found by the authors of [18]. This thesis contains
a number of lower bounds for bin packing problems, including a lower bound of 1.680783 on the
competitive ratio of online algorithms for SP. The result of Blitz [9] is now the previous best lower
bound on the competitive ratio for the problem (prior to our work), and it is higher than the lower
bounds of [25, 16, 18]. Here, we show a much higher lower bound, larger than 1.7515445, on the
competitive ratio of this problem.

Finally, we consider class constrained bin packing (CLCBP) [27, 26, 30, 13]. In this one-
dimensional variant every item has a size and a color, and for a given parameter t ≥ 1, any bin
can receive items of at most t different colors (of total size at most 1), while the number of items
of each color can be arbitrary. This problem generalizes standard bin packing, as for any input
of standard bin packing, defining a common color to all items results in an instance of CLCBP

for any t. It also generalizes bin packing with cardinality constraints, though here to obtain an
instance of CLCBP one should assign distinct colors to all items. We provide improved lower
bounds for t = 2, 3. For t = 2, the previous known lower bound was 1.5652 [13]. For t = 3, the
previous lower bound was 5

3 ≈ 1.6667 [26]. This last result was proved even for the special case
with equal size items. Interestingly, it has elements of adaptivity, but with respect to colors (as
all items have identical sizes), and the input moves to presenting items of a new color once the
algorithm performs a certain action. We show that the competitive ratio of any online algorithm
for CLCBP with t = 2 is at least 1.717668, and that the competitive ratio of any online algorithm
for CLCBP with t = 3 is at least 1.808142.

The drawback of previous results for all those problems is that while the exact input was not
known in advance, the set of sizes used for it was determined prior to the action of the algorithm.
We show here that our methods for proving lower bounds can be combined with a number of other
approaches to result in improved lower bounds for a variety of bin packing problems. We use the
following theorem proved in [4] (see the construction in Section 3.1 and Corollary 3).

Theorem 1 (i) Let N ≥ 1 and k ≥ 2 be large positive integers. Assume that we are given an
arbitrary deterministic online algorithm for a variant of bin packing and a condition C1 on the
possible behavior of an online algorithm for one item (on the way that the item is packed). An
adversary is able to construct a sequence of values ai (1 ≤ i ≤ N) such that for any i, ai ∈
(

k−2N+3

, k−2N+2
)

, and in particular ai ∈
(

0, 1
k4

)

. For any item i1 satisfying C1 and any item i2

not satisfying C1, it holds that
ai2
ai1

> k. Specifically, there are values β and γ such that for any

item i1 satisfying C1, and any item i2 not satisfying C1, it holds that ai1 < γ < ai2 and
ai2
ai1

> β.

(ii) If another condition C ′ is given for stopping the input (it can be a condition on the packing
or on the constructed input), it is possible to construct a sequence ai consisting of N items such that
C ′ never holds, or a sequence of N ′ < N items, such that C ′ holds after N ′ items were introduced
(but not earlier), and where the sequence satisfies the requirements above.

Examples for the condition C1 can be the following: “the item is packed as a second item of
its bin”, “the item is packed into a non-empty bin”, “the item is packed into a bin an item of size

3

above 1
2”, etc. An example for the condition C ′ can be “the algorithm has at least a given number

of non-empty bins”.
The construction of such inputs is based on presenting items one by one, where there is an active

(open) interval of sizes out of which future values ai are selected. When a new item is presented,
and the algorithm packs it such that it does not satisfy C1, all future items will be smaller. If the
algorithm packs a new item such that it satisfies C1, all future items will be larger. This reduces
the length of the active interval. Thus, even though the active interval becomes shorter in every
step where a new item arrives, it always has a positive length. One can see this as a kind of binary
search on the value γ, which will always be contained in the remaining interval (as it remains
non-empty). For example, Fujiwara and Kobayashi [17] used a similar approach and in their work
the middle point of the active interval is the size of the next item, and the active interval has length
that it smaller by a factor of 2 after every step. To obtain the stronger property that items whose
sizes is at least the right endpoint of the active interval are larger by a factor of k than items no
larger than the left endpoint of the active interval, the selection of the next size is performed by a
process similar to geometrical binary search.

Note that an important feature is that the value ai is defined before it is known whether C1

holds for the ith item (the item corresponding to ai, that is, the item whose size is a function of
ai). We will use this theorem throughout the paper. We study the problems in the order they were
defined.

2 Online bin packing with known optimal cost (K-O)

Here, we consider the problem K-O, and prove a new lower bound on the competitive ratio for it.
We prove the following theorem.

Theorem 2 The competitive ratio of any online algorithm for K-O is at least 87
62 ≈ 1.4032258.

Let M be a large integer that is divisible by 4 (M will be the value of the known optimal cost).
We will create several alternative inputs, such that the optimal cost will be equal to M for each
one of them.

We use the following construction. For k = 10 and N = M , define an input built using Theorem
1 as follows applied twice on different parts of the input as explained below. The outline of our
lower bound construction is as follows. The first part of the input will consist of M items of sizes
slightly above 1

7 (such that some of them, those packed first into bins, are larger than the others).
Then, there are M items of sizes slightly above 1

3 (where items packed into new bins are larger than
others, while those combined with items of sizes roughly 1

7 or with another item of size roughly 1
3 ,

or both, are slightly smaller). Finally, the algorithm will be presented with a list of identical items
of one of the three sizes 1 (exactly), or slightly above 1

2 , or slightly below 2
3 , such that every larger

item of size slightly above 1
3 cannot be packed together with such an item (of size slightly below 2

3).
Additionally, after the first M items arrive, it is possible that instead of the input explained here
there are items of sizes slightly below 6

7 , either such that every such item can be packed with any
item out of the first M items, or such that it can only be combined with the smaller items out of
the first M items (due to the property that the size of an item will be just below 6

7 , in both cases
it can be combined with at most one item of size just above 1

7).
Next, we formally define our input sequences. Throughout this section, let the condition C1 be

that the item is not packed as a first item into a bin. The first M items are defined as follows.
Using Theorem 1, we create M items such that the size of item i is 1

7 + ai. These items are called
S-items. The sizes of such items are in (17 , 0.143), and there is a value γ1 such that any item whose
packing satisfies condition C1 has size below 1

7 + γ1 and any item whose packing does not satisfy

4

C1 has size above 1
7 + γ1. The first kind of items are called small S-items, and the second kind of

items are called large S-items.
Let Y7 denote the current number of bins used by the algorithm (after all S-items have arrived),

and this is also the number of large S-items. Two possible continuations at this point are M items
of sizes equal to 4

5 (the first option), and M−⌈Y7

6 ⌉ items of sizes equal to 6
7−γ1 (the second option).

Lemma 3 In both options, an optimal solution has cost M .

Proof. In the first option, an optimal solution has one item of size 4
5 and one item of size no larger

than 0.143 in every bin. It is optimal as every item of size above 1
2 requires a separate bin (where

it can be possibly packed with smaller items).
In the second option, an optimal solution uses ⌈Y7

6 ⌉ bins to pack the large S-items: Every bin
can contain at most six such items, as their sizes are in (17 ,

1
6), each remaining bin has one item of

size 6
7 − γ1 > 0.857, and M − Y7 of them also have one item (each) of size below 1

7 + γ1. This is
an optimal solution as the two larger kinds of items (those of sizes above 1

2 and the large S-items)
cannot be combined into the same bins, and the packing for each of these two kinds of items is
optimal.

