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Abstract: The majority of potentially preventable mortality in trauma patients is related to bleeding;
therefore, early recognition and effective treatment of hemorrhagic shock impose a cardinal challenge
for trauma teams worldwide. The reduction in mesenteric perfusion (MP) is among the first com-
pensatory responses to blood loss; however, there is no adequate tool for splanchnic hemodynamic
monitoring in emergency patient care. In this narrative review, (i) methods based on flowmetry,
CT imaging, video microscopy (VM), measurement of laboratory markers, spectroscopy, and tissue
capnometry were critically analyzed with respect to their accessibility, and applicability, sensitiv-
ity, and specificity. (ii) Then, we demonstrated that derangement of MP is a promising diagnostic
indicator of blood loss. (iii) Finally, we discussed a new diagnostic method for the evaluation of
hemorrhage based on exhaled methane (CH4) measurement. Conclusions: Monitoring the MP is
a feasible option for the evaluation of blood loss. There are a wide range of experimentally used
methodologies; however, due to their practical limitations, only a fraction of them could be inte-
grated into routine emergency trauma care. According to our comprehensive review, breath analysis,
including exhaled CH4 measurement, would provide the possibility for continuous, non-invasive
monitoring of blood loss.

Keywords: hemorrhagic shock; monitoring blood loss; mucosal circulation; superior mesenteric
artery perfusion; methane

1. Introduction

Despite the development of trauma care in the past few decades, roughly 25% of
post-injury mortality may be potentially preventable by early detection and proper treat-
ment of life-threatening deteriorations. The further development in the management of
hemorrhagic shock (HS) is of utmost importance, since HS can be referred as the main
cause of potentially preventable trauma mortality [1–3].

Regarding the recognition of HS, the challenge is to identify its impending presence in
the pre-shock state. To date, the initial hemodynamic assessment of the injured relies on
vital signs (VS) such as heart rate, and metabolic markers such as base deficit (BD) and lac-
tate [4–6]. However, the specificity of VS and metabolic markers for hypovolemia remained
questionable, since several factors such as medication, alcohol intoxication, administration
of crystalloids (lactated ringer or saline), or even advanced age can diminish their reliabil-
ity [7–11]. Furthermore, VS, BD, and lactate are global markers of shock that are maintained
at near-normal levels until the compensatory mechanisms of the individual patient become
fully exhausted. Consequently, derangements of these indicators during blood loss may
remain subtle in the pre-shock state and become apparent when the changes are already
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non-reversible. In contrast, hemorrhage induces early compensatory mechanisms and
temporospatial differences in regional perfusion hallmarked by a redistribution of blood
flow from non-vital organs (e.g., the gut and the skin) towards vital vascular beds (i.e., the
coronary and cerebral areas) [12,13].

Additionally, the evaluation of the efficacy of treatment is often challenging. Increas-
ing urinary output is a reasonably sensitive marker of improving hemodynamic status;
nevertheless, underlying kidney injury, hyperglycemia, or diuretic agents can limit its
accuracy [6]. Invasive monitoring methods such as pulmonary artery catheterization offer
substantial benefits; however, they are hardly applicable during the initial phase of therapy
due to patient positioning and time factor [14,15].

In addition to VS and metabolic markers, hemoglobin (Hb) and hematocrit (Hct)
levels are the most frequently used indicators of blood loss due to their several advantages
including easy accessibility either with standard laboratory or minimally invasive point of
care (POC) testing. However, their diagnostic values in the initial management of trauma
patients remains controversial [16]. Initial Hb and Hct levels are influenced by many
factors that are not associated with bleeding, such as the patient’s age, gender, weight, and
underlying conditions including anemia [17,18]. Furthermore, the on-site Hb values are
often lower due to the almost immediate fluid refilling from the interstitium to restore the
intravascular volume, early after sustaining trauma. Then, prehospital fluid resuscitation
induces further hemodilution and fall in Hct and Hb. Therefore, serial measurements are
recommended for the evaluation of trauma-related hemorrhage [18,19], but the results are
still controversial [17,20].

Imaging modalities are important adjuncts to the initial hemodynamic assessment in
trauma care. Computer tomography (CT) is a reliable method for detecting internal hemor-
rhage; however, it requires transportation out of the emergency department, resulting in
unfavorable time delays. As compared to CT, ultrasound has notable advantages including
bedside availability, lack of radiation, reproducibility, and low costs [21]. The focused
assessment with sonography in trauma (FAST) and extended FAST (eFAST) protocols can
be performed in less than 5 min and display high sensitivity and specificity for hemoperi-
toneum, hemopericardium, and hemothorax. [22]. Nonetheless, eFAST is hampered by
several limitations. Most importantly, the reliability of POC ultrasound depends on the
experience of the user and the patient’s body composition. Additionally, visualization of
retroperitoneal hemorrhage and differentiation between blood and urine are hardly feasible
with ultrasound [21].

