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Abstract: Few-shot learning is a deep learning subfield that is the focus of research nowadays. This
paper addresses the research question of whether a triplet-trained Siamese network, initially designed
for multi-class classification, can effectively handle multi-label classification. We conducted a case
study to identify any limitations in its application. The experiments were conducted on a dataset
containing Hungarian legal decisions of administrative agencies in tax matters belonging to a major
legal content provider. We also tested how different Siamese embeddings compare on classifying
a previously non-existing label on a binary and a multi-label setting. We found that triplet-trained
Siamese networks can be applied to perform classification but with a sampling restriction during
training. We also found that the overlap between labels affects the results negatively. The few-shot
model, seeing only ten examples for each label, provided competitive results compared to models
trained on tens of thousands of court decisions using tf-idf vectorization and logistic regression.

Keywords: few-shot learning; multi-label classification; triplet loss; Siamese networks

1. Introduction

Humanity has frequently drawn inspiration from nature’s solutions for tackling intri-
cate challenges [1]. High-speed trains, airplanes, and even golf balls offer notable instances
of this phenomenon. Similarly, artificial intelligence follows this trend, particularly in the
context of neural networks simulating the firing of neurons in the human brain [2].

In the recent past, the field of few-shot learning [3–5] has started to build growing
interest [6–9]. One reason for this is that classical supervised machine learning applications
have a significant drawback: they require a relatively large amount of quality training data
for development. However, these are mostly unavailable at the beginning of a machine
learning project. One of the primary solutions to this problem is the manual production of
training data. Nevertheless, it usually requires a significant amount of time and labor. In
some areas, it also needs domain experts who cannot work on other tasks having higher
added value. Another solution is data augmentation [10,11], where artificial data is gener-
ated from existing data in various ways. However, augmentation can distort the properties
of the data, which can negatively impact the machine learning algorithm’s performance.

When a human learns, seeing a few examples is usually enough to understand a
concept and apply it in new situations. Even children quickly learn that a hairy, four-
legged, barking animal is most likely a dog, although they have only seen a few dogs in
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the neighborhood. In addition, they are also able to tell that a cat is more similar to a dog
than it is to a human, even if they have never seen a cat before [5]. The field of few-shot
learning [3,4] tries to mimic this phenomenon and harness its advantages. The problems
tackled by this approach are two-fold. On the one hand, the problem of being able to solve
problems even when only small-sized training data is available. On the other hand, the
problem of quick adaptation to a new, previously unseen problem, e.g., categorizing data
into a new, previously non-existing category.

The appearance of Large Language Models (LLMs) like GPT [12], PaLM [13] or
LLaMA [14] has stirred up the natural language processing field by reaching state-of-
the-art results in many different tasks and performing few-shot classification [6,15,16].
However, among their many advantages, large language models also have disadvantages.
These models are usually not executable on desktop-class hardware, despite the ongoing re-
search aiming to downsize these models [17], and they are typically not exclusively owned
by the user, which also implies vulnerability. Therefore, researching methods that are more
accessible due to their smaller size is still an active area of research today. This is particularly
true if we want to study the practical use of various artificial intelligence-based models.

Machine learning models can only gain traction and have an impact if users can use
them as a function of the services they use to solve specific tasks. This is particularly true in
the legal field, where lawyers encounter machine learning-based solutions embedded into
legal software, such as legal content enriched by additional metadata, semantic similarity
search, etc.. Our research, therefore, focused on how few-shot learning solutions can be put
into practice by a legal data provider.

One popular method for performing few-shot learning is using Siamese networks,
a neural network that learns the similarity of data instances [18,19]. One popular way to
train Siamese networks is to use triplets using the triplet loss introduced by Weinberger
and Saul [20]. The well-known FaceNet [21] was also trained this way. A triplet is formed
by an anchor, which is usually a randomly selected sample, another data point similar to
the anchor, called the positive example, and a data point dissimilar to the anchor, called the
negative example.

Few-shot models usually perform well on multi-class classification problems. How-
ever, the extension to multi-label scenario types is not a trivial problem [22]. Multi-class
categorization is when the model can choose only one label from a set of labels. In the
case of multi-label classification, multiple labels can be chosen for one data point. Multi-
label classification is a relevant field in the legal domain because a legal document can be
characterized by multiple subject matters at the same time.