In the first case, the algorithm can use bins containing exactly one item to pack (also) an item
of size 4

5 , but it cannot use any other bin again. In the second case, as every bin has exactly one
item of size above 1

7 + γ1, the algorithm uses an empty bin for every item of size 6
7 − γ1.

We explain the continuation of the input in the case where none of the two continuations already
defined is used. The next M items are defined using Theorem 1, and we create M items such that
the size of the ith item of the current subsequence of M items is 1

3+ai (the values ai are constructed
here again, and they are different from the values ai constructed earlier). We call these items T -
items. The sizes of T -items are in (13 , 0.33344), and there is a value γ2 such that any item whose
packing satisfies condition C1 (defined in this section) has size below 1

3 +γ2 and for any item whose
packing does not satisfy C1, it has size above 1

3 + γ2. The first kind of items are called small
T -items, and the second type items are called large T -items.

Here, there are three possible continuations. The first one is M
2 items, all of size 1. The second

one is M items, each of size 0.52. Let Y3 denote the number of new bins created for the T -items,
which is also the number of large T -items (so after the T -items are packed the algorithm uses
Y7 + Y3 bins). If Y3 ≤ M

2 , the third continuation is with 3M
4 items, each of size 2

3 − γ2 (where
2
3 − γ2 > 0.66656). Otherwise (Y3 > M

2), the third continuation is with M − ⌈Y3

2 ⌉ items, each of
size 2

3 − γ2. Thus, in the third continuation, the sizes of items are the same (i.e., 2
3 − γ2) in both

cases, and the number of items is M −max{M
4 , ⌈

Y3

2 ⌉}.

Lemma 4 The optimal cost in all cases (i.e., after the packing of the items of each possible con-
tinuation has been completed) is exactly M .

Note that it is sufficient to show that the optimal cost is at most M , as in the case where it is
strictly smaller than M , it is possible to present items of size 1 until the optimal cost is exactly M ,
while the cost of the algorithm does not decrease. We prove that the value is exactly M to stress
the property that one cannot prove a better lower bound using the same kind of input.

Proof. For the first continuation, an optimal solution packs M
2 bins, each with two S-items and

two T -items, and another M
2 bins, each with one item of size 1. This solution is optimal as every

item of size 1 has to be packed alone into a bin, and no bin can contain more than two items of
sizes above 1

3 .
For the second continuation, an optimal solution packs M bins, each with one item of size 0.52,

one T -item and one S-item. This solution is optimal as no bin can contain more than one item of
size above 1

2 .

5

For the third continuation, the two options for optimal solutions are as follows. In the case
Y3 ≤ M

2 , there are M
4 bins, each with two T -items and two S-items. All large T -items will be

packed into these bins (which is possible as there are M
2 ≥ Y3 T -items packed into those bins).

There are also M
2 − Y3 small T -items packed into these bins. Each of the remaining bins contains

one item of size 2
3 − γ2, where

M
4 of those bins also contain two S-items (which is possible as the

total size will be below 0.143 · 2 + 2
3 < 1), and each of the remaining M

2 bins has one small T -item
(this is possible as the size of each small T -item is below 1

3 + γ2).

In the case Y3 > M
2 , there are ⌈Y3

2 ⌉ bins with two S-items and two large T -items (at most one
bin may contain a smaller number of large T -items). All large T -items are packed into these bins,
and no small T -items are packed into these bins. The remaining bins all contain one item (each) of
size 2

3 − γ2, where
M
2 − ⌈Y3

2 ⌉ of those bins also contain two S-items, and M − Y3 of those bins (not

containing S-items) also contain one small T -item (this is possible as ⌈Y3

2 ⌉+
M
2 −⌈Y3

2 ⌉+M−Y3 ≤ M).
The solution for the second case (i.e., for the case Y3 >

M
2) is optimal as separate bins are needed

for items of size 2
3 − γ2 and large T -items, and the solution obtained for each kind is optimal.

Thus, it remains to prove that in the first case (i.e., in the case Y3 ≤
M
2), the optimal cost is M .

Observe that we showed a feasible solution of cost M , so we need to show that the optimal cost is
at least M . In this case every bin with an item of size 2

3 − γ2 can receive either two S-items or one
small T -item. Consider an optimal solution and let ∆ ≥ 0 be the number of items of size 2

3 − γ2
packed with a T -item. The remaining (M −∆) T -items are packed at most two in each bin, so if
∆ ≤ M

2 , we are done as there are at least 3M
4 + M−∆

2 ≥ M bins. Otherwise, ∆ ≥ M
2 + 1, at most

2(3M4 −∆) S-items are packed with items of size 2
3 − γ2, and M − 2(3M4 −∆) = 2∆ − M

2 S-items
remain to be packed with (M −∆) T -items. Even replacing each T -item with two items of size in
(17 ,

1
6] (virtually, for the sake of proof), we have to pack 2(M −∆) + 2∆− M

2 = 3M
2 items where a

bin can contain at most six items, so at least M
4 bins are needed, for a total of 3M

4 + M
4 = M bins.

This completes the description of the input where we showed that in each case the optimal cost
is exactly M . Next, we consider the behavior of the algorithm. Consider the kinds of bins the
algorithm may have after all T -items have arrived. The T -items do not necessarily arrive, but we
will deduce the numbers of different kinds of bins the algorithm has after the S-items have arrived
from the numbers of bins assuming that the T -items have arrived. This is an approach similar to
that used in [29], where numbers of bins packed according to certain patterns (subsets of items
that can be packed into one bin) at the end of the input are considered, and based on them, the
number of bins already opened at each step of the input are counted. More precisely, if the input
consists of batches of identical (or similar) items, given the contents of a bin it is clear when it is
opened and at what times (after arrival of sub-inputs) it should be counted towards the cost of the
algorithm.

A bin with no T -items can receive an item of size 0.52 if it has at most three S-items and it can
receive an item of size 2

3 − γ2 if it has at most two S-items. The only case where a bin with at least
one S-item and at least one T -item can receive another item (out of a continuation of the input) is
the case that a bin has one of each of these types of items, and it will receive an item of size 0.52.

Let X60 denote the number of bins with four or five or six S-items and no T -items. Such a bin
cannot receive any further items in addition to its S-items. Let X30 denote the number of bins with
three S-items and no T -items. Such a bin can receive an item of size 0.52 (but not a larger item).
Let X20 and X10 denote the number of bins with two S-items and one S-item, respectively, and no
T -items. Out of possible input items, such a bin can receive an item of size 0.52 or an item of size
2
3 −γ2. We distinguish these two kinds of bins due to the possible other continuations after T -items
have arrived. Let X41 denote the number of bins with two or three or four S-items and one T -item.
Such bins cannot receive any further items out of our inputs. Let X11 denote the number of bins

6

with one S-item and one T -item. Let X12 and X22 denote the numbers of bins with two T -items
and one and two S-items, respectively. Obviously, there can be bins without S-items containing
one or two T -items, and we denote their numbers by X01 (one T -item) and X02 (two T -items).

