
Citation: Markus, A.; Al-Haboobi, A.;

Kecskemeti, G.; Kertesz, A.

Simulating IoT Workflows in

DISSECT-CF-Fog. Sensors 2023, 23,

1294. https://doi.org/10.3390/

s23031294

Academic Editors: Kien Nguyen

and Xiaoyan Wang

Received: 19 December 2022

Revised: 17 January 2023

Accepted: 20 January 2023

Published: 23 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Simulating IoT Workflows in DISSECT-CF-Fog
Andras Markus 1,* , Ali Al-Haboobi 2,3,* , Gabor Kecskemeti 2 and Attila Kertesz 1

1 Department of Software Engineering, University of Szeged, 6720 Szeged, Hungary
2 Institute of Information Technology, University of Miskolc, 3515 Miskolc, Hungary
3 Faculty of Computer Science and Mathematics, University of Kufa, Najaf 54001, Iraq
* Correspondence: markusa@inf.u-szeged.hu (A.M.); al-haboobi@iit.uni-miskolc.hu (A.A.-H.)

Abstract: The modelling of IoT applications utilising the resources of cloud and fog computing is
not straightforward because they have to support various trigger-based events that make human life
easier. The sequence of tasks, such as performing a service call, receiving a data packet in the form of
a message sent by an IoT device, and managing actuators or executing a computational task on a
virtual machine, are often associated with and composed of IoT workflows. The development and
deployment of such IoT workflows and their management systems in real life, including communica-
tion and network operations, can be complicated due to high operation costs and access limitations.
Therefore, simulation solutions are often applied for such purposes. In this paper, we introduce a
novel simulator extension of the DISSECT-CF-Fog simulator that leverages the workflow scheduling
and its execution capabilities to model real-life IoT use cases. We also show that state-of-the-art
simulators typically omit the IoT factor in the case of the scientific workflow evaluation. Therefore,
we present a scalability study focusing on scientific workflows and on the interoperability of scientific
and IoT workflows in DISSECT-CF-Fog.

Keywords: Internet of Things; workflow management; fog computing; simulation

1. Introduction

With increasing mobility and connectivity, the Internet of Things (IoT) has become
one of the most important paradigms in information technology in the 21st century [1]. In
the era of the IoT, various devices and their sensors produce a huge number of datasets,
and data processing solutions consist of a set of activities or tasks that can be executed in
the cloud or at the edge of the network [2]. Cloud computing is often used by IoT systems,
because it is ubiquitous and offers theoretically unlimited elastic computing and storage
services, which fit the needs of IoT applications.

Due to the growing number of IoT applications and their time-critical requirements,
purely cloud-based solutions are insufficient, and delays often occur because cloud data
centres are usually far away from the data sources. Fog computing was derived from
cloud computing to solve the problems of increasing latency, the high density of smart
devices, and congested communication channels, also known as the bottleneck effect [3].
To overcome the problems associated with centralised management, it is crucial for time-
critical applications to use fog resources and only benefit from the cloud when needed.
However, there are a number of obstacles to consider, such as maximising the use of fog
resources while taking into account their computational limitations. In addition, some
of the tasks may be time-critical, requiring immediate allocation and execution. The
execution of upcoming tasks requires effective scheduling and task allocation that meets all
requirements.

Since modern applications are no longer built as monolithic architectures but are
composed from small software components (e.g., microservices) with dependencies, such
applications can be described as workflows. Due to the unique nature of the IoT, workflows
incorporating IoT activities must adapt to these new environments. Data are generated
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in huge quantities because of the large number of sensors, smart devices, and gadgets in
use today. Therefore, in the context of the IoT, fog computing is often used to improve
data processing and reduce latency by connecting to computing nodes close to the end
users. In the context of sense-process-actuate models, such as those used in healthcare,
smart homes, and autonomous vehicles, IoT–fog–cloud systems can ease many parts of our
everyday lives.

Novel IoT solutions often rely on trigger-action programming, which can be utilised
by smart scene management tools. For instance, IoT applications can benefit from IFTTT [4]
trigger-based web services. In an IFTTT scene, various actions and trigger events are linked.
For instance, the room temperature can be automatically adjusted based on an IoT sensor
measurement. We could call these kinds of combinations of services (e.g., the ones offered
by IFTTT) IoT workflows.

Evaluating the effectiveness of novel scheduling and resource provisioning strategies
for IoT workflow applications and investigating how they are executed in the fog or
in the cloud are currently challenging. These issues are often difficult to test in real
environments for the following reasons. In large-scale IoT workflows, it can be difficult to
successfully conduct real-world experiments to improve the behaviour of IoT applications,
especially when a statistically significant number of experimental results is needed to
provide information about possible improvements to IoT applications. For this reason, the
scope of research and development in the field of IoT workflow simulation is limited. In
the case of experimenting with real IoT systems, researchers are usually able to perform
a limited number of different scenarios. Due to the high resource requirements, it is
also very difficult and costly to repeat the results of an experiment in a large number of
real-world scenarios. As a result, researchers often use simulators. Experimental results
can be easily reproduced using a simulation because it provides an environment that is
repeatable, controlled, reliable, and scalable. Consequently, a simulator that could support
the modelling of IoT workflows would be very useful. It would allow both researchers and
industrial parties to model their scenarios and evaluate the performance of their algorithms
in a very short time in a realistic simulation environment in a cost-effective manner as well.