Our research introduces a series of experiments designed to investigate the feasibility
and constraints of extending a few-shot classifier model trained on triplets to conduct
multi-label categorization on short legal documents. Two experiments were conducted:
(1) performing multi-label classification using a small labeled dataset and (2) testing how
different Siamese solutions work to classify a new category unavailable during training in
a binary classification setting. We compared our results to classical tf-idf-based machine
learning solutions and BERT-based [23] vectors. The effect of overlap between labels on the
results was also investigated.

The paper is organized as follows. In Section 2, the relevant studies are overviewed.
Section 3 introduces the dataset used during this study. The approaches are described
in Section 4, and the experiments performed are detailed in Section 5. The results are
presented and discussed in Section 6. Finally, the conclusions are drawn in Section 7.

2. Relevant Works

Performing few-shot multi-label classification is an area of current scientific interest.
Wang et al. [6] conducted research prompting large language models to automatically
select label mappings to perform multi-label few-shot classification reaching competitive
results. However, as we stated before, we focus in this paper on solutions based on
smaller models, not large language models, so the literature presented below meets this
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requirement. Simon et al. [24] proposed three approaches for tackling this problem: Multi-
Label Prototypical Networks, Multi-Label Relation Networks, and Label Propagation
Networks. Multi-Label Prototypical Networks are an extended version of Prototypical
networks introduced by Snell et al. [9], Multi-Label Relation Networks are inspired by
Relational networks introduced by Sung et al. [7], and Label Propagation Networks are
based on the original idea of Simon et al. [24]. The authors also presented a neural label-
counting module to estimate the number of labels. All approaches provided a solution
for performing multi-label few-shot classification and achieved good results on the testing
datasets. These models are trained with so-called episodes formed by a query set and a
support set. The query set contains data points having multiple labels, and the support set
contains example documents for these labels that also contain multiple labels. Generally,
few-shot learning classification scenarios are called N-way K-shot, where N means the
number of categories to predict, and K stands for the number of examples available per
category. However, in an episode, K only refers to the minimum count of data points for a
given label since every document having multiple labels is present in each category in the
support set, e.g., if a data point in the support set has labels A and B this data point is also
present in both A and B categories in the support set. The authors claim that this episode
structure helps a model with the meta-learning capability to learn the relation between data
points to match representations regardless of the actual semantic meaning of the labels [24].

Cheng et al. [22] also used episodes for training and solved the extension from multi-
class to multi-label by a One vs. Rest episode selection strategy for the sound event
recognition task. Their strategy was to train binary classifiers for each category. Episodes
were created during training by forming multiple support sets defined by the query docu-
ment, e.g., if a query document had labels A and B, two support sets were created, one with
only label A and the rest of the labels in it but not the label B and the other set similarly
having only B but not A in it.

Rios and Kavuluru [25] proposed a solution for few- and zero-shot retrieval on large-
scale hierarchical multi-label medical textual data. Their architecture involves Convolu-
tional Neural Networks (CNNs), Attention [26], and Graph Convolutional Neural Net-
works (GCNNs) [27]. To be able to perform zero-shot learning, labels and textual descrip-
tions of the labels were exploited heavily in this paper. The relevant n-grams of the text are
identified by a CNN and an Attention vector gained by the average of the word vectors of
the labels and by performing label-wise attention a document representation is calculated.
Two layers of GCNNs are used on the labels to extract hierarchical information about the
label space. Finally, the document vectors are matched with the document labels. Hence,
the multi-label part of the problem is tackled architecturally.

