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ABSTRACT Code analysis is more important than ever because JavaScript is increasingly popular and
actively used, both on the client and server sides. Most algorithms for analyzing vulnerabilities, finding
coding issues, or inferring type depend on the call graph representation of the underlying program. Luckily,
there are quite a few tools to get this job done already. However, their performance in vitro and especially
in vivo has not yet been extensively compared and evaluated. In this paper, we compare several approaches
for building JavaScript call graphs, namely five static and two dynamic approaches on 26WebKit SunSpider
programs, and two static and two dynamic approaches on 12 real-world Node.js programs. The tools
under examination using static techniques were npm call graph, IBM WALA, Google Closure Compiler,
Approximate Call Graph, and Type Analyzer for JavaScript. We performed dynamic analyzes relying on the
nodejs-cg tool (a customized Node.js runtime) and the NodeProf instrumentation and profiling framework.
We provide a quantitative evaluation of the results, and a result quality analysis based on 941 manually
validated call edges. On the SunSpider programs, which do not take any inputs, so dynamic extraction could
be complete, all the static tools also performed well. For example, TAJS found 93% of all edges while having
a 97% precision compared to the precise dynamic call graph. When it comes to real-world Node.js modules,
our evaluation shows that static tools struggle with parsing the code and fail to detect a significant amount
of call edges that dynamic approaches can capture. Nonetheless, a significant number of edges not detected
by dynamic approaches are also reported. Among these, however, there are also edges that are real, but for
some reason the unit tests did not execute the branches in which these calls were included.

INDEX TERMS Call graph, comparative study, dynamic code analysis, JavaScript, static code analysis.

I. INTRODUCTION
JavaScript is the most popular programming language (and
has been since 2014), according to GitHub statistics [15]
(followed by Python and Java). The TIOBE Index chooses
the fastest-growing programming language each year and
honors it with the ‘‘Programming Language of the Year’’ title.
This award was given to JavaScript in 2014, and since then
JavaScript remained in the top 10 languages. JavaScriptmight
be a reasonable choice because it can be used both on the
server and client side, and has really large library support.

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Lyu.

Because of its growing popularity, many projects now utilize
JavaScript as their main programming language for both
server and client-side modules. As a consequence, code anal-
ysis of JavaScript programs has also become a major topic.
Numerous code analysis techniques rely on the program’s call
graph representation. A call graph contains nodes (that repre-
sent program functions) and edges (that connect nodes if there
is at least one function call between the respective functions).
Various quality and security flaws can be detected using this
program representation, for example, it can be used to detect
functions that are never called or as a visual representation
that aids in understanding the code easier. Call graphs can be
used to determine whether the correct number of parameters
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are passed to function calls or as a starting point for further
analysis, such as a full interprocedural control flow graph
(ICFG). Various type analysis algorithms can be performed
using control flow graphs [36], [42], [47], [53]. This program
representation is also beneficial in other fields of research,
such as mutation testing [50], automated refactoring [35],
or defect prediction [25].

As call graphs are such a crucial data structure, their
precision determines the precision of the code analysis
algorithms that rely on them. Creating precise call graphs
for JavaScript, an inherently dynamic, type-free, and asyn-
chronous language, is a challenging task. On the one hand,
static approaches have the evident disadvantage of missing
dynamic call edges from non-trivial eval(), bind(), or apply()
usages (i.e., reflection). Furthermore, they could be overly
conservative, recognizing edges that, while statically valid,
are never realized for any input in practice. They are, however,
faster and more efficient than dynamic analysis techniques
and do not require an extensive testbed for the analyzed
program. Dynamic approaches, on the other hand, identify
only real call edges, but the completeness of their results is
highly dependent on the quality of the underlying program’s
test cases. Therefore we need to learn more about the state-
of-the-art static and dynamic JavaScript call graph building
techniques to better understand their capabilities and limita-
tions in comparison to each other (both in terms of tools and
approaches).

This paper, which is an extension of our previously
presented conference paper [21], compares two dynamic
analysis-based call graph extraction approaches to several
well-known and popular static analysis-based call graph
extraction approaches [48], to answer the following research
questions:

• RQ1: Are all static call graph extractor tools find the
same call edges or there are code constructs that one can
handle but not the other?

• RQ2: Do the static call graph extractor tools find all the
real edges detected by dynamic analysis?

• RQ3: Are static call graph extractor tools able to detect
true call edges in real-world programs that the dynamic
analysis misses?

To answer these questions, we evaluate five completely
different static analysis-based tools: TAJS (Type Analyzer for
JavaScript) [14], ACG (Approximate Call Graph) [1], Google
Closure Compiler [4], IBM WALA [6], and npm callgraph
[10]; and two dynamic tools: NodeProf [9] and nodejs-cg [8]
quantitatively, to determine the different calls each tool can
detect and how results of static analysis-based tools relate
to the dynamic analysis-based results. We also perform a
quality analysis of the results, which means comparing and
validating the call edges found and analyzing the differences.
In addition, we compare the results of the static and dynamic
tools to get a sense of how precise static analysis is overall.

To perform our analyses, we needed inputs, however, there
is no existing community-accepted benchmark for evaluating

JavaScript call graph builder algorithms. To overcome this
problem, we identified two different sets of inputs: first,
simple, one-file inputs (in this case, we used the SunSpider
benchmark), and second, multi-file real projects (we chose
several popular Node.js modules).

Regarding the results of the SunSpider analysis, we dis-
covered variations in the numbers, precision, and types of
call edges that different tools report. However, there were
significant intersections between the reported edges. We con-
cluded that TAJS has the highest precision based on a manual
evaluation of 348 call edges, with more than 97% of the
edges it found being true positives. The union of all true
edges found by the five tools revealed that ACG and TAJS
had the highest recall (93%). Nevertheless, Closure detected
true positive edges that all other static tools had missed.
TAJS obtained an accuracy of 97% but failed to detect any
unique edges (edges that other static tools miss). The call
graph built by TAJS was also the one that was most similar
to that of the dynamic tool. Additionally, we examined the
combinations of static tools and observed that none of them
could find all true edges while the combinations introduce
a lot of false ones; the combined precision was only 53%.
As for the similarity between the static call graphs and the
dynamically constructed ones, our results varied to a great
extent. One issue we found was that many of the missing
dynamic edges were not realized in any runs since the test
inputs were not complete. The dynamic nature of JavaScript,
on the other hand, prevented static techniques from reliably
identifying edges.

However, as far as the analysis results of the Node.js
modules are concerned, we also found a large variance in the
results. Since none of the tools other than ACG were capable
of analyzing multi-file projects, ACG was the only tool we
could use in addition to the dynamic approaches. However,
we were able to use ACG’s two call graph building strategies.
We found that while the dynamic tools have perfect precision,
the highest precision of ACG was only 34.20%. Neverthe-
less, the recall values of static and dynamic approaches are
surprisingly not that different, ranging from 58.40-69.52%.
As for the combination of the two approaches, we achieved a
perfect recall with a precision of 39.49% (at most).

To summarize, the main contributions of this work (not
included in our previous paper [21]) are:

• The quantitative and results quality analysis of the static
and dynamic tools on 26 SunSpider benchmark pro-
grams.

• The evaluation and comparison of ACG (the only feasi-
ble static tool) and the dynamic approaches on 12 widely
used Node.js modules.

• A manually validated dataset of call edges found by
these tools, which is publicly available in an online
appendix1 (it contains all the tool modification patches
as well).

1https://doi.org/10.5281/zenodo.7104954
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Nevertheless, we would like to clarify that our paper is a
comparative study on the creation of JavaScript call graphs,
and it was not our intention to create a full-blown benchmark
on this topic.

The rest of the paper is organized as follows. The method-
ology we used for tool selection and comparison is described
in III. In Section IV, we present the findings of our quanti-
tative and result quality analyses. We list the possible threats
to the validity of our results in Section V. We conclude in
Section VI.

II. RELATED WORK
Call graphs have long been present in the field of program
analysis, so they can be considered a mature technique. The
first publications mentioning call graphs were published in
the 1970s [33], [38]. For example, malware classification can
be built upon call graph clusters [44], software faults can
be detected by using call graphs [30], not to how important
call graphs are in the field of debugging [54]. Based on their
construction method, we can divide call graphs into two basic
subgroups, they can be either dynamic [60] or static [51].
We can combine dynamic and static call graphs to construct
hybrid call graphs [22], [55].

Running the application and gathering runtime informa-
tion about the interprocedural flow results in dynamic call
graphs [31]. Techniques such as source code instrumentation
can be used to generate dynamic call graphs [29].

There is no need to execute the program in the case of
static call graphs. Static call graphs are constructed by static
analysis of a program’s source code. These type of call graphs
frequently contains non-realizable edges. Even if the source
code cannot be run, static call graphs can be generated – in
most cases. The combination of static and dynamic analysis
techniques, i.e. hybrid solutions guarantee more precise call
graphs and, as a result, more precise analyses [32].

The popularity of scripting languages such as JavaScript
and Python has increased the need for program analysis in
these languages [36]. Constructing precise static call graphs
for dynamic scripting languages, on the other hand, is a
difficult task that has yet to be entirely solved. Reflective
use of the interpreter (when any string can be interpreted
as a source code, for example, eval() in JavaScript, exec()
in Python), or any other dynamic binding (e.g.: apply(), and
bind()) construction of the languages make static code analy-
sis extremely difficult. There are various techniques for creat-
ing such static call graphs in JavaScript, with varying levels of
effectiveness [26], [36], [37]. However, call graphs generated
in this manner are frequently limited, and none of the stud-
ies cover newer ECMAScript standards (ECMAScript 6 and
newer) completely.

Wei and Ryder proposed blended taint analysis for
JavaScript, which employs the combination of static and
dynamic analysis approaches [59]. By applying dynamic
analysis, they could collect information for even those sit-
uations that are hard to analyze statically. Dynamic results

(execution traces) are propagated to a static infrastructure
which embeds a call graph builder as well. This call graph
builder module makes use of the dynamically identified calls.
However, in the case of pure static analysis, they wrapped
the WALA tool to construct a static call graph. In our study,
we also included WALA.

Feldthaus et al. proposed an approximation approach for
building a call graph [36] that ensured scalable JavaScript
IDE support. Madsen et al. focused on the issues caused
by the project’s included libraries [47]. To enhance scala-
bility and precision, they employed pointer analysis and a
novel ‘‘use analysis’’. Dijkstra did a thorough evaluation of
various static JavaScript call graph building algorithms in
his thesis [28]. His research is similar to our comparative,
however, he focused on evaluating the various conceptual
algorithms and he did the implementation himself, in Rascal.
Furthermore, since 2014, a lot has happened in this field.
In contrast, we focus on the comparison of mature and state-
of-the-art tool implementations on these algorithms that are
suitable for in-practice use.

In their work, Salis et al. also performed a comparison in
the field of generating static call graphs for Python [56]. They
also proposed their own tool which they used in the compar-
ison. We specifically deal with call graphs for JavaScript in
this work.

There are further studies with the purpose of creating
frameworks for comparing call graph construction algo-
rithms [20], [46]. Nevertheless, these frameworks are for call
graphs built from Java or C code. Call graphs are frequently
used for preliminary analysis to determine whether or not the
code may be optimized. Unfortunately, because they are spe-
cific to Java and C, we were unable to use these frameworks
as-is for comparing JavaScript call graphs.

III. METHODOLOGY
In this section, we present the methodology used in the
research. We adhered to Sim et al.’s guidelines [57], however,
our primary intention was not to create a complete bench-
mark, rather than a comparative study on the state-of-the-art
JavaScript call graph extraction tools (that of course required
us to assemble a proto-benchmark). Our methodology con-
sists of five high-level steps.

1) Selection of the subjects systems
2) Input selection
3) Preparation of the tools
4) Execution of the analyses
5) Comparison and result evaluation.

In the following paragraphs, we describe the context of the
designed study, then give a deeper technical description of the
execution details.

Definition. First of all, the term call graph might not be
precise in itself, so we precisely defined what call graph
means in our study. In this paper, we work with call graphs,
where:
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FIGURE 1. Methodology overview.

• The nodes represent program functions (functions are
identified by the name of the containing file, and the
exact source code position (line and column) where the
function starts),

• A directed edge connects two nodes and represents a
call from one function to another (i.e., function a() calls
function b()),

• Because there may be just one or zero edges between
two nodes, we track only if a call from one function to
another is feasible, but we ignore its multiplicity (i.e.,
we do not count how many call sites a call may happen).
This is because not all tools can detect multiple calls
and, in any case, we intended to keep to the most basic
definition of call graphs.

At first sight, it may seem reasonable to compare graphs
in our study in the ‘‘traditional’’ way. Nonetheless, our first
intuition was that the tools might miss particular edges, which
would have made comparing graphs much more difficult.
Instead, in this paper, we will study the set of edges that
compose graphs.Wewould like to mention that our call graph
outputs can be used at any time to construct a graph on which
any graph theory algorithm can be executed.

Scope. As we are dealing with call graphs in our study,
we needed call graph extraction tools. However, selecting
a suitable set of such tools can be tricky, a simple search
might result in hundreds of potential tools. Hence, we have
formalized the tool selection criteria and we took into account
tools that met the following criteria: i) can produce a function
call graph from a JavaScript program, ii) are open-source
and free, and iii) are widely used in practice. The latter
is a less formal criterion, where we take into account the
number of weekly downloads on npm 2 and the activity on
GitHub (stars, issue management, number of forks and pull

2https://www.npmjs.com/

requests). Based on these criteria, we chose five static and two
dynamic tools for our comparative study (for a summary, see
Table 1).

To the best of our knowledge, there is no benchmark
designed for comparing JavaScript call graph extraction tools.
We, therefore, looked at what inputs other researchers and
practitioners use for similar evaluation tasks. One of the
benchmarks used by many others was the SunSpider bench-
mark. The SunSpider benchmark [13] of the WebKit browser
engine contains several real-world, single-file JavaScript
examples. The benchmark programs are designed to test the
WebKit JavaScript engine. As such, these programs contain
code of varying complexity, with multiple function types and
calls, all contained within single JavaScript files. These char-
acteristics make them an excellent choice for our single-file
test subjects.

However, most of the time nowadays, multi-file JavaScript
modules are developed that might contain cross-references
between the files. To make our study as realistic as possible,
we have gathered a set of popular Node.js modules from
GitHub, from which we have randomly selected 12 that meet
the following criteria: (1) the module consists of multiple
JavaScript source files, (2) it is tested well, with at least
75% statement-level coverage (as we also have two dynamic
approaches, hence high test coverage is needed), and (3) it is
used by at least one hundred other modules. These criteria
ensure that our results (based on the selected inputs) are
broadly consistent with the results that would be obtained by
using the tools in practice.

Our primary intention was to test the tools on inputs (proto-
benchmarks) that represent the real-life usage of these tools,
hence the results would be useful in practice. Of course, one
may want to test these tools with more specific inputs (e.g.
domain-specific libraries) or maywant to include another tool
in the comparison. Keeping that in mind, we have designed
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this study and our framework to be easily extensible, both
with other tools and with other inputs.

A. TECHNICAL OVERVIEW OF THE STUDY PROCESS
Figure 1 displays a high-level overview of the software com-
ponents employed in our comparative analysis, both external
and self-developed. On the test input files (Section III-C),
we run each of the selected tools (Section III-B). As can be
seen, we had to patch a number of the tools (marked with \)
for several reasons (see Section III-B), but the main reason
was to extract and dump the built call graphs, which are
in the memory of the programs (all the modifications are
available in the online appendix package). In the next step,
we collected the tools’ outputs and ran our data conversion
scripts to convert each call graph to a unified, JSON-based
format that we specified (see Section III-D for the details).
Closure was the only exception, where we had to implement
the call graph extraction (as there was no public option for
outputting the call graph), so the output is written right into
our specified JSON format. In all other cases, we created
a custom data parser script that transforms the given tool’s
arbitrary format into our specified JSON format.

In the case of dynamic call graph creation, the method
was a little bit different. We used tools that record all nodes
and edges encountered during the execution of a JavaScript
program. The first tool, which runs on top of NodeProf
(see Section III-B6), creates an event log file containing the
newly found nodes and edges and a dynamic call graph is
constructed from this event log after the execution is fin-
ished. Due to this method, the call graph is always accurate,
even if Node.js terminates abnormally. Usually, a program is
executed multiple times and a call graph is created for each
execution. These call graphs are merged into a final one that
contains all nodes and edges found in any of these intermedi-
ate graphs. This final call graph is converted to the common
JSON format. The second tool we used is a modified Node.js
runtime that directly builds the call graph while running the
program and dumps it once Node.js terminates.

Using our graph comparison tool, we built a merged JSON
with the same structure from the various JSON outputs of the
tool results (Section III-E). This combined JSON contains all
of the nodes and edges detected by either tool, as well as an
additional attribute indicating all of the tool identifiers that
found the particular node or edge. On these individual and
merged JSONfiles, we performed our analysis and calculated
all of the statistics (all the produced JSON outputs are part of
the online appendix package).

B. CALL GRAPH EXTRACTION TOOLS
In this section, we describe the tools we employed in our
comparative study.

1) WALA
WALA [37] is a complete framework for both static and
dynamic program analysis for Java. It also has a JavaScript

front-end based on Mozilla’s Rhino parser [12]. In this study,
we only employed one of its main components, which is static
analysis, call graph creation in particular.

We had to build a driver that serializes the call graph to
obtain the results we needed. We utilized an already existing
version of the call graph serializer from the official WALA
repository for this (CallGraph2JSON.java). As a first step,
we converted the actual call graph to a basic DOT format,
which was then transformed into the final JSON file using
our converter script. If the caller function had multiple call
sites, WALA generated many edges between the functions.
Because our call graph definition allowed only one edge
between two functions in one direction, we modified the
serializer to filter the edges and merge them if required.
We had to address the special case when the call site was in
the global scope because there was no explicit caller method
in this particular case. As a result, we followed the typical
approach of other tools and introduced an artificial <entry>
node as the source of these edges.

WALA is written entirely in Java, and its primary repos-
itory is being actively developed, mostly by the IBM T.J.
Watson Research Center. It has been mentioned in over
60 publications [11] since 2003.

2) CLOSURE COMPILER
The Closure Compiler [26] is a real JavaScript compiler.
Instead of compiling to machine code, it converts JavaScript
to better JavaScript by parsing and analyzing JavaScript
applications, removing dead code, rewriting, and compress-
ing the code. It also checks for common JavaScript flaws.

It builds a call graph data structure that is only used inter-
nally by other algorithms. As a result, we had to modify the
existing source code and add a call graph dumping method
(which outputs the internally build call graph into JSON).
Closure Compiler contains the artificial root node by default
to mimic calls made from the global scope. Closure maintains
track of multiple call locations, so the JSON writer filters any
duplicate edges to produce an appropriate JSON output for
comparison (see Section III-D).

Google is actively developing the Closure Compiler, which
is written completely in Java.

3) ACG
ACG (Approximate Call Graph) implements a field-based
call graph construction algorithm [36] for JavaScript. The
call graph constructor has two basic modes, pessimistic and
optimistic, that differ in how interprocedural flows are han-
dled. In our study, we employed both strategies for call
graph construction: the default ONESHOT (pessimistic) and
the DEMAND (optimistic). We clarify that ACG has two other
strategies, however, the NONE strategy does not track inter-
procedural flow, and the FULL strategy is not yet imple-
mented. They yield the same results for simple inputs, how-
ever, for bigger Node.js programs, the DEMAND strategy
tends to find some additional edges when compared to the
ONESHOT strategy.Whenever wemention ACGwithout stat-
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TABLE 1. Comparison of the used tools (as of 19th January, 2021).

ing the strategy, that indicates we used it with the default
ONESHOT setting.

We had to implement the artificial root edge (i.e.,
<entry>) and the filtering of multiple edges for ACG since
ACG additionally records and reports edges associated with
particular call sites. Furthermore, ACG only reported func-
tion line numbers in its output, which we had to enrich with
column information. All of these changes are available in the
online appendix.

We had to examine all of the forks of the original reposi-
tory available at the moment and pick the most mature one.
We chose the one created by the Persper Foundation.

4) THE NPM CALLGRAPH MODULE
Gunar C. Gessner created npm callgraph, a tiny npm pack-
age for creating call graphs from JavaScript code. It parses
JavaScript code with UglifyJS2 [24]. Considering its small
size and few commits, it is widely used, with over 5,000
downloads. Even though the author does not update the code
frequently, he quickly reacts to newly opened issues. Dur-
ing our research, we ran into TypeError issues several
times. A simple null check solved the problem and we never
encountered this kind of error again. We created a fix for this
issue and proposed a pull request to the repository, which was
already approved and merged to the master branch.3

5) TAJS
Type Analyzer for JavaScript [42] is a dataflow analysis tool
for JavaScript, developed at Aarhus University, that infers
type information and call graphs.

The proposed algorithm is implemented in Java and it is
continuously maintained since its initial release. We assume
that the linked repository is simply an external mirror of an
internal repository that is regularly synced. It was not required
to change the source code of TAJS because it had a command
line option for dumping the created call graphs into DOT
format that we could parse and convert into our unified JSON
format.

6) NodeProf
NodeProf [58] is an instrumentation and profiling framework
for Node.js modules. This framework is capable of running
Node.js modules and providing notifications about certain

3https://github.com/gunar/callgraph/commit/36bab6a0a437c04c2518ae5
c4b108791c706eb07

events in JavaScript code such as function entry and exit,
or variable assignment. These notifications can be captured
by JavaScript applications called analyses. Our dynamic call
graph generator tool4 is also an analysis, which collects call
graph-related information.

Internally, NodeProf uses the Graal JavaScript [5] engine
that creates an abstract syntax tree (AST) representation from
JavaScript code. NodeProf extends this AST with function
calls, which notify analyses about certain events and theGraal
JavaScript engine executes the modified AST. These modifi-
cations do not change the behavior of a Node.js module so the
call graph is accurate. We had to make some modifications in
the original source code of NodeProf (mostly for reporting),
which can be found on GitHub [9].

7) NODEJS-CG
The other tool we used in this work is called nodejs-cg [39],
[40], which is a customized Node.js runtime. Node.js uses
the V8 [16] engine as the default JavaScript interpreter. It has
built-in support for execution tracing. However, using the
default tracing mechanism has quite a big overhead, as pars-
ing the output of tracing and building a call graph from it
requires a lot of time and space.

Instead, our approach generates the call graph directly,
which is faster and requires far less space. The nodes and
edges are recorded during the execution of a Node.js applica-
tion, and the call graph is dumped when Node.js terminates.
As the call graph is directly generated by the JavaScript
engine without modifying the behavior of a Node.js module,
we can conclude that the call graph is accurate in this case too.
Our modifications in Node.js can be found on GitHub [8].

8) OTHER STATIC TOOLS WE CONSIDERED
Of course, additional candidate tools might have been
included in this study. We noticed several commercial and/or
closed-source programs, such as SAP HANA, or JAM [52].
Nevertheless, we concentrated on open-source tools that are
easy to access and can easily be customized to meet our
requirements. They are also frequently employed in research
and industry.

In this study, we only examined tools that directly support
call graph building, either internally or as a public feature.
We only examined tools that directly support call graph
building, either internally or as a public feature, As a result,

4https://github.com/szeged/js-call-graphs
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we were forced to exclude some excellent JavaScript analysis
tools that do not explicitly support call graph extraction.
One such tool was Facebook’s open-source solution called
Flow [34], a prominent static code analysis tool for type
checking in JavaScript. Unfortunately, there is no public
API for accessing the call graph or the control flow graph
that Flow generates. As a result, we would have needed to
construct our algorithms on the top of the internal control
flow data structure, which would have endangered the study’s
validity, as the algorithm would have been written by us. The
major purpose of this study was to empirically compare exist-
ing call graph extraction algorithms, rather than to upgrade all
tools to perform call graph extraction.

Additional tools we examined were JSAI (JavaScript
Abstract Interpreter) [43] and SAFE (Scalable Analysis
Framework for EcmaScript) [45], both of which can create
an intermediate abstract representation from JavaScript on
which further analysis can be performed. Certainly, they cal-
culate control and data flow structures, but they employ them
specifically for type inference. We were unable to include
them in our evaluation study since none of them enable the
extraction of call graphs.

The tool code2flow [3] appeared to be a good candidate,
but because it has been officially abandoned with no follow-
up forks, we omitted it from our list. (While the original ACG
repository has also been abandoned, there are multiple live
forks on GitHub.)

Another reason we omitted potential tools from the com-
parison was immaturity. We found several projects that had
only a few (usually one or two) contributor(s) and had a very
brief development period before being abandoned. These
tools were hard to use utilize in practice as they lacked docu-
mentation. Because of this, we did not take JavaScript
Explorer Callgraph [7] into consideration. We also
took out callgraphjs [2] because this project solely pro-
vides ACG-related content.

C. COMPARISON SUBJECTS
We established two test input groups for a thorough compar-
ison of the tools.

1) SINGLE FILE BENCHMARK EXAMPLES
As we mentioned earlier, we wanted to include real-world,
single-file JavaScript examples that could be analyzed easily
either by a program or by hand. We used the SunSpider
benchmark [13]. This benchmark consists of 26 JavaScript
files with varying complexity that test the WebKit browser
engine. A given test file is quite easy to understand, however,
it might contain structures that can cause problems for either
static or dynamic call graph builders (see for examples, List-
ings 2 and 7).

2) REAL-WORLD, MULTI-FILE NODE.JS EXAMPLES
We selected several Node.js modules to test the handling of
current, ECMAScript 6, andNode.js features (such asmodule

TABLE 2. The selected Node.js modules and their size (source lines of
code).

exports or external dependencies, i.e., the require keyword)
and inter-file dependencies. Unfortunately, the only static
tool capable of analyzing such programs was ACG, so we
could only employ this tool in the comparison (with both
implemented building strategies, ONESHOT and DEMAND)
and the two dynamic approaches. Table 2 summarizes the
details of the selected Node.js modules.

D. OUTPUT FORMAT
The tools we chose produce their outputs in specific formats
by default. As a result, we needed to process their outputs and
convert them into a unified format that is suitable for further
analysis. We chose a simple JSON format to store the call
graph’s nodes and edges.

In the graph, each node has a unique identifier (continu-
ously increasing number), a label (arbitrary string, provided
by the tool), and a source code position (created from the
name of the file, and line/column information on where the
function starts). A function (or node) is identified by its
source code position (as identifiers can be different in the
results of different tools). Each edge connects exactly two of
the nodes by their unique ids.

E. GRAPH COMPARISON
The call graphs were evaluated in two different ways. For the
quantitative analysis, we focused on comparing the number
of nodes and edges, as well as the similarity of entire call
graphs. To assess the quality of the results, we implemented
a Python-based call graph comparison script 5 based on the
work of Lhoták et al [46]. The script’s goal is to detect
matching edges identified by various tools. Each node and
edge is extended with a new attribute containing a list of tool
identifiers that found the particular node or edge. Because
many JavaScript functions have no names and relying on a
unified unique naming scheme would be cumbersome, nodes
and edges are identified using path, line, and column infor-
mation.

We manually checked the path and line information pro-
duced by the evaluated tools to ensure the comparison was

5The script is available in our online appendix package:
https://doi.org/10.5281/zenodo.7104954
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correct. In its standard DOT output, TAJS reported precise
line and column information. We implemented or modified
the line information extraction in Closure Compiler, WALA,
and ACG. Unfortunately, WALA could only report line num-
bers but no column information, so we had to manually refine
the outputs generated by WALA. Because the reported line
and column data from npm callgraph was not precise (neither
of them), wemanually added this information to the produced
JSON files. We also implemented a precise line information
dump in our dynamic tools.

F. MANUAL EVALUATION
We evaluated all 348 call edges found by the five static and
two dynamic tools on the 26 SunSpider benchmark programs
as part of the result quality analysis. At least two of the
authors performed the manual evaluation by going through
all of the edges in the merged JSON files and examining
the JavaScript sources to determine the validity of those
edges. As a result, we extended the edges of the call graph
with a new attribute (called ‘‘valid’’) containing whether a
particular edge is valid or not (the attribute can be either true
or false). After evaluating the edges, the authors compared
their validation results and resolved the two cases where they
initially disagreed. The final validated JSON has been created
upon consensus.

The large number of nodes and edges in the Node.js
modules made manual validation infeasible. To address this,
we chose a statistically significant representative random
sample of edges (593 in total, see Section IV-B2 for details)
with a 95% confidence level and a 5%margin of error. At least
two of the authors validated all of these edges in the Node.js
sources, and each disagreement was thoroughly discussed.
They eventually agreed on whether the selected calls are valid
or not.

IV. RESULTS
We divided our findings into two, bigger parts. In the first
part, we present the results of the SunSpider benchmark,
while in the second part, we report the results of the Node.js
modules.

For quantitative analysis, we gathered all the information
we could get from the tools, and compared them. Regarding
the quality of the results, we used our exact position-based
call graph comparison tool that we already introduced in
Section III-E. Using our tool, we have identified the call edges
found by the different tools. We also compared the amount
of common edges found by the arbitrary combination of the
tools.

All of the presented diagrams were created with the
jvenn [23] diagram creation tool. In the online appendix
package, we included the interactive version of all the Venn
diagrams we show in this section.

A. SunSpider BENCHMARK RESULTS
As we mentioned beforehand, we used the SunSpider
benchmark to assess the basic capabilities of the tools.

This benchmark consists of 26 files, representing 26 separate
programs. At a time we analyzed one of them. The main idea
here was to provide simple programs that the tools can eas-
ily analyze. After completing the analyses, we gathered the
different outputs and transformed them into our predefined
JSON format (see Section III-A).

1) QUANTITATIVE ANALYSIS
Based on the data we obtained, we have produced some basic
statistics, which are shown in Table 3.
In the table, we can see the number of nodes (i.e. the

number of found functions) and edges (i.e. the number of
found calls between two functions) found by the tools for
every input. There are several inputs for which each tool
reported the same amount of nodes and edges (e.g., math-
partial-sums.js, math-spectral-norm.js). For some inputs
(e.g., bitops-3bit-bits-in-byte.js, string-validate-input.js), the
results are very similar, however, they are not exactly the
same. However, it is noteworthy that the used inputs are
relatively small (with only few functions and few calls), thus
there is only a small room for disagreement. Last but not least,
there are also inputs for which the tools reported completely
different results (e.g., crypto-md5.js, date-format-tofte.js).

As we can see, we can find a static tool that produces
similar results to the dynamic tool in almost every case. For
example, all of the tools agreed on the number of nodes
and edges for math-spectral-norm.js and string-fasta.js. For
bitops-bitwise-and.js and regexp-dna.js, we can see that none
of the static or dynamic tools can find a node. Since bitops-
bitwise-and.js contains only some statements without calling
any function, none of the tools realize a node (or an edge).
In the case of regexp-dna.js, we can also see some state-
ments, however, some calls to builtin functions happen. In our
research, we do not take into account the builtin function
calls.

In order to characterize and express the similarity of call
graphs (nodes and edges together) with one measure, we have
reviewed some well-known general graph similarity mea-
surement approaches [17], [18], [19], [27], [41]. For our
purposes, we chose a relatively simple edit distance measure
for graphs [18] as it has an intuitive meaning. This measure
is similar to the Levenshtein edit distance [49] defined for
strings; the minimal number of insert, delete, or substitute
operations required to get two identical graphs.

Table 4 summarizes the average graph edit distances of
the call graphs built by the various tools. We measured the
above mentioned edit distance for each pair of call graphs on
all the 26 programs, then took the average distance values.
Therefore, we got a matrix of average distance measures
between the tools that is symmetric (as the distance measure
itself is symmetric).

The two dynamic tools produced exactly the same results
in the case of SunSpider benchmark, so the edit distance
between the call graphs is 0. Apart from the two dynamic
tools, the largest similarity is between the TAJS static tool and
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TABLE 3. SunSpider analysis results.

either of the two dynamic tools. On average, only 1.58 oper-
ations would be needed to convert one call graph to the other,
which means these are very similar to each other. It is a bit
surprising, as the closest two static tools (ACG and Closure)
have an edit distance of 3.58 on average. WALA has the
largest distance from all the other tools with the maximum
edit distance of 10.42. The dynamic tools have edit distances
over 6 for all the tools except TAJS. However, dynamic call
graphs are not the ones with the greatest edit distance from
all the other graphs.

2) RESULT QUALITY ANALYSIS
The Venn diagram of the call edges found (by only the
five static tools) in the 26 benchmark programs is shown
in Figure 2. The first numbers show the true positive edges
(which is assessed by our manual evaluation, see Section III-
F), while the second numbers are the total number of found
edges. The percentages below the numbers represent the ratio
of true positive edges in that particular area (compared to the
total number of edges found by the given combination of the
tools). The number (and distribution) of edges found by all
possible subsets of the five tools is emphasized in this figure.

348 edges were found by the tools, out of which 184 were
true positive edges. All five tools found 98 edges in common,
all of which were true positive hits. There is less agreement in
the case of remaining edges. Four tools found edges that other

tools missed. As for edges found by only one tool (WALA,
Closure Compiler and npm callgraph (npm-cg) reported such
edges), all of them turned out to be false positive.

a: EDGES FOUND BY NPM-CG ONLY
18 unique edges were found only by the npm-cg tool. All
the 18 edges were false positive hits, as we manually vali-
dated all of them. The edges (without exception) represent
calls from the program’s global scope to a given function.
Although the callee sites did exist in every case, the caller
nodes should have been other functions (and not the global
scope). An actual example6 from the access-nbody.js bench-
mark program is shown in Listing 1.

The reported edge’s callee is Sun() (line 1 in the list-
ing), while the caller is reported to be the global scope (i.e.
<entry>). However, this is not true, an anonymous function
(which starts at line 8 in the listing) calls Sun(). Yet all of
the other tools correctly identified this call.

b: EDGE FOUND BY ACG ONLY
Only one edge, a false positive edge, was discovered by ACG
and no other tools. It is a call7 to a function added to the
built-inDate object via its prototype property in date-format-
tofte.js. Even though the call actually exists, the caller func-

6<entry>→access-nbody.js:74:13.
7date-format-tofte.js:186:15→date-format-tofte.js:8:38.
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TABLE 4. The average graph edit distances of the tools on the SunSpider benchmark.

FIGURE 2. Venn diagram of the true/total number of edges found by the
tools.

LISTING 1. A false call edge found by npm-cg.

tion cannot be reached from the entry point of the program.
Hence the call never happens during the program’s execution.
Listing 2 shows the excerpt of this call.

c: EDGES FOUND BY WALA ONLY
All 19 of the unique edges found only by WALA are false
positive, but for various reasons. WALA was unable to iden-
tify the target node of the call edges in 5 cases, resulting in

LISTING 2. A false call edge only found by ACG.

‘‘unknown’’ as targets.Wemanually analyzed these cases and
discovered that all of the 5 cases are implied by Array() calls.
Since all built-in and external (library) calls are excluded
from the analysis, these edges are clearly false positives.

A group of 10 false positive edges produced by the
date-format-xparb.js program. This program contains a large
switch statement with numerous cases that builds up source
code (and calls to various functions) as simple strings. During
the run of the program, dynamically created string are being
executed using the eval() command to extend the prototype of
the Date object dynamically with generated formatting func-
tions. The dynamically added functions are then called from
the dateFormat function. WALA recognizes direct edges
from dateFormat to the functions generated into the body of
the formatting functions, which is incorrect, as the functions
are called from the dynamically created formatting functions
that are called by dateFormat.

Invalid recursive call edges indicated in the string-unpack-
code.js program are the cause of the remaining 4 false positive
edges. Although there are several functions with the same
name in various scopes, WALA was unable to distinguish
between them.

d: EDGES FOUND BY CLOSURE ONLY
The string-unpack-code.js program contains each and every
one of Closure’s unique edges. All these edges are false
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LISTING 3. A confusing code part from string-unpack-code.js.

positive ones. The explanation of the false positive edges is
quite simple: the program only examines the length of results
of various, compressed code snippets; calls are mostly made
to built-ins in the codes. Similar to WALA, Closure also
seems to ignore the visibility of identifiers within scopes;
Listing 3 provides a sketch of the problematic calls.

The inner function redefining parameter e of the outer
function (line 2 in the listing) is called within itself (line
3 in the listing), which is correctly identified only by Closure
and TAJS. However, Closure reports edges from the same
location to all the other places where a function e is called
(e.g. line 9), which is false, because e is not the same e as it is
already in another scope referring to another locally created
function denoted by the same name. Themajority of the edges
detected here would be false anyway because the string-
unpack-code.js defines four deeply embedded functions with
identical parameter names.

e: INTERESTING EDGES FOUND BY TAJS
TAJS did not find any unique edges. Although, it did discover
a complex control flow that was only found by ACG (among
the static tools). Aside from WALA, TAJS was the only tool
that could recognize higher-order function calls. Listing 4
shows such a call8 in bitops-3bit-bits-in-byte.js.

f: PRECISION, RECALL, F-MEASURE
In order to get the most accurate information retrieval metrics
as possible, we considered only edges that were reported
by the dynamic tools, i.e. that actually happened during the
execution of the given program.

We systematically evaluated all 348 call edges the static
tools found, and divided them into 3 groups:

• true positive (TP): edge that exists and actually realized
during the execution.

• false positive (FP): edge that does not exist in the source
code.

• pseudo-positive (PP): edge that could be a real call but
stay unrealized due to lack of test inputs of the dynamic
analysis.

At least two of the authors evaluated each call edge. Iden-
tifying true positive edges was an easy task, however, dif-
ferentiating between false positive and pseudo-positive edges

8bitops-3bit-bits-in-byte.js:28:18→bitops-3bit-bits-in-byte.js:7:24.

LISTING 4. A true call edge found by WALA and TAJS.

was a harder task to do. False positive edges do not exist in
the source code, but either the edge’s caller or callee have a
function signature that is similar to a function signature that
actually exists in the program. In contrast, in the vast majority
of the pseudo-positive cases, the caller function never gets
called, thus the call from the caller to callee (which would
otherwise be a valid, possible call) is never realized.

During the evaluation of the static analysis, we found
184 true positive edges. We then added all edges that can be
found only by the dynamic tools, as they certainly happen
during the program’s executions. In total, we considered the
resulting 195 edges as a golden standard. Then, for each tool
and all possible combinations of them, we were able to calcu-
late the well-known information retrieval metrics (precision
and recall). We should note that only simple call edges were
evaluated and compared; paths along these edges (i.e. call
chains) were not taken into account. The impact of missing
or extra edges may vary depending on how many paths going
through them, and this may affect the precision and recall of
the found call chain paths.

The detailed statistics of the tools can be found in Table 5.
The first column (Tool) is the name of the tool or combination
of tools. The second and third column (TP and FP) shows
the total number of true and false positive instances found
by the appropriate tool or tool combination. The following
column (PP) shows the number of pseudo-positive edges,
by which we mean edges that would be real if the program
execution reached the caller’s side. As this does not happen,
these edges are not counted as true positive edges. In the
fifth column (All), we display the total number of edges
found by the appropriate tool or tool combination. The sixth
(Prec.), seventh (Rec.), and eighth (F) columns contain the
precision (TP / All), recall (TP / 1959) and F-measure values,
respectively.

From the individual tools, TAJS stands out with its almost
perfect (97%) precision and quite high recall (93%) values.
While ACG and Closure have quite high recall (very close
to that of TAJS), their precisions are far below TAJS’s.
Closure achieved the worst precision (62%), while WALA
had the lowest recall (63%) among the tools. ACG found
the highest number of true positive edges, however, it found
several pseudo-positive edges, thus explaining the rather low
precision and recall.

9The total number of true positive edges.
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TABLE 5. Precision and recall measures for individual tools and their combinations.

Looking at the two tools combinations, TAJS+WALA
stand out based on F-measure (89%). However, this combi-
nation did found only true positive edges that TAJS found,
WALA did not add any unique edge, so using TAJS only
would yield a better result than using both of the tools.
The second best F-measure value was produced by npm-
cg+TAJS. It has a worse F-measure than TAJS+WALA,
but interestingly this combination find more edges than
TAJS+WALA. The next best F-measure value (80%) was
produced by using ACG and TAJS together. Interestingly,
they found the most true positive edges (184 out of 195) any
tool or tool combination could find, while maintaining quite
high F-measure. This combination found the highest number
of pseudo-positive edges too. In fact, using TAJS seems to
be the best choice, followed by the combination of TAJS and
WALA, as their F-measures are the highest. Taking pseudo-
positive edges into account (as if they would true positives),
either ACG or TAJS could be a good choice, and combining
them would seem to be the best we could establish in this
context. Taking all the tools into consideration, the combined
precision decreases to 53% with a recall value of 94%.
Answer to RQ1: Our manual validation shows that the
static call graph extractor tools do not find exactly the
same edges. This is due to the details in implementation
and the underlying concept of the tools (differences in
handling eval(), visibility of identifiers, or identifying
call sites). These differences all contribute to the different
results that the tools produce.

Comparison of static and dynamic results.
Table 6 summarizes the relation between the call edges

found by the static call graph tools and the dynamic call graph
extraction process. We kept only those static edges that were
evaluated to be true positive instances. As can be seen, there
is quite a big variance in the intersections and differences in
the call edges among the static tools. The two extremes are
npm-cg and TAJS. On the one hand, npm-cg misses 70 valid
edges and has the lowest intersection (125 edges) with the
dynamic approach. TAJS, on the other hand, produces a result
that is very similar to that of the dynamic approach. 99% of
the edges found by TAJS is also in the dynamic call set and
TAJS also finds 93% of all dynamic edges (i.e., misses only
14 edges found by NodeProf).

Interestingly, WALA produced only 5 edges that are not
in the dynamic set (i.e., 96% precision based on the dynamic
edges), while Closure found 90% of the dynamic edges at
the price of introducing 55 edges not in the dynamic set.
We manually checked all the edges that were found only by
a static tool or only by the dynamic approaches.

g: EDGES FOUND ONLY BY THE DYNAMIC APPROACHES
Given the highly dynamic nature of JavaScript, it is no sur-
prise that there were several edges found by only the dynamic
tools. All of these edges were valid calls between functions,
but they are mostly undetectable by a static analyzer.

For example, in Listing 5, an anonymous function
dynamically adds several functions to its parameter
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TABLE 6. Comparison of static and dynamic edges.

LISTING 5. A call detected only by dynamic tools.

called s. The function is immediately called with the
String.prototype parameter meaning that every String
object will be extended with the defined functions and prop-
erties. Hence, tagInfoJSON (which is a string) will have a
parseJSON function that takes a function as an argument.
The function call10 was realized by an inner function called
inside parseJSON, walk, which calls the parseJSON’s
parameter named filter. Since parseJSON was added
dynamically, it would have been hard to detect by static
analysis alone.

Dynamic evaluation of strings is also a typical case which
is hard to detect by any static analyzer while a dynamic
tool can find it easily. In the case11 depicted in Listing 6,
the program adds a formatDate function to all Date
instances in the program. The function formatDate splits
the desired output format (a parameter called input), and
iterates through it. If it finds a format character presented
in the predefined variable switches, the function calls
the corresponding function with eval. While it is a pretty
straightforward dynamic call, it is really hard to detect with a
static analysis tool.

As we mentioned before, in string-unpack-code.js, the
dynamic tools found more nodes than any of the static tools.
We evaluated these nodes too, which are proved to be valid
and existing functions. The static analyzers missed these
nodes because they are not calling any functions (as they are
callback functions that return with an element of an array).

10string-tagcloud.js:180:26→string-tagcloud.js:229:45.
11date-format-tofte.js:8:38→date-format-tofte.js:83:15.

h: EDGES FOUND ONLY BY STATIC TOOLS
In accordance with our expectations, there were some edges
found only by the static tools. Usually, the static call graphs
contain possible call edges that are never realized during
run time. We must note however, that in the case of the
SunSpider benchmark, there is a fair amount of dead code,
which causes lots of unrealized but possible calls. This sheds
light to one of the weaknesses of the dynamic approach,
namely that an insufficient test input makes the call graph
imprecise. Nonetheless, there are several possible edges that
are unrealized due to some condition on the inputs and we
ran the dynamic analysis with only one input vector provided
with the tests.

For example, in Listing 7, there is a function call12 to
String.escape (line 19). This call is never realized in
practice as the function dateFormat was never called with
a parameter containing a backslash.
Answer to RQ2: Static call graph extractor tools found
a significant proportion of the real edges detected by
dynamic analysis on the SunSpider benchmark. However,
most static approaches introduce false positive edges.
In addition, they often miss real edges. According to
our manual validation, the majority of the missed edges
come from dynamic calls, which in most cases would be
extremely difficult to detect from the source code alone
(i.e., using static analysis).

B. NODE.JS MODULE RESULTS
1) QUANTITATIVE ANALYSIS
To evaluate the practical capabilities of the selected tools,
we analyzed 12 real-world, popular open-source Node.js
modules. We had more candidates, but these were the
ones we could analyze both dynamically (i.e. that had the
proper amount of executable tests) and statically without
errors. Details about the subject programs can be found in
Section III-C2.

Unfortunately, npm callgraph and WALA were unable
to analyze whole, multi-file projects because they cannot
resolve calls among different files (e.g., requiring a module).

In earlier stages of our work [21], we were able to use
Closure Compiler too, which seemed to be quite imprecise
in terms of real, Node.js applications. A manual evaluation
on a sample of 240 edges found by Closure on various
Node.js modules showed only 40 real call edges, which is
less than 20% precision. Moreover, the developers of Closure

12date-format-xparb.js:26:32→date-format-xparb.js:347:25.
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LISTING 6. A call detected only by dynamic tools.

LISTING 7. An unrealized edge.

Compiler have removed the explicit call graph data structure
support from their tool.13 Hence, in the current stage of our
research, we decided to omit Closure Compiler from the
comparison as well. TAJS supports the require command,
nonetheless it was still unable to detect call edges in multi-
file Node.js projects. Therefore, we could apply only ACG

13https://github.com/google/closure-compiler/commit/5d6c9326f3d8a
2255839be439cfb2713d06a60f7.

as a static tool to recognize call edges in Node.js modules.
Thus, we used only this static and the two dynamic tools to
perform the analysis and comparison on the selected Node.js
modules.

To gather as much information as we can, we performed
the analysis using both applicable strategies that ACG offers
(ONESHOT and DEMAND). The ONESHOT strategy tracks the
inter-procedural flow but it tracks only for one-shot closures
that are invoked immediately. The DEMAND strategy (called
optimistic approach) performs inter-procedural propagation
along the edges that may end at a call site.

As for the NodeProf dynamic analysis, we had to execute
all the tests provided as part of the Node.js modules and run
our NodeProf-based analysis tool. The test systems of the
selected programs use the npm tool of Node.js, which spawns
Node.js binaries with various command line arguments. The
biggest challenge of the implementation was correctly sup-
porting all of these arguments.

We calculated some basic statistics from the gathered data
that is shown in Table 7. The table displays the number
of nodes (functions) and edges (possible calls between two
functions) found by the tools. As can be seen, the results
show resemblance, the correlation between nodes and edges
found by the tools (and approaches) is high. Unsurprisingly,
there are no exact matches in the number of nodes and edges
for such complex input programs. The two dynamic tools
produced almost identical results in terms of the numbers
of nodes and edges. Although in one case, there is a slight
difference between the found edges (eslint).

2) RESULT QUALITY ANALYSIS
During the evaluation of the edges, we could only validate
the existance of the edges, due to the huge size of the input
programs. So it is possible that we labeled pseudo-positive
edges as true positive edges, since checking whether the
execution of such huge programs reaches a particular point
(in any way) is cumbersome.

As we already mentioned earlier, we could use only ACG
(with two strategies), NodeProf and Nodejs-cg to analyze the
state-of-the-art Node.js modules listed in Table 2. Figure 3
shows a Venn diagram of the results. Taking every tool into
consideration, only 6,818 edges were found by all of the tools,
which is approximately 8% of all edges.

While ACG ONESHOT did not report any edge that was
missed by others, ACG DEMAND reported 43,009 unique
edges that were found by only this strategy. Interestingly,
it also found 169 edges that were detected by the dynamic
approaches (and missed by the other static strategy). The
DEMAND strategy improves the recall of ACG, at the price
of significantly lowering precision (see Table 8). ACG
ONESHOT and ACG DEMAND reported 29,227 edges that
were not reported by any of the dynamic tools, but both static
strategies found them. This can be easily explained by the
fact that the ACG DEMAND strategy is not an entirely new
algorithm, but rather extends ACG ONESHOT’s results. This
is the explanation for ACG ONESHOT not finding any unique
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TABLE 7. Node.js analysis results.

FIGURE 3. Venn diagram of the edges found by the tools on
the 12 Node.js modules combined.

edges. Since the amount of edges here is orders of magnitude
larger than in the case of the SunSpider benchmarks, we were
not able to entirely validate all the calls manually.

However, we evaluated a statistically significant amount
of random samples. To achieve a 95% confidence level with
a 5% margin of error, we evaluated 593 edges in total. Par-
ticularly, we evaluated 259 edges found by ACG only (94
found by the DEMAND strategy only and 165 found by both
ONESHOT and DEMAND), 227 edges found by ACG and
either of the dynamic approaches (192 from the intersection
of all four approaches, 10 from the intersection of ACG
DEMAND and the dynamic tools, and 25 from the intersection
of ACG ONESHOT and DEMAND and Nodejs-cg dynamic
tool). We also evaluated 65 edges found by both dynamic but
neither of the static tools. We evaluated all edges found by
only one of the dynamic tools.

From 259 examined edges found by only the two static
strategies, 33 were valid (2 were found by ACG DEMAND,

31 were found by both strategies). The rest (226 examined
edges) were not valid edges, of which 92 were found by
ACG DEMAND, and 134 were found by both strategies. As we
can see, approximately one fifth (18.8%) of the edges found
by the ACG ONESHOT strategy (which is a subset of ACG
DEMAND) but not the dynamic approach is true. If we look
at all the edges found by ACG DEMAND, the ratio falls
under 13%, so using the ACG DEMAND strategy increases the
number of true positive edges found, however it increases the
number of false positive edges even more. Therefore the true
positive rate is slightly above 12.7% for our sample, which
means that we are 95% sure that around one eighth of the
edges found by only ACG but not the dynamic approach are
true edges.

We evaluated 192 edges that were found by all of the
strategies, all of which were valid, true positive edges. On the
one hand, 382 edges were found by both static approaches,
of which 248 were true positive edges, resulting in a true
positive rate of 64.92%. On the other hand, we evaluated
267 call edges that were found by both dynamic approaches,
all of them were valid. We also evaluated the edges found by
one of the dynamic tools, all of which were true positives. Not
surprisingly, all dynamic edges were valid, but we wanted to
double-check to make sure we did not introduce any errors in
our dynamic analysis tools.

Based on the evaluated samples, we can even give an esti-
mation to the precision and recall of each approach. Table 8
shows these estimated numbers. We estimate the precision of
approaches with the TP rate of the evaluated samples. For
the estimated recall values, we need the expected number of
total valid edges, which we approximated by the number of
edges found by the dynamic approach (as all the evaluated
samples are true for such edges) plus the TP rate proportion
of edges found only by the static approaches (18.18% of
29,227 edges plus 2,21% of 43,009 edges), which yields
6,406. As it can be seen, we rounded the values to the greatest
integer that is less or equal to the value we got. Based on
the TP rates for individual approaches, we could estimate the
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TABLE 8. Precision and recall values.

expected number of true edges found by approaches: 12,334
for ACG ONESHOT (1*6818 + 1*25 + 0.1818*29227),
13,418 (1*6818 + 1*169 + 1*25 + 0.0212*43009) for ACG
DEMAND, 14,679 (1*6818 + 1*32 + 1*7660 + 1*169) for
NodeProf, and 14,682 (1*6818 + 1*7660 + 1*10 + 1*25 +

1*169) for the Nodejs-cg tool. The ratios of these numbers
will give us a rough estimate of the tools’ recalls. Obviously,
the dynamic approaches have perfect precision, however, they
miss several edges probably due to the insufficient num-
ber of test inputs, thus having recall values of 69.50% for
NodeProf and 69.52% for Nodejs-cg. ACG ONESHOT has a
greater F-measure value than the DEMAND strategy. Despite
the DEMAND strategy has a bit higher recall value but its
precision is about the half that of the ONESHOT strategy.

While we were evaluating the results, we noticed several
edges (found only by the dynamic tools) that in our opinion
could have been detected by a static algorithm. A typical
example for a weakness of ACG is when a function is being
called within an export statement, like in Listing 8 (taken
from express.js14).

But this is not the only case when the static approach
missed a possible edge. According to our experiences, there
are circumstances when both strategies miss edges that it
otherwise recognizes correctly in the majority of cases.
An example of a missed edge is shown in Listing 9 (taken
from JSHint15). This suggests that there might be missed
edges due to implementation/technical issues and not just
due to the conceptual barriers of the underlying extraction
algorithms.
Answer to RQ3: Based on the manually validated sam-
ples from real-world Node.js projects, we found that static
approaches find roughly 10-20%16 true positive edges
that weremissed by dynamic approaches. This is probably
due to the incomplete test coverage of the study projects
and that they might contain unreachable source code.
There may be also tests that we were unable to exe-
cute because they required specific hardware or software
requirements.

14lib/utils.js:1:1→lib/utils.js:274:30.
15src/name-stack.js:43:37→src/name-stack.js:8:16.
16Compared to the total number of edges found by static approaches only.

LISTING 8. A typically missed edge that could be detected statically.

C. DISCUSSION OF THE RESULTS
Each approach and tool has advantages and disadvantages.
During this comparative study, we distilled the following
‘‘lessons’’.

• Static tools handle recursive calls well; Closure Com-
piler appears to be the most mature in this respect.

• Edges pointing to nested functions (function in a func-
tion) are not handled well by every static tool, e.g.,
WALA produces a lot of false edges because of this.

• Apart from the dynamic tools, only WALA, TAJS, and
ACG with the optimistic strategy (DEMAND) can detect
calls of function arguments (i.e. higher-order functions).

• ACG and TAJS cal follow more complex control flows
and detect non-trivial call edges.

• Closure often relies only on name matching, which can
cause false or missing edges.

• WALA can analyze eval() constructs and dynamically
built calls from strings to some extent.

• npm-cg mistreats calls from anonymous functions
defined in the global scope, meaning it reports the call
coming directly from the global scope (instead of the
anonymous function).

• TAJS produced the most similar call graph to that of the
dynamic analysis.

• From the available static approaches, only ACG is prac-
tically suitable for analyzing up-to-date Node.js mod-
ules (due to language support and precision).

• Both static and dynamic approaches found true edges
that the other missed.

As can be seen, dynamic approaches have perfect preci-
sion, since they only report call edges that actually occur.
This is also their biggest disadvantage, as they require very
high test coverage to have the highest possible recall value.
Moreover, there may be code where its execution depends on
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LISTING 9. A missed edge that is sometimes recognized statically.

the current operating system, some environment variables,
or even the availability of another service, for which tradi-
tional unit tests may not be sufficient, and more complex
test cases may require multiple environments with different
settings (or even different interpreter), which can greatly
affect the performance of producing an accurate call graph.

V. THREATS TO VALIDITY
Several factors may have had an impact on our study.We tried
to mitigate every possible threat as much as we could.

A. TOOLS
First and foremost, there’s a chance that some inconsistencies
were caused by our changes to the call graph extraction tools.
However, the most of the modifications we made affected
the reporting of edges; as a result, their impact is minimal,
if any. Another possible threat could have been our dynamic
tools which we have modified. The developers of the tools
are experts in this field, and have several years of experience.
Despite that, we did a thorough code review on these tools
before using them. Furthermore, a similar study in the field
of dynamic analysis was executed, and the results were previ-
ously published [39], [40]. All things considered, we believe
that this possible threat does not affect our study.

B. MISSED CANDIDATES
We may have missed some good candidate tools from the
comparison, but wemade every effort to find any tool that met
our requirements. Regardless of this, we think the evaluation
strategy and the results of this study are helpful. Furthermore,
a comparative study like this may always be replicated and
extended.

C. SUBJECTIVITY OF MANUAL EVALUATION
The subjectivity of the evaluators might potentially represent
a threat to the manual evaluation of the call edges. By hav-
ing at least two authors validate each of the selected edges
(all edges in the 26 SunSpider benchmark and randomly
selected 593 edges in the case of the 12 Node.js programs),
we attempted to mitigate this. There were just a few cases
when there were early disagreements between the evaluators.
They could ultimately come to an agreement. Therefore,
we believe that the bias brought on by evaluation errors is
negligible.

During the evaluation of the Node.js results, we could
only validate the existance of the edges, due to the huge
size of the input programs. So it is possible that we labeled
pseudo-positive edges as true positive edges. Of course, edges
found by a dynamic approach were certainly executed during
the run of a program. However, validating edges that were
found by only a static approach is a more difficult task, since
all execution paths of the program that lead in any way to a
given point would have to be examined.

VI. CONCLUSION
JavaScript code analysis has become increasingly popular in
the past years. The call graph is a vital structure and the basis
for many algorithms for vulnerability analysis, coding issue
detection, and type inference.

This paper presents the results of a comparison study
of five state-of-the-art static algorithms and two dynamic
ones for constructing JavaScript call graphs on 26 WebKit
SunSpider benchmark programs and 12 real-world Node.js
modules. Our goal was not to declare a winner, but rather
to get empirical insights into the capabilities and efficacy of
state-of-the-art static call graph extractors, as well as how
they compare to dynamic approaches.

Each tool and analysis approach had advantages and dis-
advantages. For example, Closure Compiler detected calls
(mainly recursive calls) that were missed by other static
tools, however, it found several false positive edges due to
shallow name matching. ACG followed more complicated
control flows to detect call edges, resulting in a higher recall
value, and maintaining an acceptable precision, but it missed
higher-order function calls (callbacks).

It is noteworthy that ACG was the only tool capable of
analyzing real-world Node.js modules. WALA could detect
higher-order function calls, but it created numerous false
positive edges with unknown nodes and had the lowest recall
among the tools. The npm callgraph module had quite a low
F-measure (as both precision and recall were low) and it did
not find any true positive edges others missed. However, its
implementation is quite simple and very easy to understand
if someone wishes to modify it. TAJS provided great results,
it had the highest precision and recall values. Not surprisingly,
it produced the most similar call graph to that of the dynamic
approach.

The dynamic call graphs were precise, however, they
missed certain static edges due to the lack of sufficient test
inputs. The results also show that the combined power of
numerous tools outperforms that of individual call graph
extractors. As a result, we believe that combining static and
dynamic approaches in some clever way might result in
significant improvements in the quality of the created call
graphs. Thus, we encourage both developers and researchers
to combine state-of-the-art static and dynamic methods to
achieve the best possible results.
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