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Abstract

In practically every industry, mixing is a fundamental process, yet its 3D analysis is scarce in the literature. High-resolution com-
puted tomography (micro-CT) is the perfect X-ray imaging tool to investigate the mixing of granular materials. Other than qualitative
analysis, 3D micro-CT images provide an opportunity for quantitative analysis, which is of utmost importance, in terms of efficiency
(time and budget) and environmental impact of the mixing process. In this work, lacunarity is proposed as a measure of mixing. By
the lacunarity calculation on the repeated micro-CT measurements, a temporal description of the mixing can be given in three
dimensions. As opposed to traditional mixing indices, the lacunarity curve provides additional information regarding the spatial dis-
tribution of the grains. Discrete element method simulations were also performed and showed similar results to the experiments.
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Introduction
Mixing is a fundamental part of our everyday life and practically
in every industry. We mix everything from liquids to powders
and granular materials. It is one of the most basic processes, yet
very complex; the more we study it, the more complex it seems.
The driving forces, the containers, the mixed materials, their
interactions, density, speed, mixing time and plenty of other fac-
tors all affect the mixing efficiency. Some of the most important
industrial applications are in the fields of food chemistry [1, 2],
construction [3, 4], pharmaceuticals [5, 6], cosmetics [7] and
materials science [8, 9]. By definition, mixing is the process of
causing a flow inside a heterogeneous system to disperse its com-
ponents as evenly as possible. Uneven mixing can cause various
problems; thus, it is exceptionally important to be able to quan-
tify the goodness of mixing, or, in other words, the homogeneity
of the mixture. Overmixing, on an industrial scale, can cause
huge energy waste, thus increasing manufacturing costs unnec-

essarily. Under-mixing could even cause potentially fatal
problems; for example, if the compounds of a drug do not get ho-
mogeneously mixed, this can result in pills without the correct
amount of active ingredients [10, 11]. Furthermore, it is well
known that agitated granular mixtures tend to spontaneous seg-
regation [12] in many situations. Opposed to under-mixing,
segregation can result in the complete separation of ingredients

based on their size, shape, surface, density, etc. However, it also
holds the potential for applications when demixing is intended,
but it has an undesired side effect in our case when the goal is to
obtain perfectly mixed samples.

Even though the segregation and mixing of granular materials
have been studied for decades, we can state that it is still an im-
perfectly understood phenomenon. A fundamental understand-
ing is still lacking, despite its potentially beneficial impact on
several industries. Therefore, the precise evaluation, visualiza-
tion and quantification of the (de)mixing process are of utmost
importance. Several different mechanisms have been suggested
to explain the phenomena using experimental techniques (such
as velocimetric, spectroscopic and tomographic), and different
simulation approaches (such as particle level and continuum)
[13–21], just to mention a few.

Computed tomography (CT) is an X-ray imaging method
originally developed for medical purposes [22]. With technologi-
cal advancement, high (even submicron) resolutions became
achievable and high-resolution CT (micro-CT) was born [23]. It is
a non-destructive 3D imaging tool based on the different X-ray
attenuation of materials (mainly influenced by density and
chemical composition), which nowadays is widely used in materi-
als science [24]. During the measurement, samples are placed on
a rotating sample holder and hundreds or thousands of X-ray
images are taken from different angles, the original 3D structure
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of materials can be reconstructed by computer. The non-
destructive nature of the technique allows for conducting temporal
investigations [25]. The same sample can be examined at different
times while exposed to various effects. Individual granules can be
followed during the process and their trajectory can be
determined during mixing. By using specific testing stages, in situ
measurements can be conducted, even close to real time. Although
the technique is perfect for visualizing the mixing process, there are
only a few examples in the scientific literature of micro-CT used for
this purpose [15, 26, 27]. Liu et al. used synchrotron micro-CT to in-
vestigate the mixing and segregation of granular matter. They ex-
amined the mixture homogeneity after a number of rotations and
quantified it using a mixing index. They found that fewer spherical
granules moved to the top of the mixture [28].

Lacunarity is a descriptor of spatial heterogeneity and devia-
tion from translational homogeneity, which was first presented
by Mandelbrot as a complement of fractal dimension [29]. In gen-
eral, lacunarity is represented as a function of box size (as op-
posed to a single numerical value), and the shape of the curve
carries additional information [30, 31]. Higher lacunarity values
mean a higher level of heterogeneity at a given box size; with in-
creasing box size, the lacunarity tends to decrease. The absolute
value of lacunarity is dependent on the density of the binary
images, thus comparison of different samples is easier after nor-
malization.

Lacunarity has widespread applications in many scientific
fields from medicine [32, 33, 34], through bioengineering [35, 36]
to geology [37–39]. It is a valuable descriptor of the spatial hetero-
geneity of pores, for example in soils [38] and granular materials
[40]. A huge benefit of lacunarity is that it can be calculated not
only in 2D but also in 3D, and thus can be used to quantify the
spatial heterogeneity on 3D (micro-)CT images. Xia et al. [37] cal-
culated the lacunarity of pores in reservoir rocks to use in perme-
ability predictions based on micro-CT images, whereas dos
Santos et al. [38] used lacunarity to describe the void space of soils
in micro-CT images. There are a few examples of lacunarity cal-
culations for quantifying the mixing efficiency. Pennella et al.
used lacunarity for the quantification of fluid particle dispersion
and to describe the overall mixing efficiency, but only in 2D [41].

The traditional computational method is called the gliding
box method (GBM) [42, 43], which provides reliable and detailed
results, but its calculation for real-life 3D micro-CT datasets
takes an exceptionally long time, thus it is not practical for every-
day use. Our calculation method (called the fixed-grid method,
FGM) described in a previous publication provides reliable results
in 3D in a fraction of the computational time of GBM. The details
of the FGM and the reliability of the calculations were presented
there [44]. The main idea behind the FGM is to drastically de-
crease the number of boxes in the calculations. As opposed to the
GBM, where lacunarity is calculated for overlapping boxes, FGM
only uses non-overlapping boxes, while the calculation method
remains the same. The lacunarity is calculated for binary images
based on the first and second moments of the probability distri-
bution of the box masses. The real effect of this seemingly small
change can be seen in the case of real-life 3D micro-CT datasets,
where the number of boxes decreases with several orders of mag-
nitude (e.g. for a 800 � 800 � 800 voxel dataset, the GBM calcu-
lates the masses of 423 564 751 boxes with 50 voxel side lengths,
while FGM only uses 4096) [44].

Lacunarity is not only valuable for real-life experiments but
can also be calculated for simulated datasets [40, 45]. Mixing can
somewhat easily be modeled by discrete element methods (DEM)
[21, 46–48], which examines the particle interactions on a scale

comparable to the size of the particles. Given the overly complex
nature of interactions and deformations in real-life systems, in
DEM models, the assumption is that the particles are spherical
and non-deformable and they can overlap. The simulations of
mixing are extensively studied in the literature. It can be used to
simulate mixing in various mixers under diverse conditions [49–
54]. Lévay et al. used DEM simulations to model the behavior of
spherical particles as a result of shaking [55, 56]. It is quite obvi-
ous that DEM is a valuable tool for investigating mixing, and by
calculating lacunarity, the results of the simulations can be di-
rectly compared with real-life datasets (e.g. micro-CT), thus lacu-
narity can be the common ground between simulated and
experimental data.

Quantification of mixing efficiency is without a doubt an
important task, and there are several existing mixing indices
available [57–63]. Mixing indices can be sorted into two categories
[64]. The first one uses statistical data based on a sampling of the
system to determine the state of mixing [65, 66], which carries a
disadvantage within itself, namely the index can vary depending
on sampling size and conditions. The other type, however, uses
data from all the particles in the system [67–69], which has the
potential of becoming very time-consuming. A good mixing index
should fulfill several requirements: it should be dimensionless;
its values should be between 0 and 1 (where 0 means no mixing
and 1 means completely homogeneous mixing); and the values
should increase linearly with increasing homogeneity. Non-sam-
pling mixing index (SMI) is, in a sense, similar to lacunarity since
it calculates for subdomains first, and then gives a cumulative re-
sult [64]. SMI is not a statistical type mixing index; instead, it uses
local mixing information and integrates the data of the subdo-
mains into the whole system. Traditional mixing indices provide
a single value to describe the state of a mixture, which is an ad-
vantage for comparative purposes. Although lacunarity curves
cannot be directly compared with mixing indices, one of their
greatest strengths is the fact that they provide additional infor-
mation regarding the structure of the system (e.g. the granule
size can be estimated based on the curve [30]).

Here, we present lacunarity calculations to follow the mixing
process via ex-situ 4D micro-CT measurements. A two-phase
granular mixture was used for this purpose. The effect of con-
tainer size on the mixing process was investigated. Our systems
were simple enough that it was possible to closely model them
with simulations, thus the experimental results could be com-
pared with simulated ones acquired via DEM calculations. To the
best of our knowledge, lacunarity has not yet been used to de-
scribe the mixing process for real 3D micro-CT datasets or to
compare simulated and experimental data.

Although improvements can always be made in every process
and mixing is no exception, improving the mixing process is
not the aim of this work. Our main objective was to bring the at-
tention of the scientific community to the opportunities the
micro-CT technique provides in the field of mixing and to offer
an easy-to-use, robust tool to quantify the progress of mixing.
Thus, we chose a fairly simple model mixing experiment to dem-
onstrate the great opportunities that lie within micro-CT imaging
and lacunarity calculations.

Materials and methods
The experimental setup for the mixing tests was quite simple.
The setup was optimized for micro-CT investigations and lacu-
narity calculations. Thus, the 3D-printed containers were made
of polylactic acid, which have a low X-ray attenuation coefficient,
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and the two components of the mixture had highly different at-

tenuation coefficients; ca. 500 calcium–alginate beads (with an

average density of 1.2 g/cm3 and an average diameter of

1.75 mm) were mixed with ca. 5000 polystyrene spheres (with an

average density of 1.05 g/cm3 and an average diameter of

1.1 mm). For each experiment, equal amounts of particles were

used for better comparability. No mixing fins were used inside

the containers for easier imaging. Three different container sizes

were used for the experiments with 20 � 20 � 25 mm3, 20 � 20 �
35 mm3 and 20 � 20 � 40 mm3 inner volumes. The shape of the

container was chosen to fit our lacunarity calculation algorithm.

For better reproducibility, a precision stepper motor was used for

the mixing process. One mixing cycle means a complete 360�

turn around the cross-axis (Fig.1a). The containers were rotated

for 10 cycles and at the beginning and after 1, 2, 3, 5, 7 and 10

cycles, micro-CT measurements were conducted.
Micro-CT images were taken using a Bruker Skyscan 2211

nanotomograph (Skyscan, Bruker, Belgium) using 100 kV source

voltage, 270 lA current and 40 ms exposure time. The images

were taken at 25-lm pixel resolution in microfocus mode. The

samples were rotated at 180� with 0.2� angular size and a total of

1042 X-ray shadow projections were collected. The rotation step

size was small enough that the movement between image

acquisitions does not cause any additional mixing of the par-

ticles. The measurement setup is shown in Fig. 1b. The 3D images

were reconstructed using NRecon Reconstruction Software

(Skyscan, Bruker, Belgium) during which the most commonly oc-

curring imaging artifacts were corrected. For the image post-

processing and visualization, CTAn and CTVox software pack-

ages (Skyscan, Bruker, Belgium) were used.
In Fig. 1b, the volume rendered 3D micro-CT image shows

both the calcium–alginate and the polystyrene particles. After

image post-processing and segmentation, for better visibility,

only the calcium–alginate beads are shown, and hereinafter only

these beads are presented on the micro-CT images. All the

lacunarity calculations were carried out on binary images only

Figure 1. Schematic representation of the (a) mixing and the (b) micro-CT imaging process.
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containing the positions of the calcium–alginate particles.
Lacunarity calculations were conducted using our own software
Lac3D [24] that uses an FGM. The lacunarity values were normal-
ized for better comparability. Simulated datasets (cubic,
non-overlapping random) were generated using a self-developed

software.

DEM simulations were implemented using the LIGGGHTS [70]
general granular simulation software. The DEM algorithm
resolves the particle–particle interactions and integrates both the
translational and rotational motion of each particle. The interac-
tion force between the two contacting particles was computed

via the Hertz model. This scheme allows the estimation of the

Figure 2. Lacunarity curves (a) and the corresponding 3D-rendered micro-CT images (b–d) of different stages of the mixing process—experimental
results (b) at the beginning (blue) and after 1 (red), 2 (green) and 10 (yellow) mixing cycles for the medium container size, and simulated results for a
cubically ordered (c, dark gray) and a nonoverlapping random (d, orange) dataset.

Figure 3. Micro-CT images of the same sample at the beginning (a) and after 1 (b), 2 (c),and 7 (d) mixing cycles and their corresponding lacunarity
curves (e).
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following elastic and damping interaction parameters: Young

modulus (Ym), Poisson’s ratio (�) of the material, the restitution

coefficient (e) and friction coefficient (l) of the particles. In our

simulations, we used the following values: Ym ¼ 5� 106 Pa,

�¼ 0.45, e¼ 0.2 and l¼ 0.5.
We used cells with closed boundaries with sizes 20 � 20 � 35

mm3 and 20 � 20 � 40 mm3 filled with a two-component mix-

ture of spherical particles. The mixture consisted of 5000 par-

ticles with a diameter of 1.1 mm and density of 1.05 g/cm3

and 500 particles with a diameter of 1.75 mm and density of

1.2 g/cm3. To create the initial configuration of particles, they

were placed randomly in a container much higher than the sim-

ulated cell size (the other dimensions were the same) with the

larger particles on the top. Then the particles were released to

fall due to gravity. We then used the relaxed state of this mix-

ture to simulate the mixing process. To mimic the mixing pro-

cess, we rotated the container by defining the rotation axis and

the period of rotation. As the DEM method provides the trajec-

tory of each particle, lacunarity calculations can be done at any

desired state of the system.

Results and discussion
Lacunarity is a lesser-known measure of spatial heterogeneity,

which can be used for the quantitative description of mixing. In

Fig. 2, the lacunarity curves of a mixing process are compared to

Figure 4. The lacunarity curves (a–c) of the three different systems and their corresponding 3D-rendered micro-CT images (d–f) for the smallest (a and
d; 20 � 20 � 25 mm3, the medium (b and e; 20 � 20 � 35 mm3) and the largest (c and f; 20 � 20 � 40 mm3) container, at the beginning (black) and after 1
(red), 2 (blue), 3 (yellow), 5 (orange), 7 (green) and 10 (purple) mixing cycles.
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the curves of the two simulated datasets (Fig. 2a). For the experi-

mental part, four different stages of mixing are represented with

their lacunarity curves and corresponding micro-CT images

(Fig. 2b), showing a mixing process from the beginning to the

completely mixed state (the most homogeneous state achievable

in our specific mixing experiment). The simulated datasets repre-

sent a cubically ordered (Fig. 2c) and a non-overlapping random

(Fig. 2d) layout. The differences in the corresponding lacunarity

curves are clearly visible. The higher the lacunarity values, the

more heterogeneous the system. With growing box sizes, the ho-

mogeneity improves. As expected, the most heterogeneous curve

corresponds to the starting position of the mixing experiment,

and as the mixing process progresses, the lacunarity values de-

crease. The non-overlapping random and the cubic layouts were

the most homogeneous, and at bigger box sizes, they were

completely homogeneous according to the lacunarity curves. The

two corresponding lacunarity curves are shaped relatively similar

to each other. In the case of the completely mixed stage, the lacu-

narity curve indicates a considerably more heterogeneous state

due to the non-ideal nature of experimental setups. The shape of

the lacunarity curves also bears great significance. All the curves

are practically the same until a certain box size is reached, and it

is the one comparable in size with the particle size. After that

point, the real differences between each stage can be seen as the
curves separate.

The importance of showing lacunarity as a function as op-
posed to a single value can also be easily comprehended from
this example; if values at small box sizes are chosen for the com-
parison, no difference can be seen between the stages, while
with increasing box size the difference also increases. In Fig. 3,
the results of one of the mixing experiments in the medium-
sized container can be seen. The presented micro-CT images
(Fig. 3a–d) proved that a mere qualitative analysis of the mix-
tures does not give sufficient information regarding the state of
the mixing. From these images, the difference between the
stages cannot be properly apprehended. The respective lacunar-
ity curves (Fig. 3e), however, perfectly demonstrate the homoge-
nization of the mixture over time. As can be expected, with the
increasing number of mixing cycles, the mixture becomes more
homogeneous. The curves are similarly shaped for each stage,
and the smallest lacunarity value was reached after seven mix-
ing cycles.

The mixing experiments were carried out for all three con-
tainer sizes to show that lacunarity can reliably show the differ-
ence between various systems. The results can be seen in Fig. 4.
The experiments yielded the anticipated results. In the smallest
container (Fig. 4a and d), there was practically no room for

Figure 5. Comparison of the experimental (a and b) and simulated (c and d) lacunarity curves (b and d) and the 3D-rendered micro-CT images (a and c)
for the medium-sized container.
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mixing, thus there is no real difference between the different

stages. This can be seen either on the provided micro-CT images
or the corresponding lacunarity curves. The different stages of

mixing are illustrated with different colors for each experiment.
For the smallest container size, the different stages overlap, and

there is no mixing between the two components. The correspond-
ing lacunarity curves also overlap, which provides further proof

of the reliability of lacunarity calculations. For the other two con-
tainer sizes, the visualization is not enough to show the differen-

ces between the stages. The lacunarity curves, however, show
great differences between the stages. For both samples, a contin-

uous homogenization of the components can be observed, until

reaching the most homogeneous state for the given system.
Unsurprisingly, in the case of the largest container size (Fig. 4c

and f), the mixing is faster and more efficient than for the
medium-sized container (Fig. 4b and e). Although, after seven

mixing cycles no further homogenization was observed for either
sample. At the end of the experiments for the largest box size,

the lacunarity values were 0.688 for the smallest, 0.148 for the
medium and 0.108 for the largest container. A completely homo-

geneous state cannot be reached by this experiment due to its
imperfections; for instance, the nonideal shape and size distribu-

tions of the particles, the difference in densities and the shape of

the container.

Afterward, the experimental results were compared with sim-

ulated datasets; the results are shown in Figs 5 and 6.

Simulations were only conducted for the medium and the largest

container sizes because of the failed mixing experiment with the
smallest container. In Fig. 5, the micro-CT images (Fig. 5a and c)

and lacunarity curves (Fig. 5b and d) of the medium container

size are represented. They have shown great similarities, thus

proving the applicability of simulations to complement or

even substitute real-life experiments in the future. The visual

representation and the lacunarity curves both show great resem-
blance. In the case of the simulated samples, a more homoge-

neous state could be reached, compared to the experimental

results, due to their ideal nature (completely spherical particles,

uniform particle size, no environmental effects). The shapes of

the lacunarity curves are similar. The lacunarity at the beginning

for the biggest box size was 0.57 for the experimental and 0.59 for
the simulated data. After two mixing cycles, these values de-

creased to 0.353 and 0.307, respectively.
Figure 6 shows the results of the entire experiments for both

container sizes. In the case of the medium container size (Fig. 6a

and c), the final lacunarity values at the largest box size are 0.148

and 0.104 for the experimental and simulated datasets, respec-

tively. For the largest container sizes (Fig. 6b and d), these values

are 0.108 and 0.086, respectively. The differences are clearly

Figure 6. Lacunarity curves of the experimental (a and b) and simulated (c and d) datasets for the medium (a and c) and the largest (b and d) box sizes.
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visible, but not excessive, and the same trends can be observed,
thus proving the usefulness of the simulations. It is anticipated
that with further fine-tuning of the simulating algorithm, the
simulated results could approximate the experimental data even
more closely.

Conclusions
In this work, the applicability of micro-CT measurements and
lacunarity calculations were examined for the investigation of
the mixing process of granular materials. We were the first to cal-
culate the 3D lacunarity of mixtures. While a huge amount of
studies about mixing indices only used simulated data, we quan-
tified the mixing process for real-life 3D micro-CT datasets.
According to our results, micro-CT is a highly capable device to
investigate mixing in appropriate systems qualitatively and
quantitatively. Lacunarity appeared to be an appropriate and
easy-to-use tool to quantify mixing efficiency. As opposed to tra-
ditional mixing indices, lacunarity curves bear additional signifi-
cance. The effect of container size on the mixing process was also
investigated and an improvement in the homogenization process
was observed with increasing container size. For our given sys-
tem, the most homogeneous state was reached after seven mix-
ing cycles; further mixing did not improve the homogeneity of
the mixture. As lacunarity calculations can easily be conducted
on simulated datasets, according to our results, it also enables
the comparison of simulations with real-life experiments, which
in the future can even be replaced by simulations. Simulations
resulted in more homogeneous mixtures compared to the experi-
ments due to their ideal nature, but the experimental and simu-
lated results are comparable.
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55. Lévay S, Fischer D, Stannarius R et al. Interacting jammed gran-

ular systems. Phys Rev E 2021;103:042901
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