Currently, there are few simulation tools and software programs that execute work-
flows in cloud and fog environments, but the previously specified IoT workflows cannot
be defined using the existing generic workflow description standards. To the best of our
knowledge, our study is the first step towards making unified tools for describing and
simulating IoT workflows.

In this paper, we address the above-mentioned research challenges. We have devel-
oped and implemented an IoT workflow extension in the DISSECT-CF-Fog [5] simulator to
model IoT workflow applications in fog and cloud environments. It provides the ability to
model and simulate the execution of IoT workflows over resources provided by different
fog and cloud infrastructures. Our main contributions are as follows: (1) modelling Inter-
net of Things workflow applications; (2) developing a new XML structure for simulating
IoT workflow applications; (3) presenting a novel simulator extension that leverages the
workflow scheduling and execution capabilities of the DISSECT-CF-Fog simulator to run
modelled IoT workflow applications in fog and cloud environments; and (4) evaluating
the proposed simulator extension through simulating the IoT and scientific workflows in
fog and cloud environments.

The remainder of the work is arranged as follows. Section 2 provides background
information and reviews related works on IoT workflow simulators. The details of the
design and implementation of our extension are described in Section 3. The results of the
experiment are shown and discussed in Section 4. Section 5 concludes this paper and states
future work objectives.

2. Research Background

Through the spread of distributed and parallel computing, monolithic applications
were replaced by modular software, which perfectly fits the architecture of grid computing
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and cloud computing. In these complex, distributed systems, the logical distribution of
the application components is paired with scalable computing resources to facilitate ef-
fective execution. These computing-intensive applications typically come from the fields
of astronomy, earthquake and ocean science, and bioinformatics, among others. The
following challenges have to be taken into account in the case of complex distributed
scientific workflow management systems [6]: (1) data movement between and within
workflow components in a scalable and parallel manner, (2) resource selection and provi-
sioning in regard to resource types and the costs of data transfers and analysis, and finally
(3) effective execution and scheduling of various tasks.

One of the earliest workflow management systems is Pegasus [7], which was initially
proposed to execute workflows in grid environments. However, the foundation of Pegasus
was laid in 2001, and it can clearly be seen in the literature that it is still an active research
area thanks to the unfolding of different computing paradigms such as cloud computing
and fog computing. To execute various workflows with Pegasus, they also offered a
description format called Directed Acyclic Graph in XML (DAX).

With a directed acyclic graph (DAG), a workflow can be formalised as follows:
G = (V, E), where V is the set of tasks or jobs (vertices) and E is the set of dependencies
between the tasks (edges). The number of incoming and outgoing edges (i.e., dependencies)
is not restricted to one, except for the start or entry and stop or exit events, where the in and
out directions are missing, respectively. In the case of scientific workflows, a dependency
typically means a data transfer (e.g., file movement). Therefore the following operations can
be represented [8]: (1) processing (one incoming and one outgoing dependency), (2) data
distribution (one incoming and multiple outgoing dependencies), (3) data aggregation
(multiple incoming and one outgoing dependency), and (4) data redistribution (multiple
incoming and multiple outgoing dependencies). Therefore, a task can only be started if its
dependencies have been resolved. The edge (i, j) ∈ E means that the parent task vi has to
complete to start the child task vj.

In order to execute complex workflows effectively in terms of application makespan,
utilisation cost, network utilisation, and energy consumption, workflow scheduling algo-
rithms are applied. However, different scenarios may require different scheduling policies.
Finding the optimal scheduling for cloud or fog resources is challenging because (1) the
availability of resources cannot be foreseen at the time when a task is ready to be executed,
(2) the best fitting resource is hard to find for a task in the case of its migration, (3) the
maximal utilisation of the resource-constrained fog environment is difficult to manage in
order to achieve the shortest makespan of the workflow application, and finally (4) the
execution of the workflow has to meet multi-objective criteria [9].

Since IoT workflows are similar to scientific workflows, mostly in terms of their
general representation, execution rules, and research goals, our plan was to first survey
the available simulation solutions focusing on workflow modelling. In the following
section, we summarise the most significant simulators capable of modelling workflows in
simulation environments.

2.1. Related Works

WorkflowSim [10] is an extension of the popular CloudSim simulator which aims
to model cloud infrastructures and services. It is written in the Java programming lan-
guage. CloudSim does not support workflow-based simulation by default. Therefore, the
extended version provides various modules for workflow management by considering
similar components, such as the ones Pegasus WMS has. The most important components
are the workflow mapper, which aligns abstract workflows to concrete jobs in the execution
environment, the workflow engine, which handles dependencies between the workflow
jobs, and the workflow scheduler, which assigns jobs to computing resources. This tool also
utilises a clustering engine to resolve scheduling overheads by merging tasks. Since Work-
flowSim only supports executing Pegasus trace files by importing DAX files, it is therefore
only applicable for executing scientific workflows on cloud resources without the considera-
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tion of fog resources and IoT components. Although the simulator is open-source (accessed
on GitHub on 30 November 2022: https://github.com/WorkflowSim/WorkflowSim-1.0),
it is no longer maintained.

The FogWorkflowSim [11] simulator includes a fog environment for workflow ap-
plications to investigate different resource and task management strategies. This tool is
built upon iFogSim to support more complex fog topologies as well as WorkflowSim,
inheriting the capability of executing workflow applications. Therefore, the WMS of Fog-
WorkflowSim (accessed on GitHub on 30 November 2022: https://github.com/ISEC-AHU/
FogWorkflowSim) utilises similar components for transforming the abstract, DAX-based
workflow file into tasks executable in the simulator, namely task clustering and scheduling.
The authors proposed various greedy and more sophisticated scheduling algorithms such
as MaxMin, RoundRobin, and Particle Swarm Optimisation. However, end devices are
considered by FogWorkflowSim to be potential computing resources, and unfortunately,
IoT-related workflow simulations are totally omitted.

EdgeWorkflow [12] follows a slightly different approach for workflow management.
While this engine depends on FogWorkflowSim, it allows the creation of a real comput-
ing environment. First, a simulation phase is used to test the theoretical resource and
task management strategies (i.e., it basically utilises the components of FogWorkflowSim),
to make them comparable with the real execution, and to help decide which offload-
ing and scheduling algorithms should be selected. Second, there is a real phase with a
MySQL database and a Docker container pool for executing the workflow in an existing
environment by mapping the simulation tasks with real computing tasks. Even if this
work aims to simulate edge workflow applications, only scientific workflow descriptions
(i.e., DAX) are considered by EdgeWorkflow (accessed on GitHub on 30 November 2022:
https://github.com/ISEC-AHU/EdgeWorkflow) for the evaluation.

One of the latest simulators is WIDESim [13], which also extends CloudSim to analyse
resource management of workflows in the distributed environments of cloud, edge, and
fog computing. The simulator focuses mainly on the network topology of such domains,
considering centralised as well as decentralised schemes, and it quits using DAX files.
Instead, the authors introduced a JSON-based description for defining a workflow and its
dependencies. Unfortunately for the evaluation, only scientific workflows were parsed
and compared to concurrent simulators (accessed on GitHub on 5 December 2022: https:
//github.com/maminrayej/WIDESim).

IoTSim-Stream [14] aims to simulate big data workflow applications with multi-cloud
resources. Similar to the previously discussed simulators, this is also a CloudSim-based real-
isation (accessed on GitHub on 5 December 2022: https://github.com/mutazb999/IoTSim-
Stream). However, IoTSim-Stream also deals with a modified DAX-based configuration file
and scientific workflows. Still, this work is the closest to ours by considering components
as standalone services and incoming data from external sources such as IoT sensors, and
the output data can be forwarded in replica or partition mode. Since multiple data flows are
considered, therefore, the authors proposed a dedicated data stream scheduling algorithm
for stream-based queues of VMs.

In our earlier work, we introduced DISSECT-CF-WMS [15], an extension of DISSECT-
CF, which does not support workflow-based simulation. It is designed to perform scientific
workflow simulations and analyse internal IaaS behavioural knowledge. It focuses on the
user-side behaviour of clouds, while DISSECT-CF focuses on the internal behaviour of
IaaS systems. It also supports dynamic provisioning to meet the resource requirements
of the workflow application while running on the infrastructure, taking into account the
provisioning delay of a cloud-based VM. Since DISSECT-CF-WMS (accessed on GitHub on
4 December 2022: https://github.com/Ali-Alhaboby/Dissect-cf-WMS) only enables the
execution of scientific workflow trace files (DAX files), it is only useful for running scientific
workflows on cloud resources without considering fog resources or IoT components.

Since none of the simulation tools mentioned above consider the fine-grained IoT
functionalities of sensors and actuators or applications utilising fog resources, therefore,
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our goal is to extend DISSECT-CF-Fog [5] towards the modelling of IoT workflows. The
DISSECT-CF-Fog simulator is dedicated to modelling comprehensively the cloud-to-thing
continuum [16]. It has a detailed and expansible representation of IoT sensors, actuators,
and devices. Furthermore, a multi-layered fog topology can be utilised with realistic
network and virtualisation layers, aside from IoT- and cloud-side pricing schemes being
based on real providers, and the energy measurements of the nodes are calculated during
the simulation. Thus far, the Java-based DISSECT-CF-Fog (accessed on GitHub on 6
December 2022: https://github.com/sed-inf-u-szeged/DISSECT-CF-Fog) only supports
batch processing. However, due its flexibility and scalability, it is applicable to modelling
stream processing as well. It is also worth mentioning that there are significant performance
differences between the core simulators, namely CloudSim and DISSECT-CF. In some cases,
DISSECT-CF was 2800 times faster in terms of scalability of the simulation time [17].

A comparison of the discussed simulators can be seen in Table 1. For the comparison,
we listed the dependencies of the concrete simulator and the workflow trace support,
and we also indicated the year when its source code was modified last. Furthermore, we
depicted with

√
the domains which were considered in the simulators.

Table 1. Comparison of the related workflow simulators.

Simulator Last Modified Dependency Trace
Support IoT Domains of Fog or

Edge Cloud

WorkflowSim 2015 CloudSim

DAX

- -
√

FogWorkflowSim 2019 iFogSim, WorkflowSim -
√ √

EdgeWorkflow 2021 FogWorkflowSim -
√ √

IoTSim-Stream 2021 CloudSim
√

-
√

WIDESim 2022 CloudSim JSON -
√ √

DISSECT-CF-WMS 2022 DISSECT-CF DAX - -
√

DISSECT-CF-Fog 2022 DISSECT-CF
√ √ √

3. The IoT Workflow Simulator

The IoT infrastructure is now being used in a wide range of notable applications,
including smart cities, healthcare, and manufacturing [18]. As we highlighted earlier, IoT
workflows differ from scientific workflows as additional aspects need to be considered.
This kind of workflow follows a trigger-action programming model [4] typically offered by
a third-party service provider such as Google Assistant. In such cases, the focus may be
shifted from the total execution time to the trigger-to-action (T2A) latency, considering it in
various scenarios.