We have five scenarios based on the different options and continuations described above, and
we use ALGi to denote the cost of a given algorithm for each one of them, in the order they were
presented. Let R be the (asymptotic) competitive ratio. Let Ai = lim supM→∞

ALGi

M , which is a
lower bound on the competitive ratio R since the optimal cost is always M (by Lemmas 3 and 4),
so for i = 1, 2, 3, 4, 5 we have the constraint Ai ≤ R. The Ai (for i = 1, 2, 3, 4, 5) will not appear
explicitly as variables in the forthcoming linear program. Instead, we will compute each Ai based
on the other variables in the program and substitute the resulting expression in the constraint
Ai ≤ R. We use yi =

Yi

M and xij =
Xij

M for those values of i and j such that Yi and Xij are defined.
For all thirteen variables there is a non-negativity constraint. In addition, the number of items
should satisfy

∑

i,j j ·Xij = M and
∑

i,j i ·Xij ≥ M (the second constraint is not an equality as in
some cases Xij counts bins with at most (i) S-items). Using the definitions of Y7 and Y3 we have
Y7 = X60 +X30 +X20 +X10 +X41 +X11 +X12 +X22 and Y3 = X01 +X02.

We get the following four constraints:

x41 + x11 + 2x12 + 2x22 + x01 + 2x02 = 1 (1)

6x60 + 3x30 + 2x20 + x10 + 4x41 + x11 + x12 + 2x22 ≥ 1 (2)

y7 − x60 − x30 − x20 − x10 − x41 − x11 − x12 − x22 = 0 (3)

y3 − x01 − x02 = 0 (4)

The costs of the algorithm are as follows. We have ALG1 = M +X60+X30 +X20 +X41 +X22,
ALG2 = M − ⌈Y7

6 ⌉+ Y7, ALG3 = Y7 + Y3 +
M
2 , and ALG4 = X60 +X41 +X22 +X12 +X02 +M .

If Y3 ≤ M
2 , we have ALG5 = Y7 + Y3 − X20 − X10 +

3M
4 , and if Y3 > M

2 , we have ALG5 =

Y7 + Y3 −X20 −X10 +M − ⌈Y3

2 ⌉.
The four first costs of the algorithm (for the first four scenarios) gives the constraints

R− x60 − x30 − x20 − x41 − x22 ≥ 1 (5)

6R − 5y7 ≥ 6 (6)

2R− 2y7 − 2y3 ≥ 1 (7)

R− x60 − x41 − x22 − x12 − x02 ≥ 1 (8)

The two final constraints form two cases (according to the value of y3), and therefore our list of
constraints results in two linear programs (with all previous constraints and two additional ones).
The inputs for the two cases are different, and therefore they are considered separately (due to the
different inputs, there is one other different constraint except for the constraint on the value of y3).
For each one of the linear programs, the objective is to minimize the value of R.

One pair of constraints is y3 ≤
1
2 and 4R− 4y7− 4y3+4x20+4x10 ≥ 3, and the alternative pair

is y3 ≥ 1
2 and 2R − 2y7 − y3 + 2x20 + 2x10 ≥ 2 (observe that the constraint y3 ≥ 1

2 is a relaxation
of the valid constraint y3 >

1
2 , and thus the weaker constraint y3 ≥

1
2 is valid in this case).

Multiplying the first five constraints by the values 2, 1, 3, 2, 1, respectively, and taking the sum
gives:

2x60 + 2x41 + 2x12 + 2x02 + 2x22 − 2x10 − x30 − 2x20 + 3y7 + 2y3 +R ≥ 4 . (9)

For the first case, we take the sum of the sixth, eighth, and tenth constraints multiplied by the
values 2, 20, 5, respectively, and get:

52R − 30y7 − 20y3 − 20x60 − 20x41 − 20x22 − 20x12 − 20x02 + 20x20 + 20x10 ≥ 47 .

7

Summing this with ten times (9) we get 62R − 10x30 ≥ 87, and by x30 ≥ 0 we get R ≥ 87
62 ≈

1.4032258.
For the second case, we take the sum of the seventh, eighth, and tenth constraints multiplied

by the values 1, 4, 2, respectively, and get:

10R− 6y7 − 4y3 − 4x60 − 4x41 − 4x22 − 4x12 − 4x02 + 4x20 + 4x10 ≥ 9 .

Summing this with twice (9) we get 12R − 2x30 ≥ 17, and as x30 ≥ 0, we have R ≥ 17
12 ≈ 1.41666.

Thus, we have proved R ≥ 1.4032258.

3 Online Square packing (SP)

We continue with the online square packing (SP) problem. We prove the following theorem.

Theorem 5 The competitive ratio of any online algorithm for SP is at least 1.7515445.

Here, in the description of the input, when we refer to the size of an item, this means the length
of the side of the square (and not its area). Consider the following input. For a large positive even
integer M and k = 10, we define an input based on using Theorem 1 twice. The construction is
similar to that of the previous section, though here we are not committed to a specific optimal cost,
and we take into account the multidimensionality. Moreover, for one of the item types the number
of such items is also determined by the action of the algorithm (which was difficult to implement
in the previous section when the cost of an optimal packing is fixed in advance, and we did not
use such an approach there as extensively as in the current section). Here, we only compute upper
bounds on the optimal cost for each case.

The outline of the construction is as follows. The first part of the input will consist of M items
of sizes slightly above 1

4 (such that some of them, those packed first into bins, are larger than the
others), then, there are items of sizes slightly above 1

3 (where such items that are packed into bins
containing relatively few items, where the exact condition is defined below, will be larger than other
items of this last kind). Finally, there will be items of one of the sizes: 3

5 , and slightly below 2
3

(all of them will have exactly the same size), such that every larger item of size slightly above 1
3

cannot be packed together with such an item of size slightly smaller than 2
3 . Additionally, after the

first M items arrive, it is possible that instead of the input explained here there are items of sizes
slightly below 3

4 , such that it can be only be combined with the smaller items out of the first M
items (any bin with an item of size slightly below 3

4 may have at most five smaller items out of the
first M items in a common bin).

Next, we formally define the construction. Let the condition C11 be that the item is not packed
as a first item into a bin. This is the condition we will use for items of sizes slightly above 1

4 . For
items of sizes slightly above 1

3 , let the condition C12 be that the item is either packed in a bin
already containing an item of size above 1

3 , or that it contains at least five items whose sizes are in
(14 ,

1
3].
The first M items are defined as follows. Using Theorem 1, we create M items such that the

size of item i is 1
4 +ai. These items are called F -items. The sizes of items are in (0.25, 0.2501), and

there is a value γ1 such that any item whose packing satisfies condition C11 has size below 1
4 + γ1

and for any item whose packing does not satisfy C11, it has size above 1
4 + γ1. The first kind of

items are called small F -items, and the second type items are called large F -items. No matter how
the input continues, as any packing of the first M items requires at least M

9 bins, the cost of an
optimal solution is Ω(M).

Let Y4 denote the current number of bins used by the algorithm, and this is also the number
of large F -items. A possible continuation at this point is ⌈M−Y4

5 ⌉ items of (identical) sizes equal

8

to 3
4 − γ1. Note that such an item cannot be packed into a bin with an item of size above 1

4 + γ1,
as it cannot be packed next to it or below (or above) it, and the remaining space (not next to it
or below it or above it) is too small (the sum of the diagonals of these two items is too large to be
packed into a unit square bin).

Lemma 6 There exists a packing of the items of the presented sequence (in this case) of cost at
most M

5 − 4Y4

45 + 2.

Proof. A possible packing of the items of sizes 3
4 − γ1 together with the (M) F -items is to use

⌈M−Y4

5 ⌉ bins for the new items and combine five small F -items into these bins (one such bin may
have a smaller number of F -items). This packing is feasible as the large item can be packed in
one corner of a unit square bin, leaving an L shaped area of width 1

4 + γ1, the opposite corner will
contain an F -item, and there are two additional such items next to it on each side of the L shaped
area. The remaining large F -items are packed into bins containing nine items each (possibly except
for one bin), such that the number of such bins is ⌈Y4

9 ⌉. The total number of bins in this packing

is at most M
5 − 4Y4

45 + 2.
The algorithm has one large F -item in each of the first Y4 bins and therefore it uses a new bin

for every item of size 3
4 − γ1. Thus, the total number of bins in the packing of the algorithm (in

this case) is exactly Y4 + ⌈M−Y4

5 ⌉.
We explain the continuation of the input in the case where the continuation defined above is

not used. Here, for the construction, we state an upper bound on the number of items as the exact
number of items is not known in advance and it will be determined during the presentation of the
input. There will be at most 1.5M items of sizes slightly above 1

3 . We will use the variables S3

and L3 to denote the numbers of items for which condition C12 was satisfied and was not satisfied,
respectively, in the current construction. Initialize S3 = L3 = 0, and increase the value of the
suitable variable by 1 when a new item is presented. The ith item of the current construction
has size 1

3 + ai, and the sizes of items are in (13 , 0.33344). These items are called T -items. There
is a value γ2 such that any item whose packing satisfies condition C12 has size below 1

3 + γ2 and
any item whose packing does not satisfy C12 has size above 1

3 + γ2. The first kind of items are
called smaller T -items and the second type items are called larger T -items. Present items until
8S3 + 15L3 ≥ 12M holds (this does not hold initially, so at least one item is presented, and this
is defined to be condition C ′). We show that indeed at most 1.5M items are presented. If 1.5M
items were already presented, 8S3 + 15L3 ≥ 8 · (1.5M) = 12M , and therefore the construction is
stopped. In what follows, let S3 and L3 denote the final values of these variables. Before the last
item of this part of the input was presented, it either was the case that 8(S3 − 1) + 15L3 < 12M
or 8S3 + 15(L3 − 1) < 12M (as exactly one of S3 and L3 was increased by 1 when the last item
was presented), so 8S3 + 15L3 − 15 < 12M , or alternatively, 8S3 + 15L3 ≤ 12M + 15. Moreover,
S3 +L3 ≥

4M
5 as 12M ≤ 8S3 +15L3 ≤ 15(S3 +L3). Let M

′ = S3 +L3 (and we have M ′ = Θ(M)).

Here, there are two possible continuations. The first one is (⌊M
′

3 ⌋) identical items, each of size

exactly 0.6, and the second one is ⌊S3

3 ⌋ identical items, each of size 2
3 − γ2.

Lemma 7 The optimal cost in the first continuation is at most M
9 + 7S3

27 + 7L3

27 + 3.

Proof. A possible packing for this case consists of ⌊M
′

3 ⌋ bins with one item of size 0.6, three T -
items, and two F -items (placing the item of size 0.6 in a corner leaves an L shaped area of width 0.4,
so we place one T -item in each of the other corners and in the remaining space between each pair of
adjacent T -items we pack an F -item). As M ′ ≤ 3M

2 , there are M − 2⌊M
′

3 ⌋ ≥ 0 unpacked F -items,

and they are packed into exactly ⌈
M−2⌊M′

3
⌋

9 ⌉ ≤ M
9 − 2M ′

27 +2 bins, where each bin has nine items (the

9

last bin may have less items). In addition, there are at most two unpacked T -items, and they are
packed into a bin together. The total number of bins is at most M

9 + 7M ′

27 +3 = M
9 + 7S3

27 + 7L3

27 +3.

Lemma 8 The optimal cost in the second continuation is at most S3

3 + L3

4 + 2.

Proof. A possible packing for this case consists of ⌊S3

3 ⌋ bins with one item of size 2
3 − γ2, three

small T -items, and two F -items (placing the item of size 2
3 − γ2 in a corner of a unit square bin

leaves an L shaped area of width 1
3 + γ2 where the remaining items are packed). There are at least

(S3 − 2) T -items that were packed and at least (2S3−2
3) F -items are packed. There are also ⌈L3+2

4 ⌉
bins, each with at most four T -items and at most five F -items (there is a square with four larger
items in a corner and the smaller items are packed around them, in the L-shaped area of the bin).
This allows to pack the remaining T -items as there is space for at least S3 +L3 such items, and to
pack all F -items as there is a place for at least 2S3−2

3 +5L3+2
4 ≥ 2S3

3 +5L3

4 ≥ M such items, where
the last inequality holds by the condition 8S3 + 15L3 ≥ 12M . The total number of bins is at most
S3

3 + L3

4 + 2.
Let Y3 denote the number of new bins created for the T -items (where these bins were empty prior

to the arrival of T -items). Here, there may be previously existing bins containing larger T -items
(with at most four F -items), and Y3 ≤ L3. Consider the kinds of bins the algorithm may have after
all T -items have arrived. Once again, T -items do not necessarily arrive, but we will deduce the
numbers of different kinds of bins the algorithm has after all F -items have arrived based on number
of bins existing after the arrival of T -items. After all T -items have arrived, a non-empty bin can
receive an item of size 0.6 if it has at most five items, out of which at most three are T -items. The
construction is such that any non-empty bin except for bins with at most five F -items has either
at least six items in total (each of size above 1

4) or it has an item of size above 1
3 + γ2 (or both

options may occur simultaneously), and therefore it cannot receive an item of size above 2
3 − γ2.

Consider a given online algorithm for SP after the T -items were presented. Let X90 denote
the number of bins with six, seven, eight, or nine F -items and no T -items. Such a bin cannot
receive any further items in addition to its F -items in any of our continuations. Let X50 denote
the number of bins with at least one and at most five F -items and no T -items. Such a bin can
receive any item of size larger than 1

2 that may arrive (but not an item of size 3
4 − γ1). Let X81

denote the number of bins with five, six, seven, or eight F -items and one (small) T -item. Let X41

denote the number of bins with at least one and at most four F -items and one (large) T -item. Let
X72 denote the number of bins with five, six, or seven F -items and two (small) T -items. Let X42

denote the number of bins with four F -items and two T -items (out of which one is small and one
is large). Let X32 be the number of bins with at least one and at most three F -items and two
T -items (out of which one is small and one is large). Let X63 denote the number of bins with five
or six F -items and three T -items (all of which are small). Let X43 denote the number of bins with
three or four F -items and three T -items (out of which two are small and one is large). Let X23

denote the number of bins with one or two F -items and three T -items (out of which two are small
and one is large). Let X54 denote the number of bins with five F -items and four T -items (all of
which are small). Let X44 denote the number of bins with two or three or four F -items and four
T -items (out of which three are small and one is large). Let X14 denote the number of bins with
one F -item and four T -items (out of which three are small and one is large).

Let X03 be the number of bins with no F -items and at least one and at most three T -items,
one of which is a large T -item, while the others (at most two) are small. Let X04 be the number of
bins with no F items and four T -items, one of which is large, while three are small.