Ultimately, no gold standard technique exists for diagnosing and assessing hemor-
rhage in severe trauma; thus, decision-making is commonly based on a combination of
tests, which all have their strengths and limitations. Frequently used tests for the initial
hemodynamic assessment of trauma patients are presented in Figure 1, with respect to
their accessibility, applicability, sensitivity, and specificity for blood loss scored from 1 to 3
with an arbitrary scaling (Figure 1).

Accessibility refers to the availability of the requirements for implementing the tech-
nique, such as machinery, proper instruments, and specially trained personnel. Promptly
available vital signs and blood gas parameters obtained the highest accessibility (3). Al-
though urinary catheterization is mostly easy to perform, the hourly diuresis can hardly be
determined promptly. Furthermore, catheterization is contraindicated if urethral injury is
suspected (e.g., in case of perineal or scrotal hematoma or blood at the meatus) [6]. Due
to these limitations, urinary output was judged to carry a moderate level of accessibility
(2) in emergency trauma. CT angiography and measurement of pulmonary artery pressure
are widely available; nevertheless, they require specific equipment and staff, entailing a
medium accessibility (2) for the method. Microcirculatory measurements and monitor-
ing mesenterial blood flow are not routinely utilized techniques and they need a more
sophisticated instrumental background. Consequently, their accessibility was ranked the
lowest (1).
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Figure 1. Characterization of frequently used tests for assessing blood loss. eFAST = extended focused
assessment with sonography in trauma, CT = computer tomography, SMA = superior mesenteric
artery.

Applicability is confined to feasibility for continuous monitoring. The parameters
and techniques allowing real time monitoring (e.g., pulse oximetry, urinary output, etc.)
received the highest applicability (3). The applicability was judged as moderate (2) if
monitoring is not a feasible option, but repeated measurements can be performed easily
(e.g., blood gas parameters). Although CT angiography can be repeated, executing several
CTs during the early phase of patient management is unpractical and potentially dangerous,
as it is relatively time consuming and it requires the transportation of the patient to the
radiology unit. Therefore, CT angiography obtained the lowest applicability score (1).
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Sensitivity refers to the capability used in terms of prompt indication of blood loss and
changes in the hemodynamic status of patients. CT angiography, pulmonary artery pres-
sure monitoring, mesenterial blood flow, and microcirculatory changes of gastrointestinal
vascular beds are considered as highly sensitive indicators of blood loss [23–25]. Addi-
tionally, a high sensitivity score (3) was associated with pulse oximetry, as it indubitably
reacts to hypoperfusion, although this reaction may be an absent or inaccurate reading.
Being more reliable than conventional metabolic markers and vital signs, urinary output,
eFAST, Hb, and Hct received medium sensitivity scores (2) [6,21,26,27]. Despite being
useful markers in the early assessment of trauma patients, HR, blood pressure, lactate, and
BD obtained a sensitivity score of 1 due to the compensatory mechanisms of the body and
external influencing factors potentially keeping these values in normal range in the early
phases of hemorrhage [6,12].

Specificity refers to the selectivity of the technique for volume depletion and bleeding.
Methods directly examining macro- or microvascular systems received the highest speci-
ficity value (3). Hb and Hct also obtained a high specificity score (3) for bleeding [16,28,29].
Metabolic markers and cardiovascular vital parameters such as HR and SBP were judged to
hold medium specificity for bleeding, since several other factors can influence their values
as discussed above. Pulse oximetry is routinely performed to assess blood oxygenation
in most emergencies and critical care settings. However, since low perfusion degrades
the performance of pulse oximetry, it aims primarily to draw attention to respiratory
insufficiencies [30]. For this reason, pulse oximetry obtained the lowest specificity score (1).

Ultimately, it is important to emphasize that the above-described scoring is arbitrary,
even though its foundation relies on scientific data. The main goal of this scoring is to
illustrate trends and highlight the lack of an easily accessible, highly applicable test with
high sensitivity and specificity, calling for further research in the diagnostics of acute
blood loss.

Commonly used tests for the initial hemodynamic assessment of trauma patients are
presented by highlighting their accessibility, applicability, sensitivity, and specificity for
blood loss, based on arbitrary scoring. Mesenterial blood flow refers to the superior mesen-
teric artery perfusion, while mesenteric mucosal microcirculation concerns specifically
microperfusion. Darker colors and higher numbers indicate higher value (easier accessibil-
ity, better applicability, higher sensitivity and specificity). Here, accessibility refers to the
availability of the requirements for implementing the technique, such as machinery, proper
instruments, and specially trained personnel, while applicability is confined to feasibility
for continuous monitoring. Sensitivity is capability used in terms of prompt indication
of blood loss and changes in the hemodynamic status of patients. Specificity refers to the
selectivity of the technique for bleeding; thus, highly specific methods are characterized
by reliability for indicating bleeding without being influenced by other factors such as
medication, pain, or anxiety. Although vital signs such as heart rate and blood pressure are
easily accessible and applicable, they display poor sensitivity and specificity for blood loss.
Blood gas parameters, laboratory markers, and imaging modalities provide substantial
benefits; however, they do not allow continuous monitoring. Monitoring pulmonary artery
pressure and superior mesenteric artery flow blood flow have only the lack of accessibility
as a major disadvantage. Making these parameters more accessible in emergency situations
by developing prompt and non-invasive techniques to measure them may significantly
improve the quality of care.

The reduction in mesenteric perfusion (MP) is among the first compensatory reactions
to blood loss, thereby being a potential early clinical indicator of hemorrhage [23,31]. This
review offers an insight into the currently available techniques for the evaluation of MP
and discusses the possibility of a promising new method that may lead to future quality
improvement in emergency trauma care.
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2. Materials and Methods
2.1. Setting the Aim

Some of the authors face the hardships of emergency trauma care day by day. Quality
improvement consultations are scheduled on a regular basis in order to designate areas of
development in patient care. We agreed that the early recognition of internal hemorrhage
is a critical issue that requires improvement in the future. Based on previous studies of our
research group, we believed that utilizing the rapid alterations of mesenteric perfusion in
circulatory volume depletion has the potential to facilitate this process. For this reason, we
decided to provide a comprehensive review of the currently available techniques for the
assessment of mesenteric perfusion in the context of emergency trauma.

2.2. Data Collection Methods

As a narrative review, data collection was performed from multiple sources, not exclu-
sively from one systematic search. As a first step, the authors listed all methods that were
theoretically applicable for the assessment of mesenteric perfusion in the clinical setting.
The literature was reviewed by two authors independently, based on a search in MEDLINE
(via PubMed) database with the following search terms: “monitoring” AND (“mesen-
teric perfusion” OR “splanchnic perfusion” OR “intestinal perfusion” OR “mesenteric
circulation” OR “splanchnic circulation” OR “intestinal circulation”) AND (“bleeding” OR
“haemorrhage” OR “hemorrhage” OR “haemodynamic” OR “hemodynamic”). This search
yielded 106 papers which were assessed based on title and abstract. Ultimately, 34 full texts
were reviewed. The information obtained from these studies was critically evaluated and
extended with data extracted from further papers. Fifty-seven manuscripts were reached
via the reference lists of the 34 papers accessed through the above-mentioned MEDLINE
search. Forty-nine studies related to the topic were already known by the authors. Nine
articles were suggested by other experts the authors briefly consulted with. Twelve studies
were accessed through non-systematic use of online search engines. In total, the authors
reviewed 161 full-text articles.

3. Results

The rapid response of MP is regulated by finely tuned physiological reflexes and
neurohumoral processes. As an initial response to a hemorrhage, when the circulating
blood volume decreases, the reduction in arterial baroreceptor filling leads to an increased
efferent sympathetic activation.

The increased sympathetic output is associated with reflex tachycardia, which, to-
gether with the fluid retention via aldosterone and vasopressin, aim to maintain blood
pressure. Apart from the cardiac effects, released sympathetic mediators stimulate the
α-adrenergic receptors on both the afferent and efferent sides of the microcirculation. Se-
lective vasoconstriction of the afferent arterioles serves to sustain the vascular resistance,
while the stimulation of α-adrenergic receptors on postcapillary venules and veins results
in autotransfusion by increasing vascular and ultimately the cardiac filling [32].

Arteriolar responses depend on the distribution of the vasoconstrictor α-adrenergic
and the vasodilator β2-adrenergic receptor subtypes, which vary within the different tissues.
Accordingly, the visceral perfusion is partly sacrificed through the vasoconstrictive response
that is mediated by the sympathetic nervous system. However, the abdominal organs are
affected unequally by redistribution; for example, intestinal, gastric, and pancreatic blood
supplies are more susceptible to the effects of hemorrhage compared to the liver due to the
hepatic arterial buffer response [33–35]. Intestines are affected by ischemia, particularly
adversely and rapidly, due to their unique microanatomy, where the artery and vein within
the villi run parallel to each other, which results in low oxygenation in the most luminal
areas of the intestine, even under optimal conditions [36,37]. The particular sensitivity of
MP to blood loss demonstrated by studies on large animal models, where the superior
mesenteric artery (SMA) flow displays a significant drop already at 5% loss of total blood
volume; and continues to diminish in parallel with ongoing hemorrhage [23]. Considering
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the total circulating blood volume as 5 L for an adult, 5% loss means 250 mL of blood, which
can hardly be detected with the currently used routine diagnostic tools. This conceptual
framework provides the rationale for using biomarkers of the integrity of MP to assess the
amount of blood loss in trauma patients.

The almost immediate circulatory redistribution detailed above makes monitoring MP
a promising approach in the initial assessment of bleeding trauma patients [23]. Theoreti-
cally, there are a wide range of experimentally used methodologies for the evaluation of
intestinal macro-and micro perfusion; however, only a fraction of them were integrated
into routine emergency trauma care. Methods based on flowmetry, CT imaging, videomi-
croscopy (VM), measurement of laboratory markers, spectroscopy, tissue capnometry, and
breath analysis can all provide valuable information on MP; nevertheless, each technique
has its limitations. Figure 2 provides an overview of the currently available methods
for assessing MP. In the following, the strengths and limitations of each technique are
discussed.
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Figure 2. Techniques for the assessment of mesenteric perfusion.

Mesenteric perfusion can be investigated with a variety of techniques. The principles
of the methods (diagnostic imaging, flowmetry, VM, laboratory tests, analysis of dissolved
and exhaled gases) are shown in white rectangles. The specific techniques or markers are
presented in oval text boxes. Based on the capability for the real-time monitoring of MP,
techniques can have a static or dynamic nature, which is represented by orange and blue
colors. In general, static imaging techniques and laboratory tests reflect the clinical condi-
tion of only one moment; thus, they have limited ability in patient monitoring, as bleeding
and trauma-related HS are often dynamically progressing conditions. CT = computer
tomography, VM = videomicroscopy, OPSI = orthogonal polarization spectral imaging,
SDFI = side stream dark field imaging, IDFI = incident dark field imaging, I-FABP = intesti-
nal fatty acid binding protein, IMA = ischemia modified albumin, α-GST = α-glutathione
S-transferase, PTRMS = proton transfer reaction mass spectrometry, IFTS = interfacial ten-
sions measurement, PAS = photoacoustic spectroscopy, NIRS = near-infrared spectroscopy,
O2C = oxygen-to-see, LDF = laser Doppler flowmetry, CH4 = methane.
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3.1. Diagnostic Imaging

Despite the indubitable value of conventional radiological imaging in trauma care,
methods such as extended focused assessment with sonography in trauma (eFAST) and
CT cannot be used to monitor the hemodynamic state or MP of trauma patients. It is
also important to note that although CT angiography (CTA) is a gold standard for the
detection of occlusive mesenteric ischemia, it is hardly capable of providing information
on circulatory redistribution during ongoing hemorrhage [37–39]. Furthermore, CT is
time consuming and requires the transportation of the unstable patient to the radiology
unit [39,40]. For these reasons, conventional diagnostic imaging only has limited utility in
assessing MP.

3.2. Doppler Ultrasound and Laser Doppler Flowmetry

In contrast to conventional diagnostic imaging, Doppler ultrasound (DU) and laser
Doppler flowmetry (LDF) are suitable methods for the dynamic visualization of perfusion.
Duplex ultrasound combines B-mode and Doppler functions to visualize vessels and their
blood flow. Volume flow can be calculated after measuring the cross-sectional area or
circumference of the vessel at 90◦ to the angle of insonation [41]. The LDF technique is
based on the Doppler-shift of the reflecting laser beam from moving particles (such as red
blood cells (RBCs)) [42]. Both techniques are non-invasive and inexpensive; however, they
require superficial targets or artery exposure for precise measurements [43]. Although
the assessment of SMA blood flow is, in principle, possible with both DU and LDF; in
clinical reality, only newborn patients or intraoperative use can improve their reliability to
an acceptable level [44–47]. As a further limitation of LDF, signals from neighboring large
vessels can influence the measurement, resulting in false results [48–50].

3.3. Videomicroscopic Approaches

Compared to LDF, VM utilizes a different approach by targeting the direct visual-
ization of peripheral microcirculatory networks. There are abundant data supporting
the profound disruption of microcirculation in shock, especially in those of septic origin.
Therefore, VM is used most commonly as a guide for resuscitation in critical care [51–59].
Videomicroscopy allows the bedside assessment of microcirculation by using handheld
microscopes to visualize red blood cells in the capillaries of mucosal surfaces [52,54,55]. The
first generation of handheld microscopes utilizes orthogonal polarization spectral imaging
(OPSI), i.e., polarized light in the wavelength of the spectrum absorption of Hb to detect
red blood cells [52]. Subsequently, technological development resulted in the elaboration
of side stream dark field imaging (SDFI), a stroboscopic light-emitting diode (LED) ring-
based technique allowing better capillary contrast. The second generation of handheld
microscopes are SDFI devices (e.g., Microscan (Micro vision Medical B.V., Amsterdam,
the Netherlands), CapiScope HVCS (KK Technology, Honiton, UK)) [60,61]. Further im-
provements were implemented in the third generation of handheld microscopes (incident
dark field imaging (IDFI) devices, e.g., CytoCam-IDF (Braedius Medical B.V), which uses a
system of 12 high-intensity, short-pulsed LEDs designed to direct the illumination toward
the optical axis; and provides greater sensor pixel density [62].

Theoretically, VM is a suitable method for assessing mesenterial microperfusion;
however, intestinal mucosa is difficult to access. Nonetheless, if hemodynamic coherence
is presumed between the microcirculatory systems of the gut and the sublingual mucosa,
sublingual VM is a reasonable approach. Although the association between sublingual
and gut microcirculatory networks is supported by evidence [56,57], the reaction of the
sublingual area to hemodynamic changes seems to be significantly slower than the response
of more distal gastrointestinal regions [23]. Time factor poses an important obstacle to the
clinical use of VM in emergency medicine, as it is time-consuming to analyze the records.
Furthermore, it may be technically difficult to make the recordings in patients with facial
injuries, and results depend on the experience of the examiner.
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3.4. Laboratory Markers

Contrary to LDF and VM investigating the blood flow directly, laboratory tests aim to
detect indirect markers of diminished perfusion. One of the main advantages of laboratory
tests is that they provide user-independent, quantitative results with clear cut-off values.
Although a variety of MP-specific markers were identified in the past decades, their use
in clinical practice is rather uncommon due to several controversies. In the following, the
most promising markers including D-lactate, intestinal fatty acid binding protein (I-FABP),
ischemia modified albumin (IMA), and α-glutathione S-transferase (α-GST) are discussed.

Mesenteric ischemia is accompanied by the impairment of the gut barrier and possible
bacterial translocation [63]. D-Lactate and I-FABP are markers of the integrity and barrier
function of the intestinal mucosa [64,65]. D-Lactate is produced mainly by gut bacteria,
and its plasma concentration is normally maintained at a concentration of only about
0.01 mm A minor increase in plasma concentration may already indicate intestinal ischemia
with enteric bacterial translocation, and a value of 3 mM or higher is known as D-lactic
acidosis syndrome [66–68]. Intestinal fatty acid binding protein is a cytosolic enzyme
present exclusively in enterocytes, and its presence in serum is considered to indicate
mucosal injury [67,68]. To date, the evidence supporting the reliability of D-lactate and
I-FABP biomarkers in the early diagnosis of HS is scarce; however, promising results
with small sample sizes warrant further investigation. A recent study on 26 patients with
HS demonstrated significantly elevated I-FABP levels independently from the presence
of abdominal injury, compared to a control group of severely injured patients with no
HS. The measured I-FABP levels also correlated with clinical parameters for HS such as
BD [69]. Nevertheless, it is important to note that despite the potential benefits, I-FABP and
D-lactate do not allow continuous monitoring of MP, as they require repeated sampling
and laboratory analysis.

Intestinal fatty acid binding protein is not the only cytosolic enzyme with a potential
value in assessing intestinal perfusion. α-glutathione S-transferase is an enzyme that is
highly active both in the liver and the small intestine mucosa. In addition to its good
sensitivity for detecting hepatic ischemia and injury, studies suggest that α-GST may also
be useful for diagnosing mesenteric ischemia [70–72]. According to a meta-analysis from
2017, the sensitivity and specificity of α-GST for diagnosing acute intestinal ischemia
reach 0.68 and 0.84 [73], highlighting moderate potential for providing extra benefit in
clinical practice. However, just as other serum biomarkers, α-GST cannot be monitored
continuously; moreover, its measurement requires ELISA kits, thus being hardly suitable
for emergency situations [74].

Another promising candidate for detecting diminished MP is IMA, an easily accessible
marker indicating hypoxic conditions such as pulmonary embolism, acute myocardial
infarction, or mesenteric ischemia [74]. In line with the onset of hypoxia, the level of IMA
rises rapidly, and then displays a slower, continuous increase for hours [75]. Theoretically,
these kinetics makes IMA favorable for the early detection of circulatory redistribution-
induced mesenteric ischemia. Nonetheless, the results of animal and clinical studies on IMA
were inconsistent. A recent experiment using a hemorrhagic rat model found that IMA and
IMA/albumin ratio values followed a similar course to those of lactate; and suggested its
use for the early diagnosis of HS under conditions affecting lactate levels [76]. In contrast,
other studies found no association between mesenteric ischemia and IMA levels [77].
Based on the currently available literature, IMA may be a useful parameter in the early
hemodynamic assessment of trauma patients; however, it is not specific for mesenteric
ischemia, and ultimately, it may not provide additional value to current clinical practice.

3.5. Measurements of Gas Tensions in Tissues and Exhaled Air

In contrast to laboratory markers, gaseous elements of the human body are suitable
subjects for continuous monitoring. Detecting and measuring dissolved or exhaled gases
is a well-established, yet rapidly evolving diagnostic field. Within the wide range of
techniques, there is a remarkable heterogeneity regarding the target gas, the approach
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(direct/indirect), and the area of clinical use. In addition to aiding the diagnostics of acute
and chronic respiratory illnesses, gastrointestinal ulcers, and lactose intolerance, some
gases can provide information also on MP. In the following, the relation between intestinal
blood flow and near-infrared spectroscopy (NIRS), micro-lightguide spectrophotometry
(O2C), tissue capnometry, and measurement of exhaled methane (CH4) is discussed.

3.5.1. Near-Infrared Spectroscopy

Near-infrared spectroscopy (NIRS) is a non-invasive method that is suitable for the
continuous, in vivo monitoring of regional tissue oxygenation [78,79]. Similarly, to pulse
oximetry, NIRS is based on the modified Beer–Lambert law which relates the attenuation
of light to the characteristics of the material through which the light passes [79–81]. Since
Hb displays different absorption of near-infrared light in response to changes in oxygen
levels, changes in tissue oxygenation can be detected with NIRS [82]. Most clinical analy-
ses monitor two different wavelengths utilizing the differential absorption properties of
oxygenated and deoxygenated Hb. As a result, an index of oxygenated/deoxygenated Hb
can be obtained [83]. In addition to Hb, other biologically important molecules such as
albumin [84–86], and cholesterol [87,88] can also be investigated using near-infrared light.

In the 1970s, NIRS was originally developed to evaluate cerebral oxygenation; how-
ever, it was used for a much wider range of clinical and research purposes in the past
two decades [89]. In addition to brain function tests, NIRS is a suitable technique for the
quantitative assessment of exercise intolerance in patients suffering from congestive heart
failure; furthermore, for evaluating peripheral artery diseases [90], cytochrome c oxidase
deficiency [91], metabolic myopathy [92], Friedreich’s ataxia [93], and mitochondrial my-
opathy [94]. Moreover, apart from the medical field, NIRS has several applications in
agriculture as it can provide information on many chemical and physical parameters in
crops, fruit, soil, and processed food [95].

Attempts were made for the early recognition of mesenteric ischemia with NIRS,
although mainly on animal models and preterm infants at risk of necrotizing enterocol-
itis [96–100]. The ability of NIRS to detect low mesenteric oxygenation was confirmed;
however, the technique is hampered with a number of limitations [101]. It is important to
note that Hb and myoglobin have similar optical properties; thus, the extent of the contribu-
tion of myoglobin in the measurement sparks controversy. Furthermore, intestines are not
located superficial enough in adults to provide a reliable measurement site for a transcuta-
neous method such as NIRS. Consequently, most studies investigating the potential benefits
of NIRS for trauma patients assessed the oxygenation of peripheral musculature instead
of intestines [102]. However, skeletal muscles are main stores of myoglobin in the human
body [103,104], making the results of these studies even more debatable. Additionally,
single-use patient sensors make NIRS monitoring relatively expensive, and comprehensive
cost/benefit assessments were not performed for most clinical applications yet [101].

3.5.2. Micro-Lightguide Spectrophotometry (“Oxygen-to-See”/O2C)

Micro-lightguide spectrophotometry is a non-invasive, rapid, and painless method
for assessing microvascular circulation [105]. The O2C technique unites backscattering
spectroscopy and laser-Doppler flowmetry for measuring oxygen saturation, relative Hb,
erythrocyte velocity, and relative blood flow in tissues [105–107]. Theoretically, intestinal
microcirculation and MP could be assessed with O2C; however, the method shares the
main limitation of NIRS as the measurements with the O2C probe are possible only up to a
depth of few millimeters [108].

3.5.3. Tissue Capnometry

The measurement of the partial pressure of carbon dioxide (pCO2) in tissues is a poten-
tially feasible method for the indirect evaluation of microcirculation [109,110]. Tonometry
utilizes the principle that at equilibrium the partial pressure of a diffusible gas such as
CO2 is equal in the mucosa and in the lumen of a viscus. Thus, gastric tonometry was
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originally designed to assess splanchnic perfusion in critically ill patients [111], as the
stomach is easy to access and is known to be highly sensitive to tissue hypoperfusion [112].
The technique requires the placement of a modified nasogastric tube with a silicone balloon.
After luminal pCO2 equilibrates the fluid or air in the balloon, CO2 is measured via an
infra-red CO2 analyzer. Thereafter, the discrepancy between gastric pCO2 and arterial or
end-tidal pCO2, the so-called pCO2 gap can be calculated. The pCO2 gap is suggested to
be highly predictive for poor outcome in critically ill patients and patients undergoing
major surgery [113,114]. Moreover, a study on six volunteers demonstrated that pCO2
gap can indicate hypovolemia before blood pressure, heart rate, lactate, BD, and stroke
volume could display any alteration during progressive hemorrhage [115]. Nevertheless,
despite being the focus of numerous studies in the 1990s and 2000s, gastric tonometry
did not become a routine diagnostic tool in clinical practice [116]. This may be partly a
consequence of that gastric tonometry was made commercially available before all of its
early methodological issues were resolved and this may have resulted in negative percep-
tion [116]. Nonetheless, beyond equivocal reputation, the technique has some practical
disadvantages that can hardly be bypassed. Most importantly, the time interval needed for
gases to reach equilibrium can be a major hurdle in the emergency setting [117,118]. As well
as being time consuming, tube placement can also be an issue of concern. Nasogastric tube
insertion can hardly be performed safely on patients with head injuries and potential basi-
lar skull fracture, while orogastric tubes carry additional risks in case of atlanto-occipital
dislocation, the most common cervical spine injury related to motor vehicle accidents [119].
Although fiber optic-guided tube insertion may eliminate these risks [120], it would further
complicate the method.

The stomach is not the only suitable site of the gastrointestinal tract for tissue capnome-
try. As gastric microcirculation corresponds to the microcirculation of the sublingual region,
measuring pCO2 in the sublingual mucosa appears to be a reasonable alternative to gastric
tonometry [121–124]. The difference between pCO2 in the sublingual mucosa and arterial
pCO2 is considered to be predictive of mortality in acute circulatory failure, especially
with a cutoff level of 70 mmHg [112,125]. Moreover, the sublingual area is easier to access
and free of some limitations of gastric tonometry, such as potential interference of gastric
acid [110,126]. The benefits of sublingual capnometry for the management of critically ill or
severely injured patients were studied for decades with promising results [12,125,127–131];
however, its clinical use did not become widespread [112]. This may be a consequence of
some unelucidated limitations of the method such as the blood-flow-enhancing effect of the
device itself through tactile stimuli under the tongue, long equilibration time, and the inter-
ference of the CO2 production of the oral bacterial flora [132]. Furthermore, prospective,
clinical validation studies on large patient populations are also lacking [110,128].

3.5.4. Detection of Exhaled Gases

Breath analysis is a constantly evolving, promising scientific domain being already
used routinely for diagnosing pathologies such as lactose intolerance, uremia, or peptic
ulcer disease [133,134]. The history of breath testing goes back in time all the way to Hip-
pocrates [135], although its real potential started to unfold with Linus Pauling’s discovery
of 250 unique substances present in exhaled breath [136]. The analysis of exhaled gas can
be performed on people of all ages and conditions without posing a risk to the patients.
Although the potential of breath analysis for the detection and monitoring of mesenteric
ischemia is still elusive, attempts were made to test the applicability of the method. A
pilot study on rat model aimed to identify volatile markers specific to intestinal ischemia
in exhaled breath, and found significantly elevated levels of trimethyldodecatrienol (Z,Z-
farnesol-C15H260, 222.37 g/mol MW) during ischemic and reperfusion phases, compared
to control measurements [137]. In addition to Z,Z-farnesol, the literature suggests other
candidates for extending the list of diagnostic tools for reduced mesenteric blood flow,
of which CH4 may be the most promising one [23,138]. CH4 is an intrinsically non-toxic,
combustible gas produced by anaerobic bacterial fermentation [139–141]. According to
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the literature, CH4 in the human body originates mainly from methanogenic intestinal
microorganisms [66,142]. Due to its physicochemical attributes, CH4 can enter freely to
the intestinal microcirculation and systemic circulation, and as a gas with low solubility in
blood, it becomes rapidly excreted by the lungs [143].

For the measurement of exhaled CH4, gas chromatography mass spectrometry is con-
sidered as the gold standard technique; however, it does not allow continuous monitoring.
Real-time monitoring can be conducted with selected ion flow tube-mass spectrometry,
proton transfer reaction mass spectrometry, laser spectrometry, or with photoacoustic
spectroscopy (PAS)-based sensors [144,145].

According to the literature, exhaled CH4 concentrations correspond to the changes
in the blood flow of the SMA [39]. Since SMA perfusion drops significantly already at
5% loss of total blood volume and continues to diminish in parallel with the severity of
bleeding [23,138], measuring exhaled CH4 levels may offer a new method for the early
detection and monitoring of hemorrhage. However, to the best of our knowledge, the
validity of this theory was only investigated in animal models so far. A recent study using
Vietnamese minipigs (n = 6) tested the sensitivity of exhaled CH4 for changes in mesenteric
macro-and microperfusion during controlled, graded hemorrhage and subsequent fluid
resuscitation. Additionally, the performance of this new diagnostic method was compared
with sublingual microcirculatory monitoring. The SMAs of the anesthetized, intubated,
ventilated animals were accessed from median laparotomy to record blood flow. To pro-
vide access to the ileal mucosa for microcirculatory measurements, a 5 cm incision was
performed with diathermy 15 cm orally from the ileo–cecal junction. The open mucosal and
serosal surfaces were rinsed constantly with saline. Vital signs were monitored continu-
ously during the procedure. CH4 concentrations were obtained by attaching a near-infrared
laser technique-based PAS apparatus to the exhalation outlet of the ventilator. Hemor-
rhage was induced and divided into seven phases, followed by gradual fluid resuscitation
in five steps, until 80% of the baseline mean arterial pressure value was reached. Each
bleeding and resuscitation interval was started with microcirculatory recordings at the
ileal mucosal and serosal surfaces and at the sublingual area with IDFI technique (using
CytoCam Video Microscope System; Braedius Medical, Huizen, The Netherlands). To quan-
titatively characterize microcirculation, De Backer score, microvascular flow index, and
microvascular heterogeneity index were calculated. The researchers found that diminution
in SMA flow and ileal microperfusion were followed rigorously by changes of exhaled
CH4 levels, and they developed earlier than systemic hemodynamic responses. In contrast,
sublingual microcirculation was unable to follow the alterations of MP [23]. These results
raise the possibility of a future non-invasive diagnostic and monitoring method in the
management of severely injured patients; however, many questions need to be addressed,
warranting further research. Since breath analysis does not pose a risk to patients, it is
feasible and necessary to conduct human studies. Although swine is considered as the
most appropriate animal species for cardiovascular research due to their cardiac anatomy
and hemodynamic resemblance to humans [146], it is important to emphasize that the
intestinal vascular anatomy and MP of pigs is considerably different [147]. Furthermore, as
the above-discussed paper also stated, an important limitation of the method was that some
situations did not allow clinicians to obtain baseline CH4 values. Consequently, only the
alterations of exhaled CH4 levels could indicate bleeding, not exact values. Beyond these
issues, the influence of thoracal injuries, differences in gut microbiome, and prehospital
treatment also need to be elucidated.

4. Conclusions

The present review highlighted major difficulties of the initial management of bleeding
trauma patients, including the early recognition of HS and the monitoring of therapeutic
responses during hemodynamic resuscitation. Ideally, bleeding is identified in the compen-
satory phase prior to shock; however, the prompt detection of circulatory redistribution
often poses a challenge for clinicians. Based on the fact that intestines are affected by
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hypovolemia particularly adversely and rapidly, we put the diminution of MP, one of the
first compensatory reactions to blood loss, into the focus of our study. Theoretically, there
are a wide range of experimentally used methodologies for the evaluation of intestinal
macro-and microperfusion; however, due to their practical limitations, only a fraction of
them were integrated into routine emergency trauma care. The present paper provided
an overview on methods based on flowmetry, CT imaging, videomicroscopy (VM), mea-
surement of laboratory markers, spectroscopy, tissue capnometry, and breath analysis,
highlighting their strengths and drawbacks.

In the search for a solution to the shortcomings of the currently available methods for
assessing MP, we presented a promising new technique, the real-time monitoring of exhaled
CH4 levels. Studies on animal models demonstrated that exhaled CH4 concentrations cor-
respond to the blood flow of the SMA [39], an early indicator of circulatory redistribution.
Although animal experiments showed encouraging results, human studies are needed to
clarify the relevance and feasibility of this method in clinical practice. A prospective obser-
vational study investigating the clinical value of measuring exhaled CH4 concentrations
in trauma patients is already in progress in our trauma center. Upon completion of the
research, the results will be shared with the scientific community through publication in
a peer-reviewed journal. In case of a significant association between exhaled CH4 and
bloodloss, a national multi-center study will be initiated. Additionally, as a near-infrared
laser technique-based PAS apparatus can easily be placed in an ambulance car, we also
intend to test the method in the prehospital setting. Ultimately, other specialties such as
gastroenterology and obstetrics may also benefit from a promptly available non-invasive
method indicating circulatory redistribution; thus, the expected benefits clearly justify the
thorough investigation of the technique.
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