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Abstract
Associative spectra of graph algebras are examined with the help of homomorphisms
of DFS trees. Undirected graphs are classified according to the associative spectra
of their graph algebras; there are only three distinct possibilities: constant 1, powers
of 2, and Catalan numbers. Associative and antiassociative digraphs are described,
and associative spectra are determined for certain families of digraphs, such as paths,
cycles, and graphs on two vertices.
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1 Introduction

Associativity is a fundamental property of binary operations, and one tends to take it for
granted, since the most frequently encountered operations are associative. However,
there are also many noteworthy operations that are not associative, such as subtraction,
cross product of vectors, implication, just to name a few. For a systematic study of
phenomena related to (non)associativity, one may consider an arbitrary nonempty set
A together with a binary operation x · y on A. Let us emphasize that we denote the
operation as multiplication only for notational convenience; the operation can be any
map A × A → A, (x, y) �→ x · y. This yields the algebraic structure A = (A; ·),
called a groupoid. (Note that the term groupoid has a different meaning in category
theory.)

Given such a groupoid, there are several ways of measuring how far our operation
is from being associative. For finite A, a natural “measure of nonassociativity” is the
number of triples (a, b, c) ∈ A3 such that (a ·b)·c �= a ·(b ·c). This notion was studied
by A. C. Climescu [5] as early as 1947, and later by T. Kepka and M. Trch in a long
series of papers starting with [11]. Another option is to count the minimum number
of changes one has to make in the operation table in order to make it associative [12].

B. Csákány suggested a third method, namely to look at how many of the identities
that are consequences of associativity are (not) satisfied. If the operation is associative,
then there is no need to use parentheses in a product x1 · x2 · . . . · xn , as the result will
be the same anyway, but if the operation is not associative, then one must insert n − 2
pairs of parentheses in order to make the product unambiguous. The Catalan numbers
Cn−1 = 1

n

(2n−2
n−1

)
give the number of ways of inserting parentheses (or round brackets)

meaningfully, and each such bracketing induces an n-variable function An → A.
For associative binary operations, all these n-ary functions will be the same, but for
arbitrary operations we may get as many as Cn−1 functions. The associative spectrum
of A is the sequence {sn(A)}∞n=1 that counts the number of different n-ary functions
on A arising from bracketings of the product x1 · x2 · . . . · xn . If A is a semigroup (i.e.,
if x · y is associative), then sn(A) = 1 for all n ∈ N, and intuitively we can say that
the faster the spectrum grows, the less associative the operation is.

The associative spectrum was introduced in [7], and some basic properties and
many examples of associative spectra were presented. In particular, it was shown that
the cross product and the implication have a Catalan spectrum; hence, they are as
nonassociative as a binary operation can be. We shall call such operations (groupoids)
antiassociative. The associative spectrum of the subtraction operation is given by
sn = 2n−2; thus, subtraction is somewhere between being associative and antiassocia-
tive. Examples of groupoids with constant and linear spectra were also given in [7];
furthermore, in [14] groupoids with polynomial spectra of arbitrary degrees were con-
structed. It was also proved in [14] that there exist a continuum of different associative
spectra (allowing infinite base sets, of course). Similar questions were investigated in
[2–4], where some of the earlier results were rediscovered (with a different terminol-
ogy).

In this paper, we study associative spectra of certain binary operations associated to
graphs, which may be finite or infinite. Let us define a “multiplication” on the vertices
of a graph as follows: let u · v = u if there is an edge from u to v and let u · v = ∞
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otherwise (here ∞ is an external absorbing element). We define the arising graph
algebrasmore precisely in Sect. 2, where we also present the required background on
bracketings and spectra.

For undirected graphs, we obtain a full description of all possible associative spectra
in Sect. 3. It turns out that there are only three possibilities: we have either sn = 1,
sn = 2n−2 or sn = Cn−1. Note the sharp contrast between this result and the abundance
of different (growth rates of) spectra presented in [7,14]. In Theorem 3.3, we also give
explicit characterizations of undirected graphs corresponding to each of the three
spectra.

We determine antiassociative digraphs in Sect. 4; this together with the description
of associative digraphs [15] gives us at least a picture about the two extrema of the
spectrum(!) of associative spectra of digraphs. Finally, in Sect. 5 we compute the
associative spectra of some concrete graphs such as cycles and paths, and we also
determine the spectra of graphs on two vertices. A more detailed analysis of the
associative spectra of general digraphs will be a topic of a forthcoming paper.

2 Preliminaries

2.1 General notation

We denote byN andN+ the set of nonnegative integers and the set of positive integers,
respectively. For a, b ∈ N, let [a, b] := {i ∈ N | a ≤ i ≤ b}. (Thus [a, b] = ∅ if
a > b.) For n ∈ N, let [n] := [1, n] = {1, . . . , n}.

2.2 Directed graphs

By a directed graph (or digraph or simply graph), we mean a pair G = (V , E), where
V = V (G) is a nonempty set of vertices and E = E(G) ⊆ V 2 is a set of edges (or
the edge relation). A digraph G ′ = (V ′, E ′) is a subgraph of G = (V , E) if V ′ ⊆ V
and E ′ ⊆ E ; it is an induced subgraph of G if additionally E ′ = E ∩ (V ′ × V ′).

If e = (u, v) ∈ E , then we say that e is an edge from u to v, and we sometimes
denote this by u → v. In this case, we also say that u is an inneighbour of v and
v is an outneighbour of u. The outneigbourhood of a vertex u ∈ V (G), denoted by
NG
o (u), is the set of all outneighbours of u in G. The concept of inneighbourhood is

defined analogously. An edge of the form (u, u) is called a loop (on u) and sometimes
denoted by u � .

A walk of length � from u to v in G is a sequence v0, . . . , v� of (not necessarily
distinct) vertices such that v0 = u, v� = v, and there is an edge from each vertex to
the next one (except for the last vertex, of course): v0 → v1 → · · · → v�. If v0 = v�,
then we say that the walk is closed. A path (cycle) is a (closed) walk in which the
vertices are pairwise distinct (with the exception of the first and last vertex in case of
a cycle). A digraph without cycles is called acyclic.

We say that a vertex u is reachable from v if there exists a walk (equivalently, a
path) from v to u. A pair of vertices u and v is said to be strongly connected if each
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one of u and v is reachable from the other. The relation of being strongly connected
is an equivalence relation, and the induced subgraphs on its equivalence classes are
called the strongly connected components of G. A digraph is strongly connected if
it has just one strongly connected component. A one-vertex graph with no edge is
strongly connected (let us call this the trivial strongly connected graph); apart from
this trivial example, every vertex of a strongly connected digraph is contained in a
cycle of nonzero length (this includes the graph of one vertex with a loop on it).

Adigraphwith a symmetric edge relation is called anundirectedgraph.The strongly
connected components of an undirected graph are called connected components. The
underlying undirected graph of a digraphG = (V , E) is the undirected graph (V , E ′),
where the edge relation E ′ equals the symmetric closure of E .

A tree is an undirected graph inwhich any two vertices are connected by exactly one
path. A rooted directed tree is a directed acyclic graph whose underlying undirected
graph is a tree and that has a distinguished vertex, called the root, from which all
vertices are reachable. Let v be a vertex of a rooted directed tree T . Unless v is the
root of T , it has a unique inneighbour, which is referred to as the parent of v. The
outneighbours of v are called children of v. A childless vertex is called a leaf. The
vertices reachable from v are called descendants of v, and v is called an ancestor of
any of its descendants. The rooted induced subtree of T rooted at v, denoted by Tv , is
the subgraph of T induced by v and all its descendants.

The depth of a vertex v in a rooted directed tree T is the length of the (unique)
path from the root to v, denoted by dT (v). (Thus the root has depth 0.) The height of
the tree T , denoted by h(T ), is the maximum of the depths of its vertices: h(T ) =
max{dT (v) | v ∈ V (T )}.

2.3 Graph algebras

Graph algebras were introduced by Shallon [17]. We associate any digraph G =
(V , E) with an algebra A(G) = (V ∪ {∞}; ◦,∞) of type (2, 0), where ∞ is a new
element distinct from the vertices, and the binary operation is defined by the following
rule: for any x, y ∈ V ∪ {∞},

x ◦ y :=
{
x, if (x, y) ∈ E ,

∞, otherwise.

The algebra A(G) is called the graph algebra of G. Graph algebras provide a simple
encoding of graphs as algebras, and using this encoding, the algebraic properties of
the graph algebra A(G) can be seen as properties of the graph G itself.

We are particularly interested in the satisfaction of identities by graph algebras.
Recall that a term is, informally speaking, a well-formed string comprising variables
and function symbols from the language of algebras under consideration. An identity
is an ordered pair (t, t ′) of terms, usually written as t ≈ t ′. An algebra A satisfies an
identity t ≈ t ′ if for all assignments of values to the variables occurring in t and t ′,
the two terms get the same value when the function symbols are interpreted as the
fundamental operations of A. An identity t ≈ t ′ is trivial if t = t ′. Trivial identities
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are clearly satisfied by all algebras (of the given type). For further details, see, e.g.,
[9].