We have three scenarios, and we use ALGi to denote the cost of the algorithm for each one
of them, in the order they were presented. Let Ai = lim supM→∞

ALGi

M . The optimal cost is

10

always in Θ(M), and we let OPTi denote our upper bounds on the optimal cost of the ith scenario,
Oi = lim infM→∞

OPTi

M , and the ratio Ai

Oi
is lower bound on the competitive ratio R. We use the

notation yi =
Yi

M and xij =
Xij

M for those values of i and j such that Yi and Xij are defined. Let

ℓ3 =
L3

M and s3 =
S3

M , so 12 ≤ 8s3 +15ℓ3 ≤ 12 + 15
M , and for M growing to infinity, 8s3 +15ℓ3 = 12.

Let R be the (asymptotic) competitive ratio. For all twenty variables there is a non-negativity
constraint. In addition, the number of items should satisfy

∑

i,j j ·Xij ≥ S3+L3 and
∑

i,j i·Xij ≥ M
(once again, the first constraint is inequality and not equality as X03 counts also bins with less than
three T -items, and the second constraint is not an equality as in some cases Xij counts bins with
fewer than i F -items). Using the definitions of Y4 and Y3 we have Y4 = X90 +X50 +X81 +X41 +
X72 +X42 +X32 +X63 +X43 +X23 +X54 +X44 +X14 and Y3 = X03 +X04.

We also have ALG1 = Y4 + ⌈M−Y4

5 ⌉ while OPT1 ≤
M
5 − 4Y4

45 + 2, so

R ≥
A1

O1
≥

1/5 + 4y4/5

1/5− 4y4/45
=

9 + 36y4
9− 4y4

.

Additionally, ALG2 = Y4 + Y3 −X50 −X41 −X32 −X23 −X03 + ⌊M
′

3 ⌋ ≥ Y4 + Y3 −X50 −X41 −

X32−X23−X03+
S3+L3

3 −2 while OPT2 ≤
M
9 + 7S3

27 + 7L3

27 +3, and ALG3 = Y4+Y3−X50+ ⌊S3

3 ⌋ ≥

Y4 + Y3 −X50 +
S3

3 − 1 while OPT3 ≤
S3

3 + L3

4 + 2, so

R ≥
A2

O2
≥

y4 + y3 − x50 − x41 − x32 − x23 − x03 + s3/3 + ℓ3/3

7s3/27 + 7ℓ3/27 + 1/9

and R ≥ A3

O3
≥ y4+y3−x50+s3/3

s3/3+ℓ3/4
.

We get the following set of constraints:

8s3 + 15ℓ3 = 12 (10)

y4 = x90 + x50 + x81 + x41 + x72 + x42 + x32 + x63 + x43 + x23 + x54 + x44 + x14 (11)

y3 = x03 + x04 (12)

x81 + x41 + 2x72 + 2x42 + 2x32 + 3x63 + 3x43 + 3x23 + 4x44 + 4x54 + 4x14 + 3x03 + 4x04

≥ ℓ3 + s3 (13)

x41 + x42 + x32 + x43 + x23 + x44 + x14 + x03 + x04 = ℓ3 (14)

9x90 + 5x50 + 8x81 + 4x41 + 7x72 + 4x42 + 3x32 + 6x63 + 4x43 + 2x23 + 5x54 + 4x44 + x14

≥ 1 (15)

9 + 36y4 ≤ R(9− 4y4) (16)

(y4 + y3 − x50 − x41 − x32 − x23 − x03 + s3/3 + ℓ3/3) ≤ R(7s3/27 + 7ℓ3/27 + 1/9) (17)

y4 + y3 − x50 + s3/3 ≤ R(s3/3 + ℓ3/4) (18)

The optimal objective function value of the mathematical program of minimizing R subject
to all these constraints is approximately 1.751544578513 (and it is not smaller than this number).
Thus, we have proved R ≥ 1.751544578513.

4 Online class constrained bin packing (CLCBP)

In this section we exhibit our approach to proving lower bounds for the last variant of the bin
packing problem which we study here, by improving the known lower bounds for the cases t = 2
and t = 3 of CLCBP. We will prove the following theorem.

11

Theorem 9 The competitive ratios of online algorithms for CLCBP with t = 2 and t = 3 are at
least 1.717668486 and at least 1.80814287, respectively.

The constructions for t = 2 and t = 3 have clear differences, but the general idea is similar. The
outline of the constructions is as follows. Start with a large number of tiny items, all of distinct
colors, so every bin of any algorithm will contain at most t tiny items. Here, the construction is
such that the items packed first into their bins are much larger than other items (large tiny items
will be larger by at least a constant multiplicative factor than small tiny items, but they are still
very small). One option at this point is to continue with huge items of sizes close to 1, all of distinct
colors out of the colors of small tiny items, such that every item of size almost 1 can be packed into
a bin with t small tiny items in an offline solution, one of which has the same color as the huge item
packed with it. Note that no large tiny item can be combined with a huge item, so those items will
be packed separately, t items per bin. The number of huge items is chosen in a way such that the
optimal cost is not increased. Another option to continue the construction (instead of introducing
the huge items) is with items of sizes slightly above 1

3 , where an item packed into a bin already
containing an item of size above 1

3 is smaller than an item packed into a bin with no such item
(but it could possibly be packed with tiny items). It is ensured that bins of the algorithm already
containing t (tiny) items will not be used again by the algorithm by never introducing items of
their colors again. The sizes will be 1

3 plus small values, where these small values are much larger
than sizes of tiny items (including sizes of large tiny items). An interesting feature is that there
will be exactly two items of sizes slightly above 1

3 with each color which is used for such items,
where the idea is to reuse (as much as possible) colors of tiny items packed by the algorithm into
bins with at most t− 1 tiny items (where those tiny items can be large or small), and never reuse
colors of tiny items packed in bins of t items. In some cases (if there are too few such colors which
can be reused), new colors are used as well for items of sizes slightly above 1

3 (but there are still
two items of sizes just above 1

3 for each color). After these last items are presented, the final list of
items will be items of sizes above 1

2 whose colors will match exactly those of items of sizes in (13 ,
1
2]

with the goal of packing such pairs of one color together into bins of offline solutions. There are
two options for the final items. There are either such items not much larger than 1

2 , or there are
items of sizes close to 2

3 , such that such an item having a color of an item of size slightly above 1
3

can be combined into a bin with that item and with at most t tiny items coming from bins of the
algorithm with at most t − 1 items (no matter whether they are small or large, but one of them
has to be of the same color). However, in the case of items of sizes almost 2

3 , only small items of
sizes just above 1

3 will be combined with them in good offline solutions while others are packed in
pairs (of the same color whenever possible, and of different colors otherwise, combining tiny items
where possible).

First, we present the parts of the constructions that are identical for t = 2 and t = 3. The
condition C1 will be that the current item is not the first item of its type packed into its bin,
where a type consists of all items of similar size (the two relevant types are tiny items and items of
sizes slightly above 1

3). Let M > 1 be a large integer divisible by 6. The construction starts with
the first type of items, where these items are called E-items or tiny items, consisting of M items
constructed using Theorem 1. Let the value of k be 20, and the resulting values ai are smaller than
20−22M+2

. The number of tiny items presented is always exactly M (so the stopping condition is
that there are M items), and the size of the ith item is simply ai. Every E-item has its own color
that may be reused in future parts of the construction but not for E-items. Let ε1 and γ1 be such
that the size of any E-item satisfying C1 (which we call a small E-item) is below 2ε1

20 < ε1

t and the
size of any E-item not satisfying C1 (which we call a large E-item) is above 2ε1 (but smaller than

20−22M+2

). Let Xj (for 1 ≤ j ≤ t) be the number of bins of the algorithm with j E-items. Let X
denote the total number of bins of E-items, i.e., X =

∑t
j=1Xj .

12

If huge items arrive now, their number is ⌊M−X
t ⌋ and their colors are distinct colors out of

colors of small E-items. The size of every huge item is 1 − ε1. If Xt ≤ M
2t , there are no other

continuations. In all other cases, there are two possible continuations except for the one with huge
items, which was just discussed.

In all other continuations, items of a second type are presented such that their number is at
most 2M , and they will be called T -items. They are constructed using Theorem 1 with k = 10, so

their values of ai are in (10−22M+3

, 10−22M+2

). We have (by M ≥ 1) 10−2
2M+3

20−22M+2 = 102
2M+2

22
2M+2

1022M+3 =

22
2M+2

104
> 6 > t. The size of the ith T -item is 1

3 + ai, and here condition C1 means that the
T -item is packed by the algorithm as the second T -item of its bin. Let ε2 and γ2 be such that a
T -item satisfying C1 (which we call a small T -item) has size smaller than 1

3 +
ε2

10 and a T -item not
satisfying C1 (which we call a large T -item) has size larger than 1

3 + ε2. The number of T -items is
even, and their colors are such that there are two T -items for each color. These colors are colors of
E-items that are not packed in bins of t E-items by the algorithm. As the number of such E-items
is M − t ·Xt, if the number of T -items is larger than 2(M − t ·Xt), new colors (which were not used
for any earlier item) are used (and for the new colors there are also two T -items for each color).
The variables Z1 and Z2 denote the numbers of bins with at least one T -item and with exactly two
T -items, respectively, used by the algorithm (so Z2 ≤ Z1). The algorithm may use bins with at
most (t− 1) E-items to pack T items (but not bins with (t) E-items, as no additional items have
colors as those items).

For t = 2, the number of T -items is max{2X1, 2X2}. Since 2X2 ≤ M and 2X1 ≤ 2M , the
number of T -items does not exceed 2M . For t = 3, the stopping condition is defined as follows.
First, present items until at least one of Z1 + Z2 + 6X3 ≥ 2M − 1, 3Z1 + 4Z2 ≥ 2M − 7 holds.
Then, if the second condition holds, stop presenting items. If the first condition holds (and the
second one does not hold), continue presenting items until 2Z1 + 3Z2 ≥ 6X3 − 5 holds and stop.
At this time, if the current number of T -items is odd, one additional item is presented. Thus, we
guarantee that the value of Z1 + Z2 is an even number. Since the value X3 is already fixed when
T -items are presented, we analyze the increase in the value of each expression when a new T -item
is presented. If a new item is packed into a bin with no T -item (and it is large), then the value
of Z1 increases by 1 while the value of Z2 is unchanged. Otherwise (it is small), the value of Z2

increases by 1 while the value of Z1 is unchanged. Thus, the value of Z1 + Z2 can increase by at
most 1, while that of 3Z1 + 4Z2 can increase by at most 4, and that of 2Z1 + 3Z2 can increase by
at most 3. Thus, there are two cases. If the first condition that holds is 3Z1 + 4Z2 ≥ 2M − 7,
when it started to hold, the value of the left hand side was increased by at most 4. If another
item is presented to make the number of items even, it could increase by at most 4 again, so
3Z1 + 4Z2 ≤ 2M . If Z1 + Z2 + 6X3 ≥ 2M − 1 holds first (note that the two conditions could
potentially start holding at the same time), then still Z1 + Z2 + 6X3 ≤ 2M . If in the current step
it holds that Z1+Z2+6X3 ≥ 2M − 1 and 3Z1+4Z2 ≤ 2M − 8, at that time, 2Z1+3Z2 ≤ 6X3− 6
holds (as otherwise, taking the sum of Z1 + Z2 + 6X3 ≥ 2M − 1 and 2Z1 + 3Z2 ≥ 6X3 − 5 gives
3Z1+4Z2 ≥ 2M−6 > 2M−7). Therefore in the case the first condition holds first while the second
one does not, additional items are presented and finally 2Z1 + 3Z2 ≤ 6X3 (counting the last two
items). Thus, after all T -items have arrived, it is either the case that Z1+Z2 ≤ 3Z1+4Z2 ≤ 2M or
that Z1 +Z2 ≤ 2Z1 +3Z2 ≤ 6X3 ≤ 2M (as 3X3 ≤ M), so there are indeed at most (2M) T -items.

A matching item for a T -item is an item of size above 1
2 with the same color. There are two

continuations as follows. In the first one, there are items of sizes 0.6, such that there is a matching
item for every T -item (a different matching item for every item, i.e., Z1 + Z2 items of size 0.6
in total). In the second one, there are items of sizes 2

3 − ε2

5 , such that every small T -item has a
matching item (once again, a different matching item for every item, i.e., Z2 items in total). This
concludes the description of our lower bounds constructions for the two cases of t = 2 and t = 3.

13

4.1 The analysis

Let ALGi and OPTi respectively denote the costs of the algorithm and of an optimal solution for
the ith continuation. We use algi = ALGi

M and opti = OPTi

M . This auxiliary notation will assist
us as we would like to find the bounds for M growing to infinity. The competitive ratio satisfies
R ≥ lim supM→∞

algi
opti

= lim supM→∞
ALGi

OPTi
. We will also use xi =

Xi

M and zi =
Zi

M , for values of i

that these variables are defined, and x = X
M .

Consider a given online algorithm and an offline solution after the huge items are presented.

Lemma 10 We have ALG1 = X + ⌊M−X
t ⌋ and OPT1 ≤

M
t .

Proof. Every huge item can be packed with t small E-items, if one of them has the same color as
the huge item. No huge item can be packed with a large E-item in one bin. Thus, the algorithm
has ⌊M−X

t ⌋ bins with huge items (one huge item packed into each such bin), and all of them contain
no other items (as every bin of the algorithm with E-items has a large E-item). A possible offline
solution has ⌊M−X

t ⌋ bins with a huge item and a small E-item of the same color (as the color of

the huge item) and t− 1 other small E-items, and there are
M−t(⌊M−X

t
⌋)

t = M
t − ⌊M−X

t ⌋ bins with
t E-items not packed in the previous set of bins. All E-items are packed, and the total number of
bins is M

t .

Lemma 11 We have R ≥ tx+ (1− x). If xt ≤
1
2t , then the competitive ratio is at least 2− 1

2t .

Proof. In this case we consider the input without continuations. By Lemma 10 and by letting M
grow to infinity, we have alg1 = t−1

t x + 1
t , opt1 ≤ 1

t , and R ≥ (t − 1)x + 1. As Xt ≤
M
2t , at least

M − tXt ≥
M
2 items are packed in bins containing at most t− 1 items, and thus x−xt ≥

1−txt

t−1 and

x ≥ xt +
1−txt

t−1 = 1−xt

t−1 ≥ 1−1/(2t)
t−1 = 2t−1

2t(t−1) . We get R ≥ 4t−1
2t = 2− 1

2t .

Using the first part of the last lemma, we get R ≥ 2x+ (1− x) = x+1 = x1 + x2 +1 for t = 2,
and R ≥ 2x + 1 for t = 3. As we prove lower bounds that are lower than 1.75 for t = 2 and lower
than 1.8333 for t = 3, by the last lemma, it is left to deal with the case xt ≥

1
2t . Note that the

continuation of huge items is still possible for those cases. The remaining part of the analysis is
performed separately for the two cases.

The case t = 2. In this case we assume x2 > 1
4 and therefore x1 < 1

2 < 2x2. As the number of
T -items is 2max{X1,X2}, there are two T -items of any color of an E-item packed alone in a bin
by the algorithm just after the E-items have arrived.

Lemma 12 We have alg2 ≥ x2 + z1 + 2z2, alg3 ≥ x2 + z1 + z2, opt2 ≤ z1 + z2, and opt3 ≤
z1+2z2+2x2−max{x1,x2}

2 .

Proof. The algorithm never reuses bins with two E-items as no further item has color of any of
their colors. If the final items have sizes of 0.6, the bins with one T -item can possibly be reused
(but not those with two such items). The number of final items is the same as the T -items, that
is, Z1 + Z2. If the final items have sizes of 2

3 − ε2

5 , as any bin with at least one T -item has a large
T -item, no bins with T -items can be reused by the algorithm. The number of final items is Z2 in
this case. The lower bounds on the costs of the algorithm follow from the numbers of items of sizes
above 1

2 in the final part of the input, and from the property that they cannot be added to bins
with two tiny items, to bins with two T -items, and in the case of items of sizes 2

3 −
ε2

5 they cannot
be added to any bin with a large T -item (in this case they cannot be added to any bin with at least
one T -item).

14

Consider the following offline solutions. If the final items have sizes of 0.6, every bin contains a
T -item and its matching item of size 0.6. It also contains an E-item of the same color, if it exists
(it is also possible that it exists but it is packed in another bin with a T -item of the same color),
and at most one E-item of another color. As Z1 + Z2 ≥ 2X1 and Z1 + Z2 ≥ 2X2, every E-item
packed alone in the algorithm (after all the E-items arrive) has a T -item of its color (there are two
items with this color, and it can be packed with one of them). Given the number of bins of this
solution, it is possible to add (at most) one E-item, which is packed in bins of two E-items by the
algorithm, to each bin containing an item of size 0.6 (as the number of such E-items is 2X2 and
the number of bins is the number of T -items, that is, at least 2X2). The total size of items in every
bin is below 0.94. Thus, those Z1 + Z2 bins are packed in a valid way and contain all items.

If the final items have sizes of 2
3 − ε2

5 , as E-items have sizes no larger than ε2

60 , it is possible
to pack one small T -item with its matching item of size 2

3 − ε2

5 , and at most two E-items, one
of which has the same color as the small T -item. As there are Z2 small T -items, there are at
least Z1 − Z2 large T -items such that the other T -item of the same color is large, and therefore
there are at least Z1−Z2

2 pairs of large T -items with common colors (as Z1 + Z2 is even, Z1 − Z2

is even too). There are Z1 − Z2 large T -items that are packed in pairs, such that Z1−Z2

2 pairs of
two large T -items of the same color are packed together with one E-item of their color and one
E-item of another color (because it cannot contain items of an additional color). Note that even
if there is a larger number of pairs of large T -items with common colors, exactly Z1−Z2

2 pairs are
packed in this way. The other large T -items and unpacked E-items are simply packed in pairs.
Note that there are (2X2) E-items with unique colors (where no other item has the same color).
We have packed Z2 + Z1−Z2

2 = Z1+Z2

2 = max{X1,X2} < 2X2 items (recall that the number of
T -items is 2 ·max{X1,X2} and it is also Z1 + Z2, while there are (2X2) E-items of unique colors
and the number of other E-items is X1 ≤ max{X1,X2}, while the number of colors of T -items
is max{X1,X2}) that are E-items with unique colors, so there are still such items to be packed.
There are Z1 large T -items, and therefore Z2 such items remain. Therefore, as the number of

unpacked E-items of unique colors is 2X2 −
Z1+Z2

2 , an additional ⌈
2X2−

Z1+Z2
2

+Z2

2 ⌉ = X2 − ⌊Z1−Z2

4 ⌋

bins are used for the pairs. Thus, the number of bins is at most Z2 +
Z1−Z2

2 +X2 −
Z1−Z2

4 + 1 =

X2+
Z1+3Z2

4 +1. In the case Z1+Z2 = 2X2, we have X2+
Z1+3Z2

4 = Z1

2 +Z2+
X2

2 , and in the case

Z1 + Z2 = 2X1, we have X2 +
Z1+3Z2

4 = Z1

2 + Z2 +X2 −
X1

2 . In both cases the number of bins is

at most Z1

2 +Z2 +X2 −
max{X1,X2}

2 . The other E-items are packed with T -items of their colors.
Here we solve two mathematical programs, both minimizing R under constraints including non-

negativity constraints for all variables, and the properties x1 ≤ 2x2, x1+x2+1 ≤ R, x2+z1+2z2 ≤
R(z1 + z2), z2 ≤ z1, and x1 + 2x2 = 1.

The first program is for the case x2 ≥ x1, which is one of the constraints (where z1 + z2 = 2x2).
The other constraints are z2+z1−2x2 = 0, x2+z1+z2 ≤ R(z1/2+z2+x2/2). Solving the program
shows that R ≥ 1.7320507 in this case.

The second program is for the case x1 ≥ x2, which is one of the constraints (and here z1 + z2 =
2x1). The other constraints are z2 + z1 − 2x1 = 0, x2 + z1 + z2 ≤ R(z1/2+ z2 +x2 −x1/2). Solving
the program shows that R ≥ 1.717668486 in this case.

The case t = 3. In this case we assume x3 >
1
6 .

Lemma 13 We have alg2 ≥ x3 + z1 +2z2, alg3 ≥ x3 + z1 + z2, opt2 ≤ z1 + z2, and opt3 ≤
z1+2z2

2 .

Proof. The algorithm never reuses bins with three E-items as no further item has any color of
their colors. Other than that, the arguments for the costs of the algorithm are the same as in the
case t = 2.

15

Next, we analyze offline solutions. In both cases of final items, the difference with the case t = 2
is that every bin can contain two E-items whose colors are unique (either because they come from
bins with three E-items of the algorithm or because the number of colors of T -items is smaller than
the number of items coming from bins of the algorithm with less than three items). It is possible
to add such items to the bins as the size of three E-items is still below ε2

10 .
We first calculate the number of E-items of unique colors (that is, E-items of colors that appear

only once for the entire input). In the case where Z1 + Z2 + 6X3 ≥ 2M − 1 we have in fact
Z1 + Z2 + 6X3 ≥ 2M as the value Z1 + Z2 is even. In this case every E-item packed in a bin
with less than three E-items by the algorithm has two T -items of its color, and it can always be
packed with one of them. In this case the number of E-items of unique colors is 3X3. Otherwise,
the number of E-items of unique colors is M − Z1+Z2

2 , as there are (Z1 + Z2) T -items, and there
are two T -items of each color.

We claim that in the case of final items of sizes 2
3 − ε2

5 , it is possible to pack all E-items of
unique colors, possibly except for a constant number of items which can be packed separately into
a constant number of bins. We claim that there is always space for at least (Z1+1.5Z2−1) E-items
of unique colors. The difference with the case t = 2 is that the bins with the final items can receive
two E-items of unique colors and not only one (and there are Z2 such bins). The bins with pairs
of large T -items of one color can receive two E-items of unique colors (and there are Z1−Z2

2 such
bins), and the remaining bins, with two large T -items of distinct colors can receive one such E-item
(and there are ⌈Z2

2 ⌉ such bins). Thus, it is possible to pack at least (2Z2 +2Z1−Z2

2 + ⌈Z2

2 ⌉) E-items
of unique colors. If their number if 3X3, we also have Z1 + 1.5Z2 ≥ 3X3 − 2.5, so excluding a
constant number of such items, all of them are packed. If their number is M − Z1+Z2

2 , we also have

3Z1 + 4Z2 ≥ 2M − 7, so M − Z1+Z2

2 ≤ Z1 + 1.5Z2 + 3.5. Thus, we find opt2 ≤ z1+2z2
2 . In the case

where the final items have sizes of 0.6, it is possible to pack (2Z1 + 2Z2) E-items of unique colors
in those bins, and opt2 ≤ z1 + z2.

Here we also solve two mathematical programs, both minimizing R under constraints including
non-negativity constraints for all variables. Other constraints are x1+2x2+3x3 = 1, x = x1+x2+x3,
1 + 2x ≤ R, z2 ≤ z1, x3 + z1 + z2 ≤ R(z1 + 2z2)/2, and x3 + z1 + 2z2 ≤ R(z1 + z2).

The first program is for the case where Z1+Z2+6X3 ≥ 2M−1 and −5 ≤ 2Z1+3Z2−6X3 ≤ 0.
These properties result in the constraints z1 + z2 + 6x3 ≥ 2 and 2z1 + 3z2 − 6x3 = 0. Solving the
program shows that R ≥ 1.902018 in this case.

The second program is for the case where Z1+Z2+6X3 ≤ 2M+12 and 2M−7 ≤ 3Z1+4Z2 ≤ 2M
hold. Note that if we stop presenting T -items due to the second case where 2M − 7 ≤ 3Z1 + 4Z2

it means that in the previous (even-indexed) step the first condition Z1 + Z2 + 6X3 ≥ 2M − 1 did
not hold. Therefore, at that time Z1 + Z2 + 6X3 ≤ 2M − 2 holds, and the value of the left hand
side may increase by at most 7 in one step (and thus by at most 14 in the last two steps). Those
properties result in the constraints z1+ z2+6x3 ≤ 2 and 3z1+4z2 = 2. Solving the program shows
that R ≥ 1.80814287 in this case.

5 Summary

We showed that the method of designing fully adaptive instances, previously used for cardinality
constrained bin packing and vector packing [4] (see also [9, 2, 17]) can be used to improve the
known lower bounds for several additional bin packing problems. We analyzed its effect (together
with many additional ideas) for several variants, and expect that it could be useful for a number
of other variants as well.

16

References

[1] S. Angelopoulos, C. Dürr, S. Kamali, M. P. Renault, A. Rosén. Online bin packing with advice
of small size. In Proc. of The 14th International Symposium Algorithms and Data Structures
(WADS’15), 40–53, 2015.

[2] L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing problems
with cardinality constraints. Discrete Applied Mathematics, 143(1-3):238–251, 2004.

[3] J. Balogh and J. Békési. Semi-on-line bin packing: a short overview and a new lower bound.
Central European Journal of Operations Research, 21(4):685–698, 2013.

[4] J. Balogh, J. Békési, Gy. Dósa, L. Epstein, and A. Levin, Online bin packing with cardinal-
ity constraints resolved. The Computing Res. Rep. (CoRR), http://arxiv.org/abs/1608.06415,
2016. Also in ESA’17, to appear.

[5] J. Balogh, J. Békési, Gy. Dósa, L. Epstein, and A. Levin, A new and improved algorithm
for online bin packing. The Computing Res. Rep. (CoRR), http://arxiv.org/abs/1707.01728,
2017.

[6] J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain classes of bin packing
algorithms. Theoretical Computer Science, 440-441:1–13, 2012.

[7] N. Bansal, J. Correa, C. Kenyon, and M. Sviridenko. Bin packing in multiple dimensions:
Inapproximability results and approximation schemes. Mathematics of Operations Research,
31(1):31–49, 2006.

[8] J. Békési, Gy. Dósa, and L. Epstein. Bounds for online bin packing with cardinality constraints.
Information and Computation 249:190–204, 2016.

[9] D. Blitz. Lower bounds on the asymptotic worst-case ratios of on-line bin packing algorithms.
M.Sc. thesis, University of Rotterdam, number 114682, 1996.

[10] J. Boyar, S. Kamali, K. S. Larsen, and A. López-Ortiz. Online bin packing with advice. Algo-
rithmica 74(1):507–527, 2016.

[11] D. Coppersmith and P. Raghavan. Multidimensional online bin packing: Algorithms and worst
case analysis. Operations Research Letters, 8(1):17–20, 1989.

[12] L. Epstein. Online bin packing with cardinality constraints. SIAM Journal on Discrete Math-
ematics, 20(4):1015–1030, 2006.

[13] L. Epstein, Cs. Imreh, and A. Levin. Class constrained bin packing revisited. Theoretical
Computer Science, 411(34-36):3073–3089, 2010.

[14] L. Epstein and A. Levin. On bin packing with conflicts. SIAM J. on Optimization, 19(3):1270–
1298, 2008.

[15] L. Epstein and A. Levin. Robust approximation schemes for cube packing. SIAM Journal on
Optimization, 23(2):1310–1343, 2013.

[16] L. Epstein and R. van Stee. Online square and cube packing. Acta Informatica, 41(9):595–606,
2005.

17

http://arxiv.org/abs/1608.06415
http://arxiv.org/abs/1707.01728

[17] H. Fujiwara and K. Kobayashi. Improved lower bounds for the online bin packing problem
with cardinality constraints. Journal of Combinatorial Optimization, 29(1):67–87, 2015.

[18] S. Heydrich, R. van Stee, Improved Lower Bounds for Online Hypercube Packing. The Com-
puting Res. Rep. (CoRR), http://arxiv.org/abs/1607.01229, 2016.

[19] D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences,
8:272–314, 1974.

[20] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case perfor-
mance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing,
3:256–278, 1974.

[21] H. Kellerer and U. Pferschy. Cardinality constrained bin-packing problems. Annals of Opera-
tions Research, 92:335–348, 1999.

[22] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Analysis of several task-scheduling algorithms
for a model of multiprogramming computer systems. Journal of the ACM, 22(4):522–550, 1975.

[23] F. M. Liang. A lower bound for on-line bin packing. Information Processing Letters, 10(2):76–
79, 1980.

[24] S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671, 2002.

[25] S. S. Seiden and R. van Stee. New bounds for multi-dimensional packing. Algorithmica,
36(3):261–293, 2003.

[26] H. Shachnai and T. Tamir. Tight bounds for online class-constrained packing. Theoretical
Computer Science, 321(1):103–123, 2004.

[27] H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained
packing problems. Journal of Scheduling, 4(6):313–338, 2001.

[28] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100,
Princeton University, Princeton, NJ, 1971.

[29] A. van Vliet. An improved lower bound for online bin packing algorithms. Information
Processing Letters, 43(5):277–284, 1992.

[30] E. C. Xavier and F. K. Miyazawa. The class constrained bin packing problem with applications
to video-on-demand. Theoretical Computer Science, 393(1-3):240–259, 2008.

[31] A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207–227, 1980.

18

http://arxiv.org/abs/1607.01229

	1 Introduction
	2 Online bin packing with known optimal cost (K-O)
	3 Online Square packing (SP)
	4 Online class constrained bin packing (CLCBP)
	4.1 The analysis

	5 Summary