Chalkidis et al. [28,29] also performed few-shot and zero-shot multi-label retrieval on
legal documents. They found that Bi-Gated Recurrent Units (GRUs) [30] with self-attention
performed the best. One popular way of training Siamese networks is to use triplets [20].
Sumbul et al. [31] provided a solution for efficient triplet sampling on multi-label image
data. However, the gained embeddings were tested for image retrieval, not for classification
in a few-shot setting. Biswas and Gall [32] introduced Multiple Instance Triplet Loss (MITL)
on the task of multi-label action localization of interacting persons, which is basically
providing action labels for video data that is a multi-label scenario. MITL takes into
account the similarity of bags of pictures instead of the similarity between picture instances.
Melsbach et al. [33] introduced the triplet transformer network for multi-label classification
based on BERT and DistilBERT-based transformer networks trained with triplets. The
study was conducted on radio transcripts, with an average of approximately four labels
per document. The triplets were selected in a similar way as in our study. However, they
did not consider the possible overlap between positive and negative samples and did not
perform hard triplet sampling as we did in our study. The inference strategy involved the
vectorization of the labels and the selection of the top k closest labels. They outperformed
FastText and BERT models with classification heads by a notable margin on their dataset.
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3. Dataset

The dataset used for this study was relatively small-sized, containing 1535 Hungarian
legal decisions of administrative agencies in tax matters. The dataset belongs to a signifi-
cant Hungarian legal content provider, Wolters Kluwer Hungary Ltd. Table 1 shows the
document and sentence-level statistics of the dataset. The Avg. coverage by BERT column
shows, on average, how many tokens are covered on document and sentence level by the
512 token threshold of the Hungarian BERT model, huBERT [34], truncating the texts to
this threshold.

It can be clearly seen that even on the document level the coverage is above 85% and
on the sentence level almost complete coverage could be reached.

Table 1. Character and token-level statistics of the dataset.

Avg. Avg. Coverage by BERT [%]

Document character 2955.96 -

Document token 613.95 85.12

Sentence character 253.68 -

Sentence token 53.42 99.95

This dataset was split into two major parts: one dataset that was labeled using all the
labels consisting of 1084 documents and the binary dataset about the Accounting cases label
with 451 documents. The datasets are described in detail below.

3.1. Multi-Labeled Dataset

A group of legal experts annotated the dataset containing 1084 Hungarian legal
documents from the taxation domain. The manual labeling process was carried out on a
dedicated annotation interface where five legal experts independently tagged the relevant
documents. Four of them received an equal share of documents for annotation, and one
expert validated the results, acting as the main annotator and ensuring data consistency. The
documents were selected randomly for annotation. The train set contained 675 documents,
while the test set comprised 409 documents. The reason for this unconventional split is
that at the project’s start, only the training set was annotated and the test set was created
afterward, only at the end of the project. More than one label could be added to a document,
one document had 1.15 labels on average (see Table 2). The labels that could be applied to
a document can be seen in Table 3.

Table 2. Amount of available data.

Multi-Labeled
Dataset Training Set Test Set

Count 1084 675 409

Avg. label per document 1.149 1.151 1.144

The Accounting cases label was selected to test how the few-shot approaches excel
when a previously unknown category appears. The training documents did not have this
label, while the test dataset did. The distribution of the labels in the training and test sets
can be seen in Table 3.
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Table 3. Distribution of labels in the train and test sets.

Label Train Count Test Count

Tax matters/Tax administration cases 58 12

Tax matters/Tax administration cases/
Tax audit 38 11

Tax matters/Personal
income tax 240 149

Tax matters/Corporate tax 194 103

Tax matters/Value-added tax 146 120

Excise cases 9 3

Education cases 26 4

Gambling cases 12 3

Social administration and
services cases 41 10

Customs duty cases 13 6

3.2. Binary Dataset: Accounting Cases

As mentioned above, the Accounting cases label was unavailable in the training set
(see Table 3). Legal experts annotated this smaller dataset containing 451 documents with
the same approach as described in the previous section. Since binary classification is
significantly easier than annotating with all labels, the dataset was labeled in a binary
way. This dataset served two purposes: training a binary classifier for the Accounting cases
label for the classical tf-idf vectorization and logistic regression setting and for comparing
different few-shot approaches to classify the previously unseen label. Table 4 shows the
distribution of the binary labeled Accounting cases documents.

Table 4. Number of Accounting cases documents labeled in a binary manner.

Count Ratio

Accounting cases 272 60.31%

Non Accounting cases 179 39.69%

Sum 451 100%

3.3. Overlapping of Different Categories

Since the co-occurrence of labels on one document is likely to affect the results, we
examined the co-occurrence of the labels on the multi-labeled training set by producing
a heat map of the co-occurrence of each tag. The co-occurrence matrix was calculated as
follows. First, the product of the multi-label-encoded label matrix Y was multiplied by its
transpose (YYT). This way the co-occurrences of labels with each other were calculated.
This matrix was divided by its diagonal elements to obtain the heat map shown in Figure 1.
A brighter rectangle means that what percentage of the corresponding label in the x-axis
has the other label in the y-axis as well, e.g., around 60% of the Customs duty cases have the
Value-added tax (VAT) label as well, but the other way around the percentage of Customs
duty cases between VAT labeled documents is negligible.
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Figure 1. Heat map of the overlapping labels in the training set.

For tags with low abundance, except for the Excise cases, the proportion of other
tags present is high. Of these, the most affected labels are Customs duty cases (8 out of
13 documents also received the VAT label, 61.5%), Education cases (18/26, 69.2%), Gambling
cases (6/12, 50%) and Social administration and services cases (27/41, 65.9%).

4. Categorization Approaches
4.1. Classical Approach

To put the few-shot results into context, as a control result, tf-idf-based logistic re-
gression classifiers were trained. These binary classifier models for each label, except
the Accounting cases label, have been pre-trained earlier on a significantly larger dataset
containing almost 175,000 court decisions described in detail elsewhere [35]. All of the clas-
sifiers were logistic regression classifiers, using the stemmed, most important 2000 features
selected by ANOVA and chi2 feature selection methods and fine-tuning the C parameter as
shown in Csányi et al. [35]. The classifiers were trained in a one-vs-all binary classification
setting [36] for each label, respectively.

These classifiers were further trained on the training data mentioned in Section 3.
Setting the warm_start parameter to True in the corresponding scikit-learn [37] model.
The documents were stemmed and vectorized using tf-idf vectorization, keeping uni-
and bigrams.

For the Accounting cases label, a binary classifier was trained using the available binary
training data described in Section 3.2, applying the same feature selection methodology as
described above.

4.2. Few-Shot Learning
4.2.1. Siamese Architectures

During the study, we tested two types of Siamese architectures shown in Figure 2.
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(a) (b)

Figure 2. Siamese architectures, (a) Average of BERT CLS vectors of sentences with a dense layer;
(b) BERT word piece embeddings with bidirectional LSTM and dense layers.

Figure 2a shows the first architecture that was built from Dense layers only, while
the average of the Hungarian BERT (huBERT [34]) CLS vectors of the sentences in the
documents was used as input. The huBERT model was not fine-tuned on our legal data,
although during the pre-training phase, the model was exposed to documents from the
legal domain [34]. This approach cannot see the words of the text individually, since this
information is gathered by the internal architecture of BERT. The gained vector was then
fed into the embedding layer that performs the mapping. The Dense layers contained
128 neurons.

In the other case (Figure 2b), we used the BERT word piece embeddings, which were
fed into a bidirectional LSTM network [38], and two layers of Dense nets were used to
create the embeddings. The word piece embeddings were not modified during training.
Note that we did not use the word piece embeddings after flowing them through the BERT
model but the original ones. This approach is closer to applying an LSTM network on word
embeddings. Nevertheless, this method is able to capture information from individual
words in the text, using the BERT word piece embeddings, which essentially allows all text
to be successfully covered, with almost no unknown content parts. The role of the LSTM
network is to learn the relationships between the individual word pieces. The Bi-LSTM
layer had 64 neurons, we concatenated the vectors from both directions and fed these to
the Dense layers having 128 neurons, respectively.

Both architectures were trained using Triplet Loss; hence A, P, and N stand for the
anchor, positive, and negative examples. The idea of Triplet Loss and the definition of these
examples can be found in Section 4.2.2. The concatenation of the three vectors was only for
making Triplet Loss implementation easier.

4.2.2. Triplet Loss

During training the Siamese networks, we used triplet loss introduced by Weinberger
and Saul [20], which was also used in FaceNet [21]. Triplet loss was originally applied in
image classification tasks nevertheless, it can be easily applied to texts as well. To train
the model with this loss one needs three examples at a time. Firstly, the anchor, which is
a sample document having, e.g., label A. Secondly, a positive example that has the same
label as the anchor. Thirdly, a negative example that does not have the same label as the
anchor, e.g., has the label B. The aim of the training is to learn a mapping that puts the data
points sharing the same label close to each other while pushing others away. The loss is
calculated as follows:

Loss = max(d(A, P)− d(A, N) + α, 0) (1)
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where d() is a distance function, in our case Euclidean distance, d(A, P) is the distance
between the anchor and the positive examples, and α is a margin value needed to avoid the
trivial solution when the embedding of P and N remain identical or even zero vector if α
was set to 0. Hence, α must be a non-zero value, we set it to 0.2 as in the Facenet paper [21].

4.2.3. Triplet Sampling

The selection of the triplets in the case of a multi-label setup is not straightfor-
ward [22,24]. Consider the following examples shown in Table 5.

Table 5. Examples for problematic triplets.

Anchor Positive Negative

A, C A B, C

A A, C B, C

When generated randomly, both examples could occur. However, we filtered the first
and allowed the second type example. The problem with the first example is that the anchor
and the negative examples share a common label namely, label C. Hence, the distance
between the anchor and the positive should be smaller than the distance between the anchor
and the negative examples, which contradict each other and would harm the training.

The second example shows another interesting case when the positive and negative
examples share a common label. In this case, the positive and negative labels should remain
relatively close to each other but in a way that the positive example should be closer to the
anchor than the negative example. These types of triplets were allowed during training.

Training a Siamese network by generating the triplets randomly during the whole
training would be very inefficient since the number of triplets that have non-zero loss
is decreasing over time [32]. Hence, we applied two strategies to make training harder,
namely selecting the hardest negative and hardest positive examples. The former means
that for a given anchor we select the closest negative example and the latter means that we
select the farthest positive example. These strategies were applied simultaneously as well.

4.2.4. Training

The anchors in the triplets during training were sampled uniformly for each label,
making the Siamese network see the same number of examples for each label. This means
that the labels with low abundance were over-sampled during training, while the ones
with high abundance were under-sampled.

The training phase started with uniformly and randomly sampling the documents
in batches. When the model was gaining little from random sampling, we sampled more
and more hard triplets. The hard triplets were sampled as follows. The batch one triplet
with 25% likelihood used both the hardest positive and negative sampling, the 25–25%
likelihood used only one type of the hardened samplings, and the 25% likelihood was
not hardened at all. In the first 200 epochs, we applied hard sample selection with 0%
probability, then with 2.5%, 5%, and 7.5% probability for 100 epochs, respectively. During
the training, the learning rate remained fixed with the default setting and Adam optimizer
was used. This way the training remained stable. Both architectures were trained until the
loss was approximately 0.01.

5. Experiments
5.1. Few-Shot Binary Classification

The first experiment was performed using the Accounting cases data set introduced in
Section 3.2. The aim of this experiment was to measure how effectively the embeddings
gained from the Siamese networks could be used when only a few labeled documents
are available. The dataset was split in a stratified manner keeping 80% of the data as the
training set and 20% as the test set. We randomly sampled positive and negative examples



Information 2023, 14, 520 9 of 17

from the training set in a 1:1 ratio and trained a logistic regression classifier on the selected
data. The trained classifier was evaluated on the test set. This process was repeated 5 times
for each setting. The number of sampled positive and negative documents were 1, 2, 5, 10,
20, 50, 100, and 180 (all data), respectively.

To provide a fair comparison, besides the Siamese networks, we also tested how the
BERT CLS vectors and the average of sentence BERT CLS vectors would perform in this
task with the same amount of data. The main difference between these models comes from
the fact that the huBERT model is only capable of covering 512 tokens at a time, and not
dealing with the rest. Although on average 85% of the document tokens are covered by the
512 tokens (see Table 1), also there is a possibility of losing important information. This
was addressed by splitting the documents into sentences, vectorizing, and averaging the
vectors for a document representation that covered above 99.9% of the dataset on the token
level.

5.2. Few Shot Multi-Label Classification

The aim of the second experiment was to test how the Siamese embeddings would
perform in a non-binary, multi-label few-shot classification setting. During the test, the
test dataset containing 409 documents was used. This dataset is fully labeled, not just in a
binary manner as the Accounting cases dataset.

Since we had 11 different categories (the Accounting cases category included) we
performed 11-way K-shot learning setting K to 1, 2, 5, 10, 20, and 50.

The support set selection was performed as follows. Since one document could have
more labels, it could also belong to multiple support set categories. However, this could
result in more difficultly distinguishable categories in cases when the overlap with another
category is high. Hence, only documents with single labels were used as support set ele-
ments. The support set was selected from the training set containing 675 documents. When
the count of the available documents was sufficient, the sampling was performed without
replacing, when not, with replacing. The elements of the support set were vectorized and
averaged for each category, respectively. Since the selection of the samples in the support
set has an effect on the results we repeated this process three times and averaged the results.

The categorization was performed as follows. The document to be categorized was
vectorized and the Euclidean distances to the support set vectors were calculated. In the
case of multi-class classification selecting the closest category makes the categorization
process straightforward since in this case, the document is classified as the closest label.
However, when performing multi-label classification either the number of the classes
should be known or the training of an additional sigmoid layer on the distances is required.

An example is shown in Figure 3. The vectors for the support set elements are black,
and with red color, the query document is shown. It can be seen that the red triangle is
closest to the Tax matters/Personal income tax category, and since the document had only one
label originally, it is labeled with this label.

For the sake of simplicity, we assumed that the number of correct labels is known.
Hence, during categorization, the closest n number of labels was added to a given document
where n is the number of labels of the true label.
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Figure 3. Categorization based on distance.

6. Results and Discussion
6.1. Few-Shot Binary Classification

The results of the first experiment are shown in Figure 4. As an evaluation metric,
F0.5 was chosen, which is also calculated from the precision and recall values but puts
more weight on precision. This is because, in a production system, the users would
prefer accurate labels for the documents, instead of obtaining all labels, as shown in
Orosz et al. [39], and Csányi et al. [35]. The reason for not having any variance in the case
of the last results is that all of the available data was used for training.

Figure 4. Comparison of few-shot learning methods on Accounting cases (binary data)

The Siamese networks did not produce the expected results in either case. Head-
to-head, the two types of BERT approaches proved to be the best: BERT CLS vector
(indicated correspondingly as ’BERT CLS’ in Figure 4), and BERT CLS vectors of sentences
averaged (’BERT avg’ in Figure 4). Both cases were generally within standard deviations



Information 2023, 14, 520 11 of 17

and produced increasing F0.5 values as the training samples increased, reaching 75.8% and
77.3%, respectively. The BERT + LSTM approach reached only 66.04% while the BERT
avg. + Dense approach could only reach 59.34% F0.5 score using all training data available.

According to the results, the vector representations gained from Siamese networks
did not meet the original expectations, because these models could not provide a valuable
vector representation for a previously unseen label compared to BERT CLS-based vectors.
Nevertheless, in the case of the LSTM approach, this could result from not feeding the
LSTM networks by the context-aware word piece embeddings. Another factor explaining
this phenomenon could be the transferred knowledge of the BERT model [40] that was not
present in the LSTM architecture. Nevertheless, this does not explain the inferiority of the
BERT avg. + Dense approach.

6.2. Few-Shot Multi-Label Classification

The results of the second investigation are shown below. As evaluation metrics, the
micro average F1 value, the percentage of non-matching documents, and the F0.5 value of
the Accounting cases label were selected. The percentage of non-matching documents was
calculated by counting the documents that did not share at least one common label in the
predicted and actual labels.

Figure 5 shows the effect of increasing the number of elements in the support set on
the micro average F1 metric of the different approaches. It can be seen that the Siamese
BERT avg. + Dense solution performed by far the best, reaching a micro F1 mean of 80%
already at K = 5, which increased only slightly thereafter as K increased. Interestingly, the
BERT CLS and the BERT + LSTM solutions did not perform better with increasing K, while
BERT avg. moderately increased.

Figure 6 shows the effect of increasing the number of support set elements on the
F0.5 metric measured on Accounting cases. An increasing trend was only observed for the
Siamese BERT avg. + Dense solution, while in the other cases the F0.5 of the labeling tended
to stagnate or decrease. This leads to the conclusion that the Siamese LSTM + Dense
network could not provide a good Siamese model for this task either. It is also worth noting
that the BERT avg. + Dense Siamese network was not trained with hardened sampling,
which might have improved its performance even more.

Figure 5. Micro average F1 of classification by increasing support set (multi-labeled data).
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Figure 6. F0.5 of Accounting cases classification by increasing support set (multi-labeled data).

Figure 7 shows the effect of increasing the number of support set elements on the
percentage of non-matching documents alongside the different approaches. It can be
seen that the Siamese network trained on BERT averages performed best, in all cases
significantly outperforming the other solutions. After 10 samples, it only failed around 15
out of 100 at the document level, which is also a good result. Note that this evaluation is
strict when hierarchical labels are involved since even if misclassification happens between
hierarchically connected labels, it is counted as a bad classification although the results are
clearly not as bad as confusing with another, hierarchically not connected label.

Figure 7. Percentage of falsely labeled documents by increasing support set.

The experiment of few-shot multi-label classification yielded completely different
results compared to the binary classification. At this task by a high margin, the Siamese
network fed with averaged BERT sentence vectors proved to be the best approach on
all tasks.

6.3. Comparison with Classical Classifiers

In order to put the few-shot multi-label classification results into context we also
compared them to the classical tf-idf and logistic regression-based classifiers described
in Section 4.1. The results can be seen in Table 6. The best results are highlighted with
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bolding. ’Few-shot’ in the table means the BERT avg.+Dense solution with distance-based
classification using 50 examples per category in the support set.

Table 6. Comparison of classical and few-shot approaches.

Approach Micro F1 Macro F1
Accounting Document Level
Cases F0.5 Complete Match Partly Match No Match

Classical 88.66% 76.62% 53.19% 77.49% 16.49% 6.02%
Few-shot 81.67% 68.33% 59.00% 78.73% 6.93% 14.35%

The results show that in some metrics the few-shot approach could surpass the tested
classical tf-idf and logistic regression-based method. This clearly shows the power of the
few-shot approach since the classical classifiers were trained on nearly 175,000 documents
before being further trained on the dataset presented in this paper. Moreover, the few-shot
model has not even been trained on the Accounting cases label and even this way it was
better by 6.78% in F0.5 score on this label. Not to mention that the percentage of perfectly
labeled documents was also better by 1.24%. However, in micro average F1 score the
classical method performed better by almost 7%, while in macro average F1 by 8.29%.

6.4. Effect of Overlapping Labels on Triplet-Trained Siamese Networks for
Multi-Label Classification

Although there are few-shot training approaches that support multi-label categorizing
scenarios by definition [24] our results suggest that Siamese networks trained with triplet
loss can be also applied using distance-based classification using restricted sampling. This
approach was designed to tackle multi-class-type problems, not multi-label-type ones. In
fact, it is not trivial why the triplet-loss-based approach works. The Siamese net trained with
triplets ensures that each document belonging to the same category is mapped close to each
other. However, when one document belongs to multiple categories these categories will
not be completely separable since there will be a common part, a border in the embedding
space where these documents are. Hence, this also means that the categories that have
common labels will be mapped close to each other. This is what makes the distance-based
evaluation approach work in a multi-label setting.

However, the level of overlap between labels probably highly affects the usability of
triplet training. The results shown in Table 7 reinforce this statement. This table shows the
classification report of the best-performing Siamese approach (50-shot BERT avg.+Dense)
on the test set. The table also shows the train and test counts of the labels alongside the
overlaps of the labels in the case of the train and test sets. The overlaps were calculated as
follows. The columns of the matrix are shown in the heat map in Figure 1. were summed
and subtracted 1 from each element of the sum vector. This way, the ratio of other labels that
are present alongside a given label can be calculated. Note that this ratio can be higher than
one in the case when the given label is present in documents having more than two labels.

Figure 8 shows the F0.5 results plotted against the overlap ratios of the training set
since this affects the results both during training time and classification time since the
support set elements are also selected from this set. The Figure also shows how many
documents were present in the training set since this factor affects the results.
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Table 7. Results on test set with counts and overlaps.

Precision Recall F0.5
Train
Count Test Count

Training
Set

Overlap

Test Set
Overlap

Tax matters/Tax administration
cases 0.62 0.67 0.63 58 12 0.19 0.25

Tax matters/Tax administration
cases/Tax audit 0.83 0.45 0.71 38 11 0.24 0.36

Tax matters/Personal income
tax 0.94 0.82 0.91 240 149 0.29 0.15

Tax matters/Corporate Tax 0.83 0.92 0.85 194 103 0.18 0.23
Tax matters/Value-added tax 0.91 0.88 0.90 146 120 0.19 0.18

Excise cases 1.00 1.00 1.00 9 3 0.11 0.00
Education cases 0.38 0.75 0.42 26 4 0.69 1.20
Gambling cases 0.50 0.67 0.53 12 3 0.50 0.33

Social administration and
services cases 0.41 0.70 0.45 41 10 0.66 0.50

Accounting cases 0.62 0.66 0.63 N/A 47 N/A 0.74
Customs duty cases 0.57 0.67 0.59 13 6 0.62 1.00

Figure 8. Effect of overlapping labels on test set F0.5 performance, training set overlaps.

The results suggest that by increasing overlap the F0.5 score decreases and the majority
of the labels are formulating a line. The abundance of labels is another factor that usually
affects the results. Although the worst-performing labels usually were the ones with lower
abundance, there were two major exceptions: the Excise cases having the lowest abundance
performed the best, and the Social administration and services cases performed the second
worst while there were five other labels with lower abundance. The worst-performing
label, Education cases, was also outperformed by three smaller abundance labels. This
suggests that the level of overlap plays a significant role in how the triplet-trained Siamese
models perform.

Two labels are somewhat off of the line in Figure 8: Tax administration cases and the
Tax administration cases/Tax audit labels. These are the only real hierarchical labels in this
dataset. The reason for this is probably that during the evaluation of F0.5 these labels can
be affected the most because we only calculate perfect matching although it is clear that
mixing up a Tax audit label with a Tax administration cases label is not the same as mixing it
up with any of the other labels. If we tend to mix these two labels with each other, it can
cause both of the results of these labels to decrease.

Another explanation is that hierarchical labels need some extra attention in order to
perform optimally. Here, we did not exploit the fact that these labels are hierarchical; thus,
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when the two closest labels had to be chosen, it could easily happen that both elements
of the hierarchy are chosen during classification, which is redundant. Lastly, another
explanation could be that the way of training is not working well for hierarchical labels.
However, to answer the above-mentioned questions, further investigation is needed.

7. Conclusions

The main research question of this paper was to investigate whether it is possible to
train Siamese neural networks using triplet loss with a multi-label setting. The applicability
of Siamese networks has been tested in a multi-label categorization setting with hierarchical
labels. A test for classifying a previously unseen category was also carried out using a
binary dataset. Two Siamese architectures were tested, both BERT-based but one containing
only Dense type neural layers and the other containing LSTM layer as well. The research
has revealed that triplet-trained Siamese networks can be applied to perform classification
but with a restriction of sampling during training. The BERT+Dense Siamese network
worked the best to perform the classification on the previously unseen, newly added label in
a multi-label categorization setting on every measure (F0.5, micro F1 avg., percentage of non-
matching documents). However, in a binary classification setting, the Siamese networks
underperformed the BERT-based control embeddings by a great margin. The model was
able to reach competitive results compared to models trained on tens of thousands of
documents using tf-idf vectorization and logistic regression for most of the metrics tested
while being trained only on 10 documents. One of the main results is that the level of
overlapping with other categories has a negative effect on classification and has a greater
effect than the number of labels of each category. Finally, as the research was carried out
on a single dataset, further studies are needed to state the conclusions with full certainty;
however, the results of the current study provide a good basis for further research.
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