Due to the financial implications and the need for broad-based behaviour, complex
IoT workflows cannot be explored on a large scale when the number of entities involved
reaches thousands in real life. To simulate independent IoT workflows in addition to
generic scientific workflows, we developed a simulation extension of DISSECT-CF-Fog
focusing on IoT devices and applications with realistic network settings, which can be
configured according to the T2A values.

In [19], trigger- and action-based workflow management systems are presented with
real evaluation of IoT scenarios. Through using and extending this, and to further illustrate
the differences and similarities, let us depict a normal IoT process in the office, as shown
in Figure 1. There are still communication and data dependencies between jobs (e.g., the
impossibility to start processing data until every sensor has sent a data packet and it has
arrived at the computing node). As a result, computing tasks typically utilising VMs are still
present in the system, similar to scientific workflows. Time-dependent triggering events are
a new addition to the system. For example, when a user (in this case a programmer) enters
the office, a service triggers some kind of event by sending an instruction to an actuator
to execute it (e.g., turning on or off the air conditioning, lighting, or coffee machine). In
addition, the system contains time-dependent repetitive events, such as measuring the
temperature and humidity in the office every 60 s until the programmer leaves the office.

https://github.com/sed-inf-u-szeged/DISSECT-CF-Fog
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The goal of the IoT workflow simulator is to optimise the performance of IoT applications
as a whole, as well as the performance of their individual components.

Figure 1. Office routine workflow.

To perform such events in the DISSECT-CF-Fog simulator, the former actuator model
of the simulator had to be slightly modified. In this work, the actuator representation can
consider the speed of action. Actuators are active components that control the system or
a mechanism utilising a network connection as well. In a simulation environment, such
control (e.g., moving a robot arm using some kind of energy source, such as a hydraulic
system) cannot be perfectly modelled due to the limitation of the abstraction, and thus
we only considered the necessary time to perform such an action (T2A). This means that
if more physical actuators are present in the simulation with different speeds of action,
then greater importance is attached to the scheduling of actuator tasks. The sensor model,
which is a passive entity, remains as it was before in the simulator. When a sensor event
is triggered or activated, data obtained via a measurement with the predefined size are
stored locally in the IoT device, to which the sensor is connected. Based on the network
characteristics of the IoT device (i.e., bandwidth and latency), the data are forwarded to a
computing node, where the corresponding service is assigned.

The initial plans include the implementation of three more modules in DISSECT-CF-
Fog: (1) an initialisation unit that is able to convert abstract workflows into simulated tasks,
(2) an execution engine built upon the discrete event system of the simulator, which assigns
tasks to the appropriate executors depending on the type of task, and (3) monitoring and
reporting procedures that analyse the results. The flow chart of the extended DISSECT-CF-
Fog towards IoT workflow modelling can be seen in Figure 2, which summarises the whole
process in 13 steps.
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Figure 2. Flow chart of the extended simulator towards IoT workflow modelling.

• Phase I. Initialisation

– Step 1. Generating and loading DAX : In this step, an input file containing the
description of an abstract workflow is loaded. The IoT workflow generator
module of the simulator can also be used for defining the required number and
type of jobs.

– Step 2. Converting to IoT format: If the input workflow file contains the description
of the scientific workflow (e.g., Epigenomics), then the converter module of the
simulator is applied to parse it to the proposed new format.

– Step 3. Creating jobs: Only the new IoT-based description is accepted by the
simulator, while the abstract jobs defined are transformed into Java objects in this
step.

– Step 4. Visualising graph: The only output of the first phase is a DAX visualiser,
which shows the jobs, their dependencies, and the complexity of the graph.

– Step 5. Submitting workflow scheduler: The goal of the scheduler is to define the
pre-simulation operations (e.g., defining a comparator procedure to order the
ready jobs in a queue), job allocation policies (e.g., to manage file transfers, an
initial storage location has to be associated with the jobs), and resource scaling
decisions (increasing or reducing VMs).
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– Step 6. Loading the physical topology: The physical topology containing cloud,
fog and IoT resources with position, capacity, and network properties must be
configured initially.

• Phase II. Execution

– Step 7. Submitting jobs to the executor engine: The workflow engine manages the
events and observes the workflow scheduler. It also determines the entry jobs
having no dependency.

– Step 8. Initialising VMs and job queues for resources: The simulation can be started
only when the initialisation jobs of the scheduler are executed (e.g., there is at
least one running VM for each computing resource) and the job priority for the
queues is determined. This step largely depends on Step 5.

– Step 9. Assigning jobs to resources: A preliminary allocation of jobs to resources
is executed in order to carry out various events. This is typically related to the
file transfers, which can represent dependencies among services. In DISSECT-CF-
Fog, the file transfers between the repositories (i.e., storage) of physical machines,
which are equipped with network properties (latency and bandwidth). Therefore,
the job assignment for computing nodes at the zero moment of the simulation is
inevitable in order to fulfil the dependencies whenever a job is completed.
The allocation of the task is based on the scheduling algorithm proposed in Step 5.
The initial allocation has a distinguished role in order to minimise the time spent
on file transfers. It is feasible if the dependent tasks are allocated to adjacent (or
the same) nodes. However, a less even distribution of jobs on nodes may increase
the execution time of the workflow.
Therefore, various parameters of the system can be involved to create an optimal
scheduling of jobs, such as the topology of nodes, network parameters, the
strength of the computing environment, and the current workload of nodes.

– Step 10. Polling the queues for jobs and processing them on the proper resources: Until
there are unprocessed jobs, the queues are polled continuously.

– Step 11. When a job is complete, reassigning jobs to resources: When a job is complete,
a reallocation function is called to optimise the utilisation of the resources by
reorganising the rest of the jobs. If a service receives some files and then is
reallocated to another computing resource, then this also means a further data
transfer of those files from the old storage to the new one. Similar to Step 9,
different parameters can be considered to improve the system performance in
workflow execution.

• Phase III. Reporting

– Step 12. Printing information: When the execution of the jobs is finished, the most
valuable information about the simulation is written to the output, such as the
execution time, energy consumption, utilisation costs, utilised VMs, and number
of jobs reassigned.

– Step 13. Visualising scheduling timeline: Another visualiser helps with overviewing
the scheduling of jobs on resources over time.

As we can see in Section 2.1, most of the concurrent simulators use the DAX format
in order to define jobs and dependencies. Furthermore, this schema is well known and
commonly used among researchers as well. Since the original version was created to
execute real workflows, for simulation purposes, the description cannot be considered
transparent and human-readable. In a simulation environment, we dispense with certain
addictions, but the simulation still remains realistic. For instance, even if a job depends on
many input files, simulators only consider an abstract representation of the files.

As can be seen in the following listing (Listing 1), the original DAX method has two
main parts. First, the jobs are defined with job tags (Lines 2–6), which is then followed
by the definition of the dependencies with child and parent XML tags (Lines 7–10). If the
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number of jobs exceeds thousands, then the length of the file may become extremely long
with unmanageable dependencies.

Listing 1. The original DAX method.

1 <adag>
2 <job id="ID0000296" name="mBackground" namespace="Montage" runtime="0.425"

version="1.0">
3 <uses file="pposs2ukstu_red_001_001_area.fits" link="input" optional="

false" register="true" size="52557120" transfer="true" type="data"/>
4 <uses file="cposs2ukstu_red_001_001.fits" link="output" optional="false"

register="true" size="52557120" transfer="true" type="data"/>
5 <uses file="cposs2ukstu_red_001_001_area.fits" link="output" optional="

false" register="true" size="52557120" transfer="true" type="data"/>
6 </job>
7 <child ref="ID0000296">
8 <parent ref="ID0000158"/>
9 <parent ref="ID0000295"/>

10 </child >
11 </adag>

To improve the readability and ease the definition of IoT workflows, we introduce our
own DAX-based structure to define IoT workflows in DISSECT-CF-Fog, as is depicted in
the following listing (Listing 2). First, we outsourced the definition of the dependencies
into the jobs. Therefore, in the case of the interpretation of a job, we can clearly see the
incoming and outgoing edges, and thus the child and parent tags are no longer needed. We
also simplified and removed the unused XML tags and attributes to increase transparency.

Listing 2. Our own DAX-based structure to define IoT workflows in DISSECT-CF-Fog.

1 <adag name="App1" repeat="2">
2 <job id="sensor -01" long="1" lat="2">
3 <uses link="output" id="service -01" type="data" size="50"/>
4 </job>
5 <job id="sensor -02" long="3" lat="4">
6 <uses link="output" id="service -01" type="data" size="75"/>
7 </job>
8 <job id="sensor -03" long="1" lat="2">
9 <uses link="output" id="service -01" type="data" size="50" activate="

424324"/>
10 </job>
11 <job id="sensor -04" long="3" lat="4">
12 <uses link="output" id="service -01" type="data" size="75" activate="

334422"/>
13 </job>
14 <job id="service -01">
15 <uses link="input" type="compute" amount="4"/>
16 <uses link="output" id="service -02" type="data" size="100"/>
17 <uses link="output" id="actuator -01" type="actuate" />
18 </job>
19 <job id="service -02">
20 <uses link="input" type="compute" amount="1"/>
21 <uses link="output" id="actuator -01" type="actuate" />
22 <uses link="output" id="actuator -02" type="actuate" />
23 <uses link="output" id="actuator -03" type="actuate" />
24 </job>
25 <job id="actuator -01">
26 <uses link="input" type="actuate" amount="2"/>
27 </job>
28 <job id="actuator -02">
29 <uses link="input" type="actuate" amount="1"/>
30 </job>
31 <job id="actuator -03">
32 <uses link="input" type="actuate" amount="1"/>
33 </job>
34 </adag>
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The repeat tag promotes the scalability of the defined workflow by copying the jobs
individually. The id attribute is the unique identifier of each job (defined with job XML tags).
Furthermore, three types of jobs are distinguished currently: sensor, service, and actuator.
Only the sensor type among these represents physical devices, and therefore the long and
lat values show the geographical positions of these kinds of devices (Lines 2–4). Meanwhile,
the type of service and actuator are logical components. The reason for this decision is that
in an IoT use case, the number of sensors can exceed hundreds of thousands, which makes
the program-level definition of those difficult. In the case of service jobs, those are executed
with computing resources (i.e., fog and cloud nodes), while in the case of actuator jobs,
the actuator entities (i.e., robot arm or coffee machine) are responsible for executing the
actualisation event. This means that service and actuator jobs can be reassigned among the
existing executors.

For defining the incoming and outgoing dependencies of a job, we have to use the
uses tags. The link attribute defines its direction (i.e., input or output). If it is an output
dependency, then we have to use the type attribute as well as denote whether it is a data
transfer or an actualisation task. If it is the former, then we also have to apply the size
attribute to define the amount of bytes that should be transferred. There is a dedicated
attribute called activate, which can be used to define deferred events. For instance, it can
define a human interaction or a sensor measurement a certain time later (Lines 16 and
17). Otherwise, it is considered to be zero, meaning there is an immediate execution right
after the simulation starts. Finally, if an input dependency is defined for a job, then its
quantity should be defined using the amount attribute (Line 20). As we mentioned earlier,
we merged the definition of jobs and dependencies, and therefore each uses tag deals with
an id tag denoting the identifier of the dependent job.

4. Evaluation

In our evaluations, we used the model of a Hungarian private cloud infrastructure,
namely the ELKH Cloud [20], and we assumed the following use cases. First, a representa-
tive IoT use case is presented, introducing the possible events proposed in this paper, and
then a scalability study is executed. Finally, we show the interoperability of the system,
concerning the execution of traditional scientific workflows. In this paper, our goal was
not to investigate different scheduling algorithms but to show a novel way of modelling
IoT systems and to exemplify the usability of DISSECT-CF-Fog. Nevertheless, we needed
to implement a scheduling algorithm considering each type of job, and therefore we used
a traditional scheduling algorithm that mapped service tasks to fog, cloud, and actuator
resources. In the case of computing resources, it sorts the tasks in the queue in descending
order according to the length of their runtimes. Finally, the task with the longest runtime is
scheduled on the fastest or strongest available resource. In the case of actuators, the jobs
are assigned following first-come-first-served (FCFS) scheduling.

In order to construct a multi-layered fog-cloud topology, we applied our methodology
as follows. For each cloud node, we set 2–4 fog nodes (depending on the number of fog
and cloud nodes predefined in the concrete scenarios) to form a cluster together. Since
DISSECT-CF-Fog can take into account the positions of the nodes, and the latency values
(50 ms, the average 4G delay) between the nodes are weighted with the physical distance,
the final latency was thus between 100 and 130 ms. In the case of cloud nodes, their
bandwidth was set to 1600 Mbps, whilst for the fog nodes, it was reduced to 1000 Mbps.
The further parameters (CPU cores, memory, etc.) of the computing nodes can be seen in
Table 2, which were used in all scenarios.
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Table 2. Configuration parameters and cost of resources used in the evaluation experiments.

Configuration
Parameters Fog Resources (PM) Fog Resources (VM) Cloud Resources (VM) Cloud Resources (PM)

CPU (Cores) 4 2 4 64
CPU (MIPS) 1000 1000 1000 1000
RAM (GB) 4 2 4 256

Storage (GB) 512 256 256 500
Price (hourly) - 0.051 0.102 -

4.1. Morning Routine Scenario

In this IoT use case, we would like to show the broad functionality of our proposed
simulator extension. Therefore, we first realised the scenario presented in Figure 1. Since
that figure is just an abstract representation, we thus considered it with the following
realisation. The workflow file contains five programmers checking in in the first minute.
Four out of five programmers intend to start the day with a cup of coffee, which means
four triggering events. Currently, the office has only two coffee machines: an old slower
one and a fast new one (i.e., in the case of scheduling the actuator events, it matters which
job is assigned to which machine). There is another actuator event parallel with the coffee
making which turns the lights on in the office rooms. In this case, this event is considered
to be executed with a switch, and therefore these kinds of events only utilise the network.

In a smart office, the air quality can also be monitored by different sensors. Thus,
in this case, a sensor samples the environment every minute for 20 min. The data are
forwarded to a service, and to be as realistic as possible, in three cases, low temperatures
are detected. Therefore, in such cases, these service events trigger the heating system
(i.e., actuators). Similar to the light actuators, these instructions only utilise the network
connection. Finally, after 20 min, the programmers check out, resulting in five further
actuator events.

Since the morning routine scenario describes the first 20 min of five programmers’
days, we sought the necessary amount of cloud, fog, and actuator resources to keep the time
around 20 min while the number of programmers increased. Therefore, in the first case, we
repeated the jobs once (i.e., five programmers), and in the second case, we set the repeats to
10, which meant 50 programmers. In the last use case, we evaluated the workflow with
100 repetitions (i.e., a business with 500 programmers). The results can be seen in Table 3
and Table 4. As one can see, a single cloud was enough to provide the minimum computing
and actuating capacity for five programmers, but as the number of programmers and
thus the data increased, both the execution cost and the energy consumption dramatically
increased. We needed 100 cloud and 400 fog nodes as well as 100 actuators to keep the
execution time as close to 20 min as possible. It depicted the order of magnitude of the
necessary physical resources.

Table 3. Requirement of resources used in the evaluation experiments.

Workflow Repeat Cloud Resources (VM with
8 Cores) Fog Resources VM with 4 Cores) Actuator Resources

1 1 - 12
10 12 10 30

100 100 400 100
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Table 4. The experimental results of DISSECT-CF-Fog with IoT workflow of morning routine scenario
in Figure 1.

Workflow Repeat Execution Time
(min)

Simulation Time
(ms)

VMs Utilisation
(%)

Execution Cost
($)

Processed Data
(MB)

Energy
Consumption

(kWh)

1 21 567 53.36 0.204 10.5 2.77
10 22 1012 74.45 3.468 106 5.9
100 23 2667 89.59 61.2 1075 74.94

4.2. Performance and Scalability of IoT Workflows

We investigated the performance of IoT workflows in terms of execution time, CPU
utilisation, energy consumption, and total amount of data processed in applications ranging
from very small to very large. This experiment demonstrates the simulator’s ability to
model, simulate, and schedule both simple and sophisticated IoT workflow applications
in fog and cloud environments. This enables researchers to investigate the behaviour of
IoT workflow application topologies and configuration sizes for future evaluation and
development, such as by developing new deployment and scheduling strategies, improving
execution performance, and investigating QoS and SLA requirements for these types of
applications.

The goal of the initial experiments was to evaluate the performance and scalability of
the IoT workflow simulator with different configuration sizes for workflow applications.
We conducted these experiments using a laptop equipped with an Intel Core i7-8750H
CPU @ 2.20 GHz (with 6 cores and 12 logical processors), 16GB RAM, and Windows 10
Enterprise and then collected the experimental results. All experiments were evaluated
with synthetic IoT workflows derived from our IoT generator.

Table 5 shows the total IoT workflow entities of the sensors, services, and actuators
in each workflow size for the application. We increased the total number of entities in
each experiment by 10,000 to test the scalability up to a simulation time of 10 min. Table 6
illustrates the number of resources used in the evaluation.

Table 5. The entity number of sensors, services, and actuators in each workflow determines the size
of the application.

Workflow ID Sensor Events Service Events Actuator Events Total Entities

1 3400 3300 3,300 10,000
2 7000 6500 6,500 20,000
3 10,000 10,000 10,000 30,000
4 14,000 13,000 13,000 40,000
5 20,000 15,000 15,000 50,000
6 20,000 20,000 20,000 60,000
7 24,000 23,000 23,000 70,000
8 28,000 26,000 26,000 80,000
9 30,000 30,000 30,000 90,000
10 34,000 33,000 33,000 100,000
11 40,000 35,000 35,000 110,000
12 80,000 70,000 70,000 220,000
13 160,000 140,000 140,000 440,000

Table 6. Requirement of resources used in the evaluation experiments.

Parameter Value

Fog resources (PMs) 100
Fog resources (VMs) 200

Cloud resources (PMs) 12
Cloud resources (VMs) 200

Actuator resources 200
Clouds 2
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We collected performance metrics for the experiments until we reached 440,000 entities
executed. Table 7 shows the collected metrics for each experiment with DISSECT-CF-Fog
on fog and cloud resources. The execution time for simulating IoT workflows increased
by an average of 1.21 times from 10,000 to 110,000 in configuration size for all simulated
workflow applications. From 110,000 to 440,000, this rate increased to 3.45 times, showing
that the physical infrastructure became more overloaded, reaching 95.75% utilisation.

With a total of 10,000 entities, only slightly less than 78% of the rented resources
were required by the fog and cloud resources. This pattern repeated (with almost gradual
increases) for all other IoT workflows. The IoT workflows had many parallel service-type
tasks with a short execution time in the second layer of the structure, as shown in Figure 3.
This led to a drastic increase in the overall cost of the workflow, as more resources were
consumed and the resource utilisation of the VMs increased.

sensor-1

service-1

data=114

actuator-1

actuate

actuator-2

actuate

sensor-2

data=736

service-2

data=637

actuate

actuator-3

actuate

actuator-4

actuate

sensor-3

data=231

sensor-4

data=914

Figure 3. A sample IoT workflow with sensors, services, and actuators.

Table 7. The experimental results of DISSECT-CF-Fog with different numbers of IoT workflows.

id Execution Time
(min)

Simulation Time
(s)

VMs Utilisation
(%)

Execution Cost
($)

Processed Data
(GB)

Energy
Consumption

(kWh)

1 33 4.537 77.31 39.63 1.69 26.79
2 53 21.820 82.9 157 3.5 44.32
3 66 40.228 86.06 350 5 57.26
4 88 49.706 89.16 616 7 76.9
5 110 88.648 87.51 961 10 98.9
6 122 127.704 89.93 1,374 10.5 106.81
7 141 265.071 88.93 1,853 11.9 124.4
8 156 276.995 90.13 2,435 14 140.9
9 172 334.261 90.39 3,065 15 153.99

10 189 459.554 90.82 3,793 17 169.49
11 209 690 92.46 4,605 20 189.76
12 957 1878 94.23 62071 40 928.8
13 2240 4495 95.78 248210 79.98 2043

If we compare the experiments in terms of energy consumption and processed data,
the results show that they increased as the number of entities increased. The sensor jobs
sent a large amount of data to the service jobs to process. Note that the increase in processed
data and energy consumption was significant when the number of entities increased.

This behaviour for the simulation time was to be expected, as the number of entities
increased 10-fold for a large configuration and also significantly increased the total exe-
cution time of the IoT workflows executed by these applications. The execution time for
the simulation of the IoT workflow with 100,000 entities was less than 8 min, while the
simulation of the IoT workflow with 110,000 entities took over 11 min. The average increase
in the simulation time was only 1.95 times. Thus, DISSECT-CF-Fog was able to analyse the
behaviour of different IoT workflow execution scenarios with certain configuration sizes to
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perform further evaluations and improvements. This could lead to the development of new
deployment and scheduling strategies, improved execution performance, and investigating
QoS and SLA requirements for IoT workflow applications.

4.3. Scientific Workflows

In this subsection, all experiments were evaluated with scientific workflows derived
from the Montage (astronomy), CyberShake (earthquake science), LIGO (gravitational
physics), and SIPHT (biology) applications, taking into account data transfers. The Mon-
tage [21] workflow is an astronomy application used to generate custom mosaics of the
sky based on a set of input images. The CyberShake [22] workflow is used to charac-
terise earthquake hazards by generating synthetic seismograms. The Laser Interferometer
Gravitational Wave Observatory (LIGO) [23] workflow is used to analyse data from the
coalescing of compact binary systems, such as binary neutron stars and black holes. The
sRNA Identification Protocol using High-throughput Technology (SIPHT) programme [24]
uses a workflow to automate the search for sRNA-encoding genes for all bacterial replicons
in the National Center for Biotechnology Information (NCBI) database. Figure 4 presents
the structures of the four workflows.

Text

Montage

CyberShake

LIGO

Sipht

Figure 4. The structures of the Montage, CyberShake, LIGO, and Sipht workflows.

We collected the same performance metrics that were collected for the IoT workflow
application. Again, we used the same number and configuration of fog and cloud resources
mentioned in Section 4.2. The scientific workflows were run on fog and cloud resources.
Table 8 shows the experimental results of the scientific workflows. This experiment illus-
trated that the simulator could model, simulate, and schedule scientific workflows in both
fog and cloud environments. The number of tasks for each workflow was 1,000 tasks used
for the evaluation.

In the utilisation of VM resources, the maximum percentage was below 60% because
the number of VM resources was greater than the maximum number of parallel tasks for
all scientific workflow applications. Table 8 also shows that LIGO had the best average
VM utilisation across all applications. This is because LIGO is a data- and CPU-intensive
workflow, which significantly increases the utilisation of fog and cloud resources. However,
Sipht had the lowest average virtual machine usage among all applications. Some tasks
in Sipht had significant variations in their execution times, with a maximum of a 20-fold
difference in execution time. This created idle time for other resources and scheduling gaps
between workflow tasks, resulting in the lowest resource utilisation. In addition, Sipht
had the longest execution time among all applications, resulting in the highest execution
cost of about USD 95. In the case of the Montage workflow, Montage consists of several
simultaneous tasks that can be completed in a very short time. For this reason, the resource
utilisation of the workflow was slightly more than 20% as more resources were used. In
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the case of the CyberShake workflow, CyberShake had the largest amount of processed
data across all applications at 265.89 GB, as it is the bottleneck in data transfer for most
scheduling algorithms.

Table 8. The experimental results for DISSECT-CF-Fog with different scientific workflow applications.

Workflow Execution Time
(min)

Simulation Time
(s)

VMs Utilisation
(%)

Execution Cost
($)

Processed Data
(GB)

Energy
Consumption

(kWh)

Montage 17.5 1.283 30.38 16.45 14.45 12.27
CyberShake 20.8 1.144 35.94 23.5 265.89 14.83

LIGO 52.3 1.01 59.65 45.4 0.39 41.42
Sipht 124.6 1.09 21.68 94.7 2.88 88.38

Finally, we turned our attention to demonstrating the benefits of using the IoT and sci-
entific workflows in DISSECT-CF-Fog. This allows developers to evaluate the performance
of IoT and scientific workflow applications in fog and cloud environments and discuss the
collected results. This allows researchers to study the behaviour of IoT and scientific work-
flow applications, to design new scheduling algorithms, to improve execution performance,
and to evaluate QoS and SLA requirements.

5. Conclusions and Future Works

In this paper, we presented the development and validation of a state-of-the-art
simulation solution to model IoT workflows, built upon the fundamentals of the DISSECT-
CF-Fog simulator. Since the cloud-to-thing continuum is continuously growing, novel
solutions are required to fill research gaps in this field. To the best of our knowledge, this
simulation approach is currently the first of its kind, targeting the analysis of IoT-Fog-Cloud
applications modelled as IoT workflows composed of trigger- and action-based IoT events.

To show the usability and performance of our proposed software, we first presented a
typical IoT use case of a morning routine in a software development company, and then
we showed a scalability study, where the number of sensor, actuator, and service events
was increased to hundreds of thousands. Finally, to compare our approach to scientific
workflows and exemplify its generality, we evaluated the simulator with well-known
traditional workflows executed in a fog-enhanced cloud environment.

In our future work, we plan to extend the available functionalities of our simulator
to be able model more specific, specialised IoT use cases, such as healthcare and smart
transportation. We will also aim to investigate different workflow scheduling algorithms
tailored to IoT use cases and compare DISSECT-CF-Fog’s performance with other simula-
tion solutions.
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