Let t be a term in the language of graph algebras. Denote by var(t) the set of
variables occurring in t and by L(t) the leftmost variable occurring in t . We say that
t is trivial if it contains an occurrence of the constant symbol ∞; otherwise, t is
nontrivial. Nontrivial terms are thus just groupoid terms. To any nontrivial term t , we
can associate a digraph G(t) = (V , E), where V = var(t), and (xi , x j ) ∈ E if and
only if t has a subterm (t1 ◦ t2) with L(t1) = xi and L(t2) = x j .

The following result is very helpful for determiningwhether a graph algebra satisfies
an identity.

Proposition 2.1 (Pöschel, Wessel [16, Proposition 1.5(2)]) Let G = (V , E) be a
digraph. Let t and t ′ be nontrivial terms in the language of graph algebras, and
assume that var(t) = var(t ′) and L(t) = L(t ′). Then the following conditions are
equivalent:

(i) A(G) satisfies t ≈ t ′;
(ii) for every map ϕ : var(t) → V , we have that ϕ is a homomorphism of G(t) into

G if and only if ϕ is a homomorphism of G(t ′) into G.

2.4 Associative spectra

Let Bn denote the set of bracketings of size n, i.e., groupoid terms obtained from the
string x1 ·x2 ·. . .·xn by inserting parentheses appropriately. The number of bracketings
of size n is given by the (n−1)-st Catalan number Cn−1 = 1

n

(2n−2
n−1

)
. IfA = (A; ·) is a

groupoid, then the equational theory ofA induces an equivalence relation σn(A) on Bn ,
i.e., (t, t ′) ∈ σn(A) if and only ifA satisfies t ≈ t ′. The sequence {σn(A)}∞n=1 is called
the fine associative spectrum of A. The associative spectrum of A is the sequence
{sn(A)}∞n=1 of natural numbers defined by sn(A) := |Bn/σn(A)|. Equivalently, sn(A)

is the number of distinct term operations of A induced by the bracketings of size n.
Intuitively, the faster the associative spectrum grows, the less associative the operation
is considered. A groupoid A is a semigroup if and only if sn(A) = 1 for all n ∈ N. On
the other extreme, we have the antiassociative groupoids whose associative spectrum
is given by the Catalan numbers: sn(A) = |Bn| = Cn−1. These groupoids do not
satisfy any nontrivial identity of the form t1 ≈ t2 with t1, t2 ∈ Bn .

Since there exists only one bracketing of size 1, namely x1, and of size 2, namely
(x1x2), it is clear that s1(A) = s2(A) = 1 for every groupoid A. Therefore, we
may always assume that n ≥ 3 when we consider bracketings of size n or the n-th
component of an associative spectrum.

2.5 DFS trees

It turns out that the graphs associated with bracketings are particularly nice; they are
rooted directed trees of a very special form.

Definition 2.2 A DFS tree of size n is a rooted directed tree T on the vertex set
Xn := {x1, x2, . . . , xn} that has root x1 and for every vertex xi ∈ Xn , the induced
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Fig. 1 The DFS tree of the
bracketing
((x1((x2x3)x4))x5)(x6(x7x8))

subtree Txi has vertex set of the form X[i,i ′] := {x j | j ∈ [i, i ′]} for some i ′ ∈ [n]
with i ′ ≥ i .

The name “DFS tree” stems from the fact that the vertices are labelled in an order in
which they may be discovered by the depth-first search (DFS) (see [6, Section 22.3])
starting from the root. Figure 1 shows the DFS tree G(t) of size 8 that corresponds
to the bracketing t = ((x1((x2x3)x4))x5)(x6(x7x8)). The dotted line shows the walk
traversed by the depth-first search (using the convention that the search continues
always with the leftmost unvisited child). Note that the order of first occurrence of the
vertices along this walk is x1, x2, . . . , x8.

Lemma 2.3 (cf. [6, Theorem 22.7 (Parenthesis theorem)]) Let T be a rooted directed
tree on Xn. The following are equivalent.

(i) T is a DFS tree.
(ii) The sequence x1, x2, . . . , xn is a possible order in which the vertices of T may

be traversed by the depth-first search starting from the root.

Proof (i) ⇒ (ii): Assume that T satisfies condition (i). Condition (ii) will follow if
we prove that for each vertex xi ∈ Xn , the vertices of the rooted induced subtree Txi
(by our assumption V (Txi ) = X[i,i ′] for some i ′ ≥ i) may be traversed by the depth-
first search in the order xi , xi+1, . . . , xi ′ . We proceed by induction on the height of
subtrees. The claim obviously holds for rooted induced subtrees of height 0. Assume
that the claim holds for rooted induced subtrees of height at most k, and let xi ∈ Xn be
a vertex such that h(Txi ) = k + 1. Let xi1 , xi2 , . . . , xi� be the children of xi in T with
i1 < i2 < · · · < i�. By condition (i), for each s ∈ [�], V (Txis ) = X[is ,i ′s ] for some
i ′s ≥ is ; in fact i ′s = is+1 − 1 for 1 ≤ s < �, i1 = i + 1, and V (Txi ) = X[i,i ′�]. By the
induction hypothesis, the vertices of Txis may be traversed by the depth-first search in
the order xis , xis+1, . . . , xi ′s ; consequently, the vertices of Txi may be traversed in the
order xi , xi1 , xi1+1, . . . , xi ′1 , xi2 , xi2+1, . . . , xi ′2 , . . . , xi� , xi�+1, . . . , xi ′� , that is, in the
order xi , xi+1, . . . , xi ′� .

(ii) ⇒ (i): Assume that T satisfies condition (ii). For any xi ∈ Xn , xi is the first
vertex in Txi visited by the depth-first search, all vertices of Txi are traversed before
the depth-first search continues with vertices not belonging to Txi , and once the depth-
first search leaves the subtree Txi , it will never return to it. Consequently, condition (i)
clearly holds. ��
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It is a well-known fact that a digraph G is isomorphic toG(t) for some term t if and
only if G is finite and rooted, i.e., there exists a vertex from which every vertex of G
is reachable (see Kiss [13], Lemma 2). For the digraphs associated with bracketings,
we obtain a sharper result: bracketings of size n are in a one-to-one correspondence
with DFS trees of size n.

Lemma 2.4 Let n ∈ N.

(a) For any bracketing t ∈ Bn, the graph G(t) is a DFS tree of size n.
(b) Conversely, for every DFS tree T of size n, there is a unique bracketing t ∈ Bn

such that G(t) = T .

Proof (a) Let t ∈ Bn . Then G(t) is a graph on Xn by definition. We will prove by
induction on the structure of terms that for every subterm t ′ of t , the graph G(t ′)
is a directed tree on var(t ′) with root L(t ′) such that for every xi ∈ var(t ′), the
subtree of G(t ′) rooted at xi has vertex set of the form X[i,i ′] for some i ′ ∈ [n]
with i ′ ≥ i . The claim obviously holds for any subterm of the form t ′ = xi ∈ Xn .
Let now t ′ = (t1 ◦ t2) and assume that the claim holds for the subterms t1 and t2.
By the induction hypothesis, for � ∈ {1, 2}, G(t�) is a directed tree on var(t�) with
root L(t�); moreover, var(t�) = X[p�,q�], where p� = L(t�) and q� ≥ p�. In fact,
q1 = p2 − 1. Since var(t1) ∩ var(t2) = ∅, G(t ′) is obtained by adding the edge
L(t1) → L(t2) to the disjoint union of G(t1) and G(t2); the resulting graph is a
directed tree on var(t ′) = X[p1,q2]. Moreover, given a vertex xi ∈ var(t ′), we have
that the subtree of G(t ′) induced by xi is identical to the one induced by xi in G(t1)
if xi ∈ var(t1) \ {xp1} and identical to the one induced by xi in G(t2) if xi ∈ var(t2);
by the induction hypothesis, the subtree has the desired form.

(b) For the purpose of this proof, we relax the notions of bracketing and DFS tree
so as to allow variable or vertex sets of the form X[a,b]. Let a, b ∈ N with a ≤ b,
and let n := b − a + 1. A term t with var(t) = X[a,b] is an [a, b]-bracketing if t can
be obtained from some t ′ ∈ Bn by replacing each variable xi by xa+i−1, 1 ≤ i ≤ n.
Similarly, a rooted directed tree T on X[a,b] is an [a, b]-DFS tree if there is a DFS tree
T ′ of size n such that the map xi �→ xa+i−1 is an isomorphism T ′ → T .

We show that for any a, b ∈ N with a ≤ b, it holds that for every [a, b]-DFS
tree T , there exists a unique [a, b]-bracketing t such that G(t) = T . We proceed by
induction on the length b−a of the interval [a, b]. The claim is obvious for b−a = 0,
i.e., a = b. Assume that the claim holds whenever b − a ≤ k. Let now a and b
be such that b − a = k + 1, and let T be an [a, b]-DFS tree. Let xi1 , xi2 , . . . , xi�
be the children of the root vertex xa , and assume that i1 < i2 < · · · < i�. Then
T − Txi� is an [a, i� − 1]-DFS tree and Txi� is an [i�, b]-DFS tree, so by the induction
hypothesis there exist a unique [a, i� − 1]-bracketing r such that T − Txi� = G(r)
and a unique [i�, b]-bracketing s such that Txi� = G(s). Then t := (r ◦ s) is an [a, b]-
bracketing and it is easy to see that G(t) = T because L(r) = xa and L(s) = xi� .
This proves existence. As for uniqueness, assume t ′ is another [a, b]-bracketing such
that G(t ′) = T . Since xa → xi� is an edge in T , t ′ must contain a subterm of the
form (r ′ ◦ s′) where L(r ′) = xa , L(s′) = xi� . Then var(r ′) = X[a,i�−1], so G(r ′)
is the subtree of T with vertex set X[a,i�−1], that is G(r ′) = T − Txi� = G(r).
Observe that t ′ contains no subterm of the form (r ′ ◦ s′) ◦ s′′ (otherwise L(s′′) =: xp
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would be a child of xa with p > i�, contradicting the choice of i�). Consequently
var(s′) = X[i�,b], so G(s′) = Txi� = G(s). By the induction hypothesis r = r ′ and
s = s′, so t = (r ◦ s) = (r ′ ◦ s′) = t ′. ��

Proposition 2.5 DFS trees are uniquely determined by their depth sequences: if T
and T ′ are DFS trees of size n such that dT (xi ) = dT ′(xi ) for all i ∈ {1, . . . , n}, then
T = T ′.

Proof Suppose, to the contrary, that DFS trees T and T ′ satisfy dT (xi ) = dT ′(xi ) for
all i ∈ {1, . . . , n} but T �= T ′. Then there exists a vertex xd ∈ Xn such that its parent
xp in T is distinct from its parent xq in T ′. Assume without loss of generality that
p < q. Since dT (xd) = dT ′(xd), we also have dT ′(xp) = dT (xp) = dT (xd) − 1 =
dT ′(xd) − 1 = dT ′(xq) = dT (xq). It follows from this that xd ∈ Txp and xq /∈ Txp ;
therefore, p < d < q by Definition 2.2. On the other hand, xd ∈ T ′

xq ; therefore,
q < d. We have reached a contradiction. ��

A sequence (d1, . . . , dn) of nonnegative integers is called a zag sequence1 if

d1 = 0, d2 = 1, and 1 ≤ di+1 ≤ di + 1 for all i ∈ {1, . . . , n − 1}. (1)

This notion was introduced in [7], where bracketings were represented by binary trees
instead of DFS trees. (See also Exercise 19(u) in [18].) The depth of a vertex in a
DFS tree is the same as the so-called “right depth” of the corresponding vertex in the
binary tree representing the same bracketing. Therefore, 2.8 of [7] implies that depth
sequences of DFS trees are in a one-to-one correspondence with zag sequences. We
include an easy proof of this fact for the sake of self-containedness.

Proposition 2.6 A sequence (d1, . . . , dn) of nonnegative integers is the depth sequence
of a DFS tree of size n if and only if it is a zag sequence.

Proof Necessity is clear: if xi+1 is a child of xi in a DFS tree T , then dT (xi+1) =
dT (xi ) + 1; otherwise, xi+1 is a child of one of the ancestors of xi , hence dT (xi+1) ≤
dT (xi ). We prove sufficiency by induction on n. The case n = 1 is trivial, so let n ≥ 2,
and assume that every zag sequence of length less than n is the depth sequence of a
DFS tree (which is unique, by Proposition 2.5). Let (d1, . . . , dn) be a zag sequence,
and let dk = 1 be the last occurrence of 1 in the sequence (possibly k = 2). Then
d1, . . . , dk−1 and dk − 1, . . . , dn − 1 are zag sequences of length less than n; hence,
by our induction hypothesis, they are depth sequences of DFS trees T1 (of size k − 1)
and T2 (of size n − k + 1), respectively. Let us form the disjoint union of T1 and T2
after applying the renaming xi �→ xi+k−1 to the vertices of T2. Now if we add an edge
from x1 (the root of T1) to xk (the new root of T2), then we obtain a DFS tree of size
n with depth sequence (d1, . . . , dn). ��

1 Another, perhaps more telling name suggested by Béla Csákány is Sisyphus sequence: zag sequences can
increase only gradually, in steps of 1, but they can decrease arbitrarily.
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Fig. 2 The zag sequence of the DFS tree T of Fig. 4

x1

x2

x3 x4

x5 x6

x7

x8

Fig. 3 The Dyck path of the DFS tree of Fig. 1

Remark 2.7 Zag sequences of length n can be visualized as lattice paths from the
origin to the line x = n − 1 using steps (1, 1), (1, 0), (1,−1), (1,−2), . . . . Figure 2
depicts the lattice path of the zag sequence (0, 1, 2, 3, 3, 4, 4, 1, 2, 1, 2, 3, 2, 3, 3) cor-
responding to the DFS tree T shown on the left-hand side of Fig. 4.

Another family of lattice paths is also closely related to bracketings and DFS trees.
A Dyck path of semilength n is a lattice path from (0, 0) to (2n, 0) consisting of n
up-steps U = (1, 1) and n down-steps D = (1,−1) in such a way that the path never
goes below the x-axis. To construct the Dyck path corresponding to a DFS tree T , let
us draw T in such a way that all edges point upwards, and the children of every vertex
are drawn in increasing order (of their subscripts) from left to right. (All DFS trees in
this paper are drawn using this convention.) Let us follow the depth-first search on T ,
including the backtracking steps, returning to the root in the end (see the dotted line
in Fig. 1). For each step, we add an up-step U or a down-step D to our lattice path
starting at the origin according to whether we are moving upwards or downwards in
the tree. (See Fig. 3 for the Dyck path corresponding to the DFS tree of Fig. 1. The first
occurrence of each vertex during the depth-first search is labelled on the diagram.)
This way we obtain a bijection from the set of DFS trees of size n to the set of Dyck
paths of semilength n − 1. A wormderful explanation of this bijection is presented in
[19, p. 10], where this process is actually used to define the depth-first order.
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Fig. 4 Collapsing (T , x13) on (W ,W ′)

2.6 Collapsingmaps and a few lemmas

Definition 2.8 Let T be a DFS tree of size n, and let G be a digraph. If h := h(T ) and
W : v0 → v1 → · · · → vh is a walk in G, then the mapping ϕ : Xn → V (G), xi �→
vdT (xi ) is clearly a homomorphism of T into G. Similarly, if C : u0 → u1 → · · · →
u�−1 → u0 is a closed walk in G with � ≥ 1, then the mapping ψ : Xn → V (G),
xi �→ vdT (xi ) mod � is a homomorphism of T into G. Such homomorphisms ϕ and ψ

are referred to as collapsing maps of T on W and C , respectively, and we say that the
DFS tree T is collapsed on the walk W (on the closed walk C) by ϕ (by ψ).

Wewill often specify homomorphisms ofDFS trees by giving a piecewise definition
in which each piece is a collapsing map of a subgraph. In particular, if T is a DFS
tree of size n, xd ∈ Xn , s := dT (xd) > 0, h := h(T ), h′ := h(Txd ), W : v0 →
v1 → · · · → vs → · · · → vh is a walk in G, vs−1 → u0 is an edge, and W ′ is either
a walk u0 → u1 → · · · → uh′ or a closed walk u0 → u1 → · · · → u� → u0,
then the mapping ϕ : Xn → V (G) that collapses T \ Txd on W and Txd on W ′ is a
homomorphism of T into G, and we will refer to ϕ as the collapsing map of (T , xd)
on (W ,W ′), and we say that (T , xd) is collapsed on (W ,W ′) by ϕ.

Example 2.9 Figure 4 shows a collapsing map ϕ of (T , x13) on (W ,W ′), where
W : v0 → v1 → v2 → v3 → v4 and W ′ : u0 → u1 are walks in a graph G and
T is a DFS tree of size 15. Each vertex of T is mapped to the vertex on the same level
in G represented by the same type of node (filled or empty).

With the help of collapsing maps and Proposition 2.1, we can derive conditions for
the edges of a digraph satisfying a bracketing identity. Let us illustrate this with a few
examples that will serve as helpful tools later.

Lemma 2.10 Let t, t ′ ∈ Bn, t �= t ′, T := G(t), T ′ := G(t ′), h := h(T ), and let G be
a digraph such that A(G) satisfies the identity t ≈ t ′. If W : v0 → v1 → · · · → vh is
a walk in G, then (vdT (a), vdT (b)) ∈ E(G) for every (a, b) ∈ E(T ′).
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Proof The collapsing map ϕ of T onW is a homomorphism of T into G, so it is also a
homomorphism of T ′ into G by Proposition 2.1. Consequently, for every edge (a, b)
of T ′, we have (vdT (a), vdT (b)) = (ϕ(a), ϕ(b)) ∈ E(G). ��
Lemma 2.11 Let t, t ′ ∈ Bn, t �= t ′, T := G(t), T ′ := G(t ′), and let G be a digraph
such that A(G) satisfies the identity t ≈ t ′. Then the following statements hold.

(a) If u, v ∈ V (G), {(u, u), (u, v)} ⊆ E(G), and G contains arbitrarily long walks
with initial vertex v, then {(v, u), (v, v)} ⊆ E(G).

(b) If u, v, w ∈ V (G) and {(u, u), (v, v), (w,w), (v, u), (v,w)} ⊆ E(G), then
{(u, w), (w, u)} ⊆ E(G).

(c) If dT (xi ) ≡ dT ′(xi ) (mod 2) for all xi ∈ Xn, u, v, w ∈ V (G), {(u, v),

(v, u), (v,w)} ⊆ E(G) and G contains arbitrarily long walks with initial vertex
w, then (w, v) ∈ E(G).

(d) If dT (xi ) ≡ dT ′(xi ) (mod 2) for all xi ∈ Xn, u, v, u′, v′ ∈ V (G), {(u, v),

(v, u), (u, v′), (v′, u), (v, u′), (u′, v)} ⊆ E(G), then {(u′, v′), (v′, u′)} ⊆ E(G).

Proof Since t �= t ′, there exists a vertex xd that has distinct parents in T and T ′, say
xp and xq , respectively. We have p < d and q < d, and, changing the roles of T and
T ′ if necessary, we may assume that p < q < d. By Definition 2.2, xq , xd ∈ V (Txp )
but xq /∈ V (Txd ). Let h := h(T ), s := dT (xd), r := dT (xq). Note that dT (xp) = s−1
and r ≥ s.

For each statement, we are going to provide suitable walksW : v0 → v1 → · · · →
vh and W ′ : u0 → u1 → · · · in G, with vs−1 → u0 being an edge, and we consider
the collapsing map ϕ of (T , xd) on (W ,W ′), which is a homomorphism of T into G.
By Proposition 2.1, ϕ is also a homomorphism of T ′ into G. Since (xq , xd) ∈ E(T ′),
we obtain the desired edge (ϕ(xq), ϕ(xd)) = (vr , u0) ∈ E(G).

(a) We obtain the edge v → u by lettingW be the walk starting with r occurrences
of u, followed by a walk of length h − r starting at v, and letting W ′ be the cycle
u → u. We obtain the edge v → v by letting W be as above and letting W ′ be a
sufficiently long walk starting at v.

(b) We obtain the edge u → w by lettingW : v → · · · → v → u → · · · → u with
r occurrences of v and h − r + 1 occurrences of u and W ′ : w → w. By swapping u
with w in the above, we obtain also the edge w → u.

(c) We obtain the edge w → v by lettingW : v0 → v1 → · · · → vh be the walk in
which v0, . . . , vr−1 alternate between vertices u and v such that vr−1 = v, followed
by the vertices of a walk of length h − r starting at w, and letting W ′ be the cycle
v → u → v. Note that s − 1 = dT (xp) = dT (xd) − 1 ≡ dT ′(xd) − 1 = dT ′(xq) ≡
dT (xq) = r (mod 2), so vs−1 = u and vs−1 → u0 is indeed an edge in G.

(d) We obtain the edge u′ → v′ by letting W : v0 → v1 → · · · → vh be the walk
with vi := u when i ≡ r (mod 2) and i �= r , vr := u′, and vi := v when i �≡ r
(mod 2), and letting W ′ be the cycle v′ → u → v′. Note that we have s − 1 ≡ r
(mod 2) as above, so vs−1 = u and vs−1 → u0 is indeed an edge in G. Switching the
roles of u and v, while also switching the roles of u′ and v′, yields v′ → u′. ��
Remark 2.12 There exist arbitrarily long walks with initial vertex v if, for example, v
lies on a cycle, or there is a path from v to a vertex v′ that lies on a cycle.
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3 Associative spectra of graph algebras of undirected graphs

It is relatively easy to determine the associative spectra of graph algebras of undirected
graphs. It turns out that there are only three distinct possibilities: the sequences of all
1’s, powers of 2, and Catalan numbers. Undirected graphs are classified into these
three types in Theorem 3.3.

As we will see, a key criterion for the classification of pairs of distinct DFS trees
of size n is whether the depths of each vertex in the two trees are congruent modulo 2.

Lemma 3.1 Let ∼ be the equivalence relation on Bn that relates t and t ′ if and only if
dG(t)(xi ) ≡ dG(t ′)(xi ) (mod 2) for all xi ∈ Xn. Then |Bn/∼| = 2n−2 for n ≥ 2.

Proof Let us define the depth sequence modulo 2 of a bracketing t ∈ Bn as the tuple
dt,2 := (d1, d2, . . . , dn), where di := dG(t)(xi ) mod 2. Obviously, it holds that dt,2 ∈
{0}×{1}×{0, 1}n−2, because the vertices x1 and x2 always have depths 0 and 1 inG(t),
respectively. On the other hand, every tuple (d1, d2, . . . , dn) ∈ {0}×{1}×{0, 1}n−2 is
the depth sequencemodulo 2 of somebracketing t ∈ Bn ,whichwecanbuild as follows.
The vertices x1 and x2 must have depths 0 and 1, respectively. For j = 2, . . . , n, if
d j �= d j−1, thenwe add x j as a child of x j−1; if d j = d j−1, thenwe add x j as a child of
the unique parent of x j−1. It is now obvious that |Bn/∼| = |{0} × {1} × {0, 1}n−2| =
2n−2. ��
Lemma 3.2 Let K be an undirected connected graph with no loops. Assume that for
all vertices a, b, c, d of K it holds that if a → b → c → d is a walk in K , then a → d
is an edge. Then K is complete bipartite.

Proof Suppose, to the contrary, that K is not bipartite. Then K has a cycle of odd
length m ≥ 3, say v1 → v2 → · · · → vm → v1. By applying our assumption
to the walk vm−2 → vm−1 → vm → v1, we get the edge vm−2 → v1; hence,
v1 → v2 → · · · → vm−2 → v1 is a cycle of length m − 2 in K . Repeating this
argument, we eventually arrive at a cycle of length 1. This contradicts the fact that K
has no loops.

We have established that K must be bipartite. It remains to show that K is complete
bipartite. Let B1, B2 be a bipartition of K , and let x ∈ B1, y ∈ B2. We want to show
that x → y is an edge in K . Since K is connected, there exists a path x = v0 →
v1 → · · · → vn = y in K , with n odd. If n ≥ 3, then our assumption implies that
v0 → v1 → · · · → vn−3 → vn is a path of length n − 2 from x to y. Repeating this
argument, we eventually get a path of length 1 from x to y, i.e., an edge x → y. ��
Theorem 3.3 Let G be an undirected graph.

(i) If every connected component of G is either trivial or a complete graph (with
loops), thenA(G) satisfies every bracketing identity. In this case, sn(A(G)) = 1
for all n ∈ N+.

(ii) If every connected component is either trivial, a complete graph (with loops),
or a complete bipartite graph, and the last case occurs at least once, then A(G)

satisfies a bracketing identity t ≈ t ′ if and only if dG(t)(xi ) ≡ dG(t ′)(xi ) (mod 2)
for all xi ∈ Xn. In this case, sn(A(G)) = 2n−2 for all n ≥ 2.
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(iii) Otherwise A(G) satisfies no nontrivial bracketing identity. In this case,
sn(A(G)) = Cn−1 for all n ∈ N+.

Proof Let t, t ′ ∈ Bn , t �= t ′.DenoteT := G(t), T ′ := G(t ′).Assume thatG = (V , E)

satisfies t ≈ t ′.

Claim 3.3.1 Every connected component of G containing a loop is a complete graph
(with loops).

Proof Let K be a connected component of G containing a loop. We will show that the
edge relation E(K ) is reflexive, symmetric, and transitive. From this, we can conclude
that K is a complete graph with loops. The claim is obvious if K has only one vertex,
so we may assume that K has at least two vertices. The edge relation is symmetric
because G is undirected.

For reflexivity, let u be a vertex in K with a loop, and let v be a vertex adjacent to
u. It follows from Lemma 2.11(a) that (v, v) ∈ E(K ) (note that v belongs to the cycle
v → u → v). From this, we can conclude that every vertex in K has a loop, that is,
the edge relation E(K ) is reflexive.

For transitivity, assume that (u, v) and (v,w) are edges in K . By reflexivity, we
have loops at vertices u, v and w, and by symmetry, we have also the edges (v, u) and
(w, v). Now Lemma 2.11(b) implies that (u, w) ∈ E(K ). ��Claim 3.3.1

Claim 3.3.2 Every nontrivial connected component of G without loops is a complete
bipartite graph. Such a component exists only if dT (xi ) ≡ dT ′(xi ) (mod 2) for all
xi ∈ Xn.

Proof Let K be a nontrivial connected component ofGwithout loops. Then K contains
an edge (u, v). Then the map ϕ : Xn → V ,

ϕ(x) =
{
u, if dT (x) ≡ 0 (mod 2),

v, if dT (x) ≡ 1 (mod 2),

is clearly a homomorphism of T into G. By Proposition 2.1, ϕ is a homomorphism of
T ′ into G, so dT (xi ) ≡ dT ′(xi ) (mod 2) for all xi ∈ Xn .

In order to conclude that K is complete bipartite, it suffices, by Lemma 3.2, to show
that if a → b → c → d is a walk in K , then (a, d) is an edge. Since the edge relation
is symmetric, this holds by Lemma 2.11(d). ��Claim 3.3.2

Proof of Theorem 3.3 continued Claims 3.3.1 and 3.3.2 show that if G satisfies t ≈ t ′,
then the connected components of G are trivial, complete graphs (with loops), or
complete bipartite graphs, and if the last case occurs, then dT (xi ) ≡ dT ′(xi ) (mod 2)
for all xi ∈ Xn .

Assume now that the connected components of G are trivial, complete graphs
(with loops), or complete bipartite graphs, and if one of the components is a complete
bipartite graph, then dT (xi ) ≡ dT ′(xi ) (mod 2) for all xi ∈ Xn . In order to prove that
G satisfies t ≈ t ′, we apply Proposition 2.1. Let ϕ : Xn → V be a homomorphism of
T into G. Since T is connected and contains an edge, the image of ϕ lies in a single
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Fig. 5 Graphs associated with
the terms of the associative
identity t ≈ t ′ with
t := x1(x2x3), t ′ := (x1x2)x3

nontrivial connected component K of G. If K is a complete graph, then ϕ is obviously
a homomorphism of T ′ into G.

Consider then the casewhere K is a complete bipartite graphwith bipartition B1, B2.
It is easy to see that for all xi , x j ∈ Xn ,ϕ(xi ) andϕ(x j ) lie in the same part (B1 or B2) if
and only if dT (xi ) ≡ dT (x j ) (mod 2). By our assumption, we have dT (xi ) ≡ dT ′(xi )
(mod 2) for all xi ∈ Xn , which implies that ϕ is also a homomorphism of T ′ into G.

A similar argument shows that every homomorphism of T ′ into G is also a homo-
morphism of T into G. By Proposition 2.1, G satisfies t ≈ t ′.

We have shown that G satisfies a nontrivial bracketing identity t ≈ t ′ if and only if
the connected components of G are trivial, complete graphs (with loops), or complete
bipartite graphs, and if the last case occurs, then dT (xi ) ≡ dT ′(xi ) (mod 2) for all
xi ∈ Xn . This gives us the three possible associative spectra. If A(G) satisfies all
bracketing identities, then A(G) is associative and sn(A(G)) = 1 for all n ∈ N+. If
A(G) satisfies no nontrivial bracketing identity, then sn(A(G)) = Cn−1 for all n ∈ N+.
In the last possible case, σn(A(G)) relates t and t ′ if and only if dT (xi ) ≡ dT ′(xi )
(mod 2) for all xi ∈ Xn ; by Lemma 3.1 we have sn(A(G)) = 2n−2. ��

4 Associative and antiassociative digraphs

A digraph G is associative if A(G) satisfies the associative identity x1(x2x3) ≈
(x1x2)x3, i.e., if the associative spectrum of A(G) is constant 1. Associative digraphs
were characterized by Poomsa-ard [15]; the equivalence of conditions (i) and (ii) in
the following can be verified by applying Proposition 2.1 to the DFS trees associated
with the two bracketings appearing in the associative law (see Fig. 5).

Proposition 4.1 (Poomsa-ard [15, Proposition 2.2]) For any digraph G = (V , E),
the following statements are equivalent.

(i) G is associative.
(ii) For any edge (u, v) ∈ E and any vertex w ∈ V , (u, w) ∈ E if and only if

(v,w) ∈ E.
(iii) The edge relation E is transitive and for every v ∈ V , the subgraph induced on

the outneighbourhood NG
o (v) is a complete graph.

On the other extreme, we have the antiassociative digraphs whose graph algebras
satisfy no nontrivial bracketing identities, i.e., the associative spectrum of A(G) con-
sists of the Catalan numbers. The goal of this section is to characterize antiassociative
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Fig. 6 DFS trees with Ht,t ′ = 6, Mt,t ′ = 3, Lt,t ′ = 2

digraphs. To this end, we introduce some numerical parameters of bracketing identities
in terms of the corresponding DFS trees, and we prove several necessary conditions
for a graph algebra to satisfy a given bracketing identity.

Definition 4.2 Let t, t ′ ∈ Bn , t �= t ′, and let T := G(t), T ′ := G(t ′).

(i) Let Ht,t ′ := min{h(T ), h(T ′)}.
(ii) Let Mt,t ′ be the largest integer m such that dT (xi ) ≡ dT ′(xi ) (mod m) for all

xi ∈ Xn . In other words, the depth sequences of T and T ′ are congruent modulo
Mt,t ′ .

(iii) Let Lt,t ′ be the largest integer m such that for all xi ∈ Xn ,

(
dT (xi ) ≤ m ∨ dT ′(xi ) ≤ m

) �⇒ dT (xi ) = dT ′(xi ).

In other words, the DFS trees T and T ′ are identical up to level Lt,t ′ .

Note that 0 ≤ Ht,t ′ < n (with Ht,t ′ = 0 if and only if n = 1), 0 ≤ Lt,t ′ < Ht,t ′ and
1 ≤ Mt,t ′ ≤ Ht,t ′ .

Example 4.3 Figure 6 shows two DFS trees corresponding to certain terms t, t ′ ∈ B20.
It is straightforward to verify that Ht,t ′ = 6, Mt,t ′ = 3, and Lt,t ′ = 2.

Lemma 4.4 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t ′. Denote H := Ht,t ′ , M := Mt,t ′ , L := Lt,t ′ . Then there exists an
integer r with L + 1 ≤ r ≤ H and r ≡ L (mod M) such that the following holds: if
v0 → v1 → · · · → vH is a walk in G, then vr → vL+1 is an edge in G. In particular,
vL+1 belongs to a nontrivial strongly connected component.
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Proof By the definition of L , there exists a vertex xd ∈ Xn such that either dT (xd) =
L + 1 < dT ′(xd) or dT ′(xd) = L + 1 < dT (xd). By changing the roles of T and
T ′, if necessary, we may assume that dT (xd) = L + 1 < dT ′(xd). Let xp be the
parent of xd in T , and let xq be the parent of xd in T ′. Then dT (xp) = L , and it
follows from Definition 2.2 that V (Txp ) = V (T ′

xp ) because the trees T and T ′ are
identical up to level L . Since xd ∈ V (Txp ) = V (T ′

xp ) and dT ′(xd) > L + 1, we
have xq ∈ V (T ′

xp ) = V (Txp ) and dT ′(xq) = dT ′(xd) − 1 ≥ L + 1, so xq �= xp;
hence, dT (xq) ≥ L + 1. Furthermore, by the definition of M , it holds that dT (xq) ≡
dT ′(xq) = dT ′(xd) − 1 ≡ dT (xd) − 1 = L (mod M).

Write h := h(T ), h′ := h(T ′), and consider first the case that h ≤ h′, so h = H . In
this case, the statement of the Lemma holds with r := dT (xq), because L + 1 ≤ r =
dT (xq) ≤ h = H and r = dT (xq) ≡ L (mod M), and by Lemma 2.10, it holds that if
v0 → v1 → · · · → vH is a walk in G, then (vdT (xq ), vdT (xd )) = (vr , vL+1) ∈ E(G).

Consider now the case that h > h′, so h′ = H . Let u0 → u1 → · · · → uh be a
longest path in T , and write di := dT ′(ui ) for i ∈ {0, . . . , h}. Now, since h > h′, the
sequence d0, d1, . . . , dh cannot be strictly increasing, so there exists an index j with
d j ≥ d j+1. Note that d j+1 ≥ L + 1, because the trees T and T ′ are identical up to
level L .

Assume that W : v0 → v1 → · · · → vH is a walk in G. By Lemma 2.10,
(vd j , vd j+1) ∈ E(G); consequently C : vd j+1 → vd j+1+1 → · · · → vd j → vd j+1

is a closed walk in G. Now, let W ′ be the walk in G that starts with v0 → v1 →
· · · → vd j+1 , and then, it continues around the closed walk C until it reaches length
h. More precisely, W ′ is the walk v′

0 → v′
1 → · · · → v′

h with v′
i := vi∗ , where

i∗ is the largest integer m such that m ≤ min(i, d j ) and m ≡ i (mod D), where
D := d j −d j+1 +1. By Lemma 2.10, (v′

dT (xq ), v
′
dT (xd )) = (vr , vL+1) ∈ E(G), where

r := (dT (xq))∗. By definition, we have L + 1 ≤ r ≤ d j ≤ h′ = H and r ≡ dT (xq)
(mod D). Furthermore,

D = dT ′(u j ) − dT ′(u j+1) + 1 ≡ dT (u j ) − dT (u j+1) + 1 = 0 (mod M),

so M divides D (notation: M |D), and it follows that r ≡ dT (xq) ≡ L (mod M).
Now we have a closed walk vL+1 → · · · → vr → vL+1 in G. This means, in

particular, that vL+1 belongs to a nontrivial strongly connected component. ��
The next lemma generalizes Lemma 2.11(a).

Lemma 4.5 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such that A(G) satisfies the
identity t ≈ t ′. Denote H := Ht,t ′ , M := Mt,t ′ , L := Lt,t ′ . If m is a divisor of M,
U : u0 → u1 → · · · → um−1 → u0 is a closed walk in G, u0 → w is an edge, and
G contains arbitrarily long walks with initial vertex w, then w → u2 if m > 2 and
w → u0 if 1 ≤ m ≤ 2.

Proof For m = 1 this is Lemma 2.11(a). Assume that m ≥ 2. Let r be the number
provided by Lemma 4.4, and let v0 → v1 → · · · → vH be a walk that starts by
going around the closed walk U so that vr−1 = u0 (i.e., vi := ui−r+1 mod m for
0 ≤ i ≤ r − 1) and continues with a walk of length H − r with initial vertex w. By
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Lemma 4.4, vr → vL+1 is an edge. We have vr = w and vL+1 = uL+1−r+1 mod m .
Since r ≡ L (mod M) andm |M , we have r ≡ L (mod m); hence L+1−r +1 ≡ 2
mod m. Therefore w → u2 is an edge if m > 2 and w → u0 is an edge if m = 2. ��

For m ∈ N+, the directed m-cycle is the digraph Cm with V (Cm) = Zm :=
[0,m − 1] and E(Cm) = {(i, j) ∈ Zm × Zm | j ≡ i + 1 (mod m)}.
Lemma 4.6 Let t, t ′ ∈ Bn, t �= t ′. Then for every m ∈ N+, the directed m-cycle Cm
satisfies t ≈ t ′ if and only if m is a divisor of Mt,t ′ .

Proof Denote M := Mt,t ′ . Assume first that m | M . By the definition of M , we have
dT (xi ) ≡ dT ′(xi ) (mod M) for all xi ∈ Xn . Since m | M , this implies dT (xi ) ≡
dT ′(xi ) (mod m) for all xi ∈ Xn . Let ϕ : T → Cm be a homomorphism. Then ϕ is
necessarily of the form xi �→ (dT (xi ) + k) mod m for some fixed k ∈ Zm (that is, ϕ
collapses T onto Cm). Then for every edge (xi , x j ) of T ′, we have

ϕ(x j ) ≡ dT (x j ) + k ≡ dT ′(x j ) + k = dT ′(xi ) + 1 + k

≡ dT (xi ) + k + 1 ≡ ϕ(xi ) + 1 (mod m),

so (ϕ(xi ), ϕ(x j )) is an edge of Cm . Therefore ϕ is a homomorphism of T ′ into Cm . A
similar argument shows that every homomorphism ϕ : T ′ → Cm is a homomorphism
T → Cm . By Proposition 2.1, Cm satisfies t ≈ t ′.

Assume now that Cm satisfies t ≈ t ′. Let ϕ : T → Cm be the collapsing map of
T on Cm with ϕ(xi ) = dT (xi ) mod m. By Proposition 2.1, ϕ is a homomorphism
T ′ → Cm . Since the only homomorphisms of T ′ to Cm are collapsing maps xi �→
(dT ′(xi ) + k) mod m for some k ∈ Zm , and since ϕ(x1) = dT (x1) = 0 = dT ′(x1), it
follows that dT ′(xi ) ≡ dT (xi ) (mod m) for all xi ∈ Xn . From the definition of M , it
follows that m |M . ��
Definition 4.7 A digraph G = (V , E) is called an m-whirl (m ∈ N+), if there exists
a partition {B0, . . . , Bm−1} of V such that for all x, y ∈ V , (x, y) ∈ E if and only
if x ∈ Bi and y ∈ Bi+1 for some i ∈ {0, . . . ,m − 1} (addition modulo m). The sets
Bi are referred to as the blocks of G. We say that blocks Bi and Bj are consecutive
if j ≡ i + 1 (mod m); then, Bi is called the predecessor of Bj and Bj is called the
successor of Bi . A digraph is called a whirl if it is an m-whirl for some m ∈ N+.

In other words, an m-whirl G is a strong homomorphic preimage of the directed
m-cycle Cm . By definition, 1-whirls are precisely the complete graphs with loops and
2-whirls are precisely the complete bipartite graphs. (Note the role of 1-whirls and
2-whirls in Theorem 3.3.)

Lemma 4.8 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such that A(G) satisfies the
identity t ≈ t ′. Then every strongly connected component of G is either trivial or an
m-whirl for some divisor m of Mt,t ′ .

Proof Let K be a nontrivial strongly connected component of G. Every vertex of K
lies on a cycle contained in K ; let C be a shortest cycle in K , and assume that C has
length m. Lemma 4.6 implies that m is a divisor of Mt,t ′ . We want to show that K is
an m-whirl.
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Assume first that m = 1. Then K contains a vertex u with a loop. Let v be an
arbitrary vertex of K . By strong connectivity, there exists a path from u to v. Since
every vertex is contained in a cycle (again by strong connectivity), we can deduce
with the help of Lemma 2.11(a) that every vertex along the path from u to v has a
loop. We conclude that the edge relation of K is reflexive. The reflexivity of the edge
relation and Lemma 2.11(a) imply immediately that the edge relation is symmetric.
Now Lemma 2.11(b) implies in turn that the edge relation is transitive. We conclude
that K is a complete graph with loops, i.e., a 1-whirl.

Assume now that m = 2. Then Mt,t ′ is even, K contains no loop, and there is a
cycle of length 2 in K , i.e., vertices u, v with (u, v), (v, u) ∈ E(G). With the help
of strong connectivity and Lemma 2.11(c), we can deduce that K is undirected. It
now follows from Lemmas 3.2 and 2.11(d) that K is a complete bipartite graph, i.e.,
a 2-whirl.

From now on, assume that m > 2. For notational simplicity, suppose that C = Cm ,
that is, V (C) = Zm and for all i, j ∈ Zm , i → j is an edge if and only if j ≡ i + 1
(mod m). For each i ∈ Zm , consider

Bi := NK
o (i − 1) = NG

o (i − 1) ∩ V (K ) = {v ∈ V (K ) | (i − 1, v) ∈ E(K )},

i.e., Bi is the set of all outneighbours of i − 1 (addition modulo m) belonging to the
strongly connected component K . Note that i ∈ Bi by definition. We show that for
all i ∈ Zm and for all v ∈ Bi , we have NK

o (v) = Bi+1. Let i ∈ Zm and v ∈ Bi .
Considering the closed walk i − 1 → i → · · · → m − 1 → 0 → · · · → i − 1 of
length m and the edge i − 1 → v, Lemma 4.5 gives the edge v → i + 1 (note that
by strong connectivity every vertex of K , in particular v, belongs to a cycle). Now let
i ∈ Zm , v ∈ Bi and w ∈ Bi+1. Considering the closed walk i − 1 → i → w →
i + 2 → · · · → m − 1 → 0 → · · · → i − 1 of length m and the edge i − 1 → v,
Lemma 4.5 gives the edge v → w. We have shown thus far that for all i ∈ Zm ,
Bi+1 ⊆ NK

o (v) for all v ∈ Bi .
Now let i ∈ Zm , v ∈ Bi , and let w be a vertex of K with v → w. We have shown

above that v → i + 1 is an edge. Considering the closed walk v → i + 1 → · · · →
m − 1 → 0 → 1 → · · · → i − 1 → v of length m and the edge v → w, Lemma 4.5
gives the edge w → i + 2. Considering the closed walk i − 1 → v → w → i + 2 →
· · · → m − 1 → 0 → 1 → · · · → i − 1 of length m and the edge i − 1 → i ,
Lemma 4.5 gives the edge i → w. Thus w ∈ Bi+1. This shows that for each vertex v

of Bi , NK
o (v) ⊆ Bi+1.

It remains to show that the sets B0, B1, . . . , Bm−1 constitute a partition of V (K ).
Let us show first that these sets are pairwise disjoint. Suppose, to the contrary, that
Bi ∩ Bj �= ∅ for some i �= j , and let v ∈ Bi ∩ Bj . Then we have i − 1 → v → i + 1
and j − 1 → v → j + 1. We will find a contradiction by showing that K contains a
cycle shorter than C . If j = i + 1, then K contains the loop v → v, a cycle of length
1. Otherwise v → i + 1 → · · · → j − 1 → v is a cycle shorter than C .

Suppose now, to the contrary, that
⋃m−1

i=0 Bi �= V (K ), and let v ∈ V (K )\⋃m−1
i=0 Bi .

Since K is strongly connected, there exists a path 0 = v0 → v1 → · · · → vp = v

in K . Then there exists an index q ∈ {0, . . . , p − 1} such that vq ∈ ⋃m−1
i=0 Bi and
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vq+1 /∈ ⋃m−1
i=0 Bi , say vq ∈ Bj . But we have shown above that NK

o (vq) = Bj+1. This
gives the desired contradiction, and we conclude that K is an m-whirl. ��
Lemma 4.9 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such that A(G) satisfies the
identity t ≈ t ′. Then there is no path from a nontrivial strongly connected component
of G to another.

Proof Suppose, to the contrary, that there are distinct nontrivial strongly connected
components K and K ′ and a path P from a vertex v ∈ V (K ) to a vertex v′ ∈ V (K ′).
Assume that P is the shortest possible among all such paths. Then v is the only vertex
of P lying in K . Let w be the successor of v along this path.

By Lemma 4.8, K and K ′ are an m-whirl and an m′-whirl, respectively, for some
divisors m and m′ of Mt,t ′ . Hence v belongs to an m-cycle C in K and v′ belongs to
anm′-cycleC ′ in K ′. Now Lemma 4.5 provides an edge fromw to a vertex onC . This
means that w belongs to the strongly connected component K , a contradiction. ��
Definition 4.10 LetG = (V , E) be a digraph.Awalk inG is pleasant, if all its vertices
belong to trivial strongly connected components. Every pleasant walk is a path.

Lemma 4.11 Let t, t ′ ∈ Bn, t �= t ′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t ′. Then G has no pleasant path of length Ht,t ′ .

Proof Denote H := Ht,t ′ , L := Lt,t ′ . Suppose, to the contrary, that there exists a
pleasant path v0 → v1 → · · · → vH in G. By Lemma 4.4, there is an index r with
L + 1 ≤ r ≤ H such that (vr , vL+1) is an edge of G. Consequently, vL+1 belongs to
a nontrivial strongly connected component, a contradiction. ��

The necessary conditions established in the previous lemmas together are sufficient
for the satisfaction of some nontrivial bracketing identity. We prove this in the fol-
lowing theorem, which provides a complete characterization of (not) antiassociative
digraphs. Note that this does not constitute a necessary and sufficient condition for the
satisfaction of a given nontrivial bracketing identity. Finding such a condition will be
a topic of a forthcoming paper.

Theorem 4.12 Let G be a digraph. Then A(G) is not antiassociative if and only if the
following conditions hold.

(i) Every nontrivial strongly connected component of G is a whirl.
(ii) There is no path from a nontrivial strongly connected component of G to another.
(iii) There is a finite upper bound on the length of the pleasant paths in G.
(iv) There is a finite upper bound on the numbers m such that G contains an m-whirl.

Clearly, for finite graphs conditions (iii) and (iv) are fulfilled trivially.

Proof Assume that A(G) satisfies a nontrivial bracketing identity t ≈ t ′. By
Lemma 4.4, the pleasant paths in G have length less than Ht,t ′ . By Lemma 4.8, every
nontrivial strongly connected component of G is an m-whirl for some divisor m of
Mt,t ′ ; such numbers m are clearly bounded above by Mt,t ′ . By Lemma 4.9, there is
no path from a nontrivial strongly connected component of G to another.
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Assume now that conditions (i)–(iv) hold. We will construct a nontrivial bracketing
identity t ≈ t ′ that is satisfied by A(G). We will define the terms t and t ′ in terms of
the corresponding DFS trees T := G(t) and T ′ := G(t ′). Let P be an upper bound
on the lengths of pleasant paths in G, as provided by condition (iii), and let

M := lcm{m ∈ N+ | G contains an m-whirl},

which is a finite natural number by condition (iv), with the convention that lcm ∅ = 1.
Let n := 3P + M + 6, and let T consist of the paths x1 → · · · → x2P+M+4
and x2P+M+5 → · · · → x3P+M+6 and of the edge xP+2 → x2P+M+5. The tree
T ′ is constructed in a similar way, but we replace the edge xP+2 → x2P+M+5 by
xP+M+2 → x2P+M+5. If ϕ : Xn → V (G) is a homomorphism of T into G, then
there is an i ∈ [1, P + 2] such that ϕ(xi ) belongs to a nontrivial strongly connected
component, by the definition of P . Similarly, ϕ(x j ) and ϕ(xk) belong to a nontrivial
strongly connected component for some j ∈ [P + M + 3, 2P + M + 4] and for
some k ∈ [2P + M + 5, 3P + M + 6]. Condition (ii) implies that ϕ(xi ), ϕ(xi+1), …,
ϕ(x j ) are in the same nontrivial strongly connected component K , and this includes the
vertices ϕ(xP+2), ϕ(xP+3), …, ϕ(xP+M+3). Similarly, also the vertices ϕ(x2P+M+5),
…, ϕ(xk) belong to K . By the definition of M , the component K is an m-whirl for
some divisor m of M . Therefore the vertices ϕ(xP+2) and ϕ(xP+M+2) belong to the
same block B of K , and the vertices ϕ(xP+3), ϕ(xP+M+3) and ϕ(x2P+M+5) belong to
the successor block B ′ of B. This implies that ϕ(xP+M+2) → ϕ(x2P+M+5) is an edge,
which proves that ϕ is also a homomorphism of T ′ into G. An analogous argument
shows that if ϕ is a homomorphism of T ′ into G, then ϕ is also a homomorphism
of T into G. Now if we let t and t ′ be the bracketings corresponding to T and T ′,
respectively, then A(G) satisfies t ≈ t ′ by Proposition 2.1. ��

5 Some examples

In this section, we determine the associative spectrum of a few special directed graphs
that are not covered by the results of the previous sections (i.e., they are neither
associative nor antiassociative), such as directed paths and cycles, all graphs on two
vertices, etc. For the spectra of directed paths, we shall need the number of DFS trees
of bounded height, so first we recall some known facts about these numbers.

Let us denote the number of DFS trees of size n of height at most h by Dh(n).
Clearly Dh(n) = Cn−1 whenever n ≤ h + 1, because every n-vertex rooted directed
tree has height at most n − 1. The generating function

∑∞
n=0 Dh(n) · xn is a rational

function (see [8]), hence the sequence {Dh(n)}∞n=0 satisfies a linear recurrence relation:

Dh(n + 1) =
(
h

1

)
Dh(n) −

(
h − 1

2

)
Dh(n − 1) +

(
h − 2

3

)
Dh(n − 2) − . . .

=

⌊
h−1
2

⌋

∑

k=0

(−1)k
(
h − k

k + 1

)
Dh(n − k).
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Table 1 Number of DFS trees with bounded height

Recurrence Explicit formula OEIS entry

D2(n + 1) = 2D2(n) D2(n) = 2n−2 A000079

D3(n + 1) = 3D3(n) − D3(n − 1) D3(n) = F2n−3 A001519

D4(n + 1) = 4D4(n) − 3D4(n − 1) D4(n) = 3n−2+1
2 A007051

D5(n + 1) = 5D5(n) − 6D5(n − 1) + D5(n − 2) A080937

We list these recurrence relations for h = 2, 3, 4, 5 in Table 1 together with explicit
formulas for Dh(n) and the corresponding OEIS entries. (For h = 5 the characteristic
polynomial of the linear recurrence is x3 − 5x2 + 6x − 1, and its roots are not “nice”,
so we do not give an explicit formula for this case.) Note that we have every second
Fibonacci number for h = 3. (We use the indexing F1 = F2 = 1.) For more informa-
tion on the numbers Dh(n), see [8] (note that in [8] the height is defined as the number
of vertices of the longest path starting at the root, whereas in this paper the number of
edges is counted), and see also the OEIS entry A080934.

Proposition 5.1 Let G be a directed path of length �: v0 → v1 → · · · → v�. The
associative spectrum of the corresponding graph algebra is

sn(A(G)) =
{
D�(n) = Cn−1, if n ≤ � + 1,

D�(n) + 1, if n ≥ � + 2.

Proof If T is a DFS tree with h(T ) > �, then there is no homomorphism from T to
G; hence, all bracketings corresponding to DFS trees of height at least � + 1 belong
to the same equivalence class of σn(A(G)) by Proposition 2.1. (Note that such trees
exist only if n ≥ � + 2.) If h(T ) ≤ �, then there exist homomorphisms from T to
G, for instance the collapsing map ϕ of T on G defined by ϕ(xi ) = vdT (xi ). Now if
T ′ is another DFS tree of size n, then ϕ is a homomorphism of T ′ to G if and only
if dT ′(xi ) = dT (xi ) for all i ∈ [n], and this implies T ′ = T by Proposition 2.5. This
together with Proposition 2.1 shows that each bracketing whose DFS tree has height
at most � forms a singleton class in σn(A(G)). There are D�(n) such classes, and if
n ≥ � + 2, then we also have the class corresponding to trees of height at least � + 1.

��
Next we examine directed paths with some loops. By Theorem 4.12 (or just by

Lemma 4.9), if we have at least two loops on a path, then the graph is antiassociative,
so it suffices to consider the case of only one loop. We determine the spectrum of
directed paths with a loop on the last vertex; the other cases constitute a topic for
further research. (However, see Proposition 5.7 for the path of length 1 with a loop on
the first vertex.)

Lemma 5.2 Let ∼ be the equivalence relation on Bn that relates t and t ′ if and only
if T := G(t) and T ′ := G(t ′) coincide up to level h, i.e., Lt,t ′ ≥ h. Then |Bn/∼| =
Dh+1(n).
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Proof The equivalence relation ∼ on Bn induces naturally an equivalence relation on
the set of zag sequences of length n, and we will use the same symbol ∼ for this
relation. For any zag sequence d = (d1, . . . , dn), let β(d) = (d ′

1, . . . , d
′
n) be the

sequence obtained from d by replacing each element greater than h by h + 1, i.e.,
d ′
i = min(di , h + 1) for i = 1, . . . , n.2 It is straightforward to verify that β(d) is also
a zag sequence, and every zag sequence bounded above by h + 1 is in the image of
β (indeed, if d is bounded by h + 1, then β(d) = d). Morover, for all zag sequences
d1,d2 of size n, we have β(d1) = β(d2) if and only if d1 ∼ d2. Thus β is a surjection
from the set of all zag sequences of size n to the set of all zag sequences of size n
bounded by h + 1, and the kernel of β is the equivalence relation ∼. This implies that
the number of equivalence classes of∼ equals the cardinality of the image of β, which
is clearly Dh+1(n). ��
Proposition 5.3 Let G be a directed path of length � with a loop on the last vertex:
v0 → v1 → · · · → v� � . The associative spectrum of the corresponding graph
algebra is sn(A(G)) = D�(n).

Proof Homomorphisms of a DFS tree T into G are uniquely determined by the image
of x1: a map ϕ : Xn → V (G) with ϕ(x1) = vk is a homomorphism from T to
G if and only if ϕ(xi ) = vdT (xi )+k whenever dT (xi ) < � − k and ϕ(xi ) = v�

whenever dT (xi ) ≥ � − k. This implies, by Proposition 2.1, that A(G) satisfies a
bracketing identity t ≈ t ′ if and only if Lt,t ′ ≥ � − 1. Therefore, Lemma 5.2 gives
sn(A(G)) = D�−1+1(n) = D�(n). ��

For the spectrum of the directed cycle Cm , we need to count depth sequences
modulo m by Lemma 4.6 (or zag sequences modulo m, according to Proposition 2.6).
The resulting numbers are called modular Catalan numbers in [10], and they are
denoted by Cm,n . For us it will be most convenient to define these numbers simply as
Cm,n := sn+1(A(Cm)), and we refer the reader to [10] for plenty of information on
these numbers (tables of numerical values, references to OEIS entries, formulas and
various combinatorial interpretations). We give two combinatorial interpretations in
the next proposition. The second one is stated in [10], but the proof is left to the reader
there, so we include the proof here.

Proposition 5.4 The associative spectrum sn(A(Cm)) = Cm,n−1 counts the number of
zag sequences satisfying

di+1 − di ∈ {2 − m, 3 − m, . . . , 0, 1} for all i ∈ {1, . . . , n − 1}. (2)

Furthermore, sn(A(Cm)) = Cm,n−1 equals the number of Dyck paths of semilength
n − 1 that do not contain D · · · DU = DmU.

Proof According toProposition 2.6 andLemma4.6, the associative spectrumofA(Cm)

counts the number of zag sequences modulo m. We claim that each zag sequence of

2 The map β can be explained in terms of DFS trees as follows: If T is the DFS tree corresponding to the
zag sequence d, then β(d) corresponds to the DFS tree obtained from T by turning, for each vertex v at
depth h, all descendants of v into children of v.
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length n is congruent modulom to exactly one zag sequence (d1, . . . , dn) that satisfies
(2).

Since {2 − m, 3 − m, . . . , 0, 1} is a complete system of residues modulo m, it
is clear that if two zag sequences satisfying (2) are congruent modulo m, then they
are equal. (Note that since all zag sequences start with 0, the differences di+1 − di
uniquely determine the zag sequence.) To prove that every zag sequence is congruent
to a zag sequence that satisfies (2), let (d1, . . . , dn) be an arbitrary zag sequence, and
define the numbers 0 = d ′

1, . . . , d
′
n recursively by d ′

i+1 = d ′
i + (di+1 − di )∗, where

(di+1−di )∗ is the unique element of the set {2−m, 3−m, . . . , 0, 1} that is congruent
to di+1 − di modulo m. Obviously, we have d ′

i ≡ di (mod m) and d ′
i+1 − d ′

i ≤ 1; we
only need to prove that d ′

i ≥ 1 for i = 1, . . . , n. Since di+1 − di ≤ 1 by the definition
of a zag sequence, we have (di+1 − di )∗ ≥ di+1 − di , and then, an easy induction
argument proves that d ′

i ≥ di for i = 1, . . . , n. This shows that d ′
1, . . . , d

′
n is indeed

a zag sequence; hence, our claim is proved.
We have proved so far that sn(A(Cm)) equals the number of zag sequences that

satisfy (2). Note the difference between (1) and (2): an arbitrary zag sequence can
have arbitrarily large decreases, while a sequence satisfying (2) can drop at most by
m − 2.3 To prove the statement about Dyck paths, let us rewrite (2) in terms of the
corresponding DFS tree T :

dT (xi+1) ≥ dT (xi ) − (m − 2) for all i ∈ {1, . . . , n − 1}. (3)

If xi+1 is a child of xi , then this inequality holds trivially (in this case we have
dT (xi+1) = dT (xi ) + 1). Otherwise, xi+1 is a child of one of the ancestors xp of
xi ; thus, the depth-first search goes down to xp (which has been visited before) after
the first visit of xi , and then, from xp it takes one step up to reach xi+1 for the first
time. This can be seen in the Dyck path (see Remark 2.7) as a sequence of steps
D · · · DU = DkU from the point labelled by xi to the point labelled by xi+1. (For
example, in Fig. 3 we have the steps DDU from the label x4 to the label x5.) The
number of down-steps here is k = dT (xi ) − dT (xp) = dT (xi ) − dT (xi+1) + 1. Thus
(3) is equivalent to k ≤ m − 1; hence, (2) means that any sequence of consecutive
steps of the form D · · · DU in the Dyck path can have at most m − 1 down-steps. ��
Remark 5.5 Proposition 5.4 implies that sn(A(Cm)) is nondecreasing in m, hence
sn(A(Cm)) ≥ sn(A(C2)) = 2n−2 for all m ≥ 2 (see Lemma 3.1). The results of
[7] and [10] imply that the associative spectrum of A(Cm) coincides with that of the
operation x + εy on complex numbers, where ε is a primitive m-th root of unity. In
particular, for m = 2, we have that the spectrum of subtraction consists of powers of
2 (see 3.1 in [7]).

Now let us study digraphs on two vertices systematically. Up to isomorphism, there
are ten digraphs on twovertices; they are presented inTable 2. The corresponding graph
algebras are three-element groupoids, and the last column of the table indicates the
Siena Catalog numbers of their isomorphism class representatives as listed in [1], as
well as the ones of their opposite groupoids. Of these ten digraphs, only three are not

3 Good news for Sisyphus!
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Table 2 Digraphs on two vertices and their associative spectra

G sn(A(G)) result Siena Catalog

1 Thm. 3.3, Prop. 4.1 1

1 Thm. 3.3, Prop. 4.1 3

1 Thm. 3.3, Prop. 4.1 80

2 Prop. 5.1 7, 4

2n−2 Prop. 5.7 9, 55

1 Prop. 4.1 29, 6

Cn−1 Thm. 4.12 84, 82

2n−2 Thm. 3.3 33, 56

Cn−1 Thm. 3.3, Thm. 4.12 35, 58

1 Thm. 3.3, Prop. 4.1 107, 128

covered by Proposition 4.1 and Theorem 4.12 (i.e., they are neither associative nor
antiassociative): the undirected path of length one, the directed path of length one, and
the directed path of length one with a loop on the first vertex. The first two ones are
special cases of Theorem 3.3 and Proposition 5.1, respectively. We treat the third one
in Proposition 5.7, and for that we need to investigate an equivalence relation on DFS
trees determined by their leaves.

Let T and T ′ be DFS trees on n vertices. We say that T and T ′ are leaf-equivalent
if they have the same set of leaves.

Lemma 5.6 For n > 1, the number of leaf-equivalence classes of DFS trees on n
vertices is 2n−2.

Proof The set of leaves of a DFS tree on n vertices is a subset of Xn that does not
contain the root x1, but it always contains xn . On the other hand, it is easy to see that
for every subset S = {xi1 , xi2 , . . . , xir } ⊆ Xn with 1 < i1 < i2 < · · · < ir = n, there
exists a DFS tree whose leaves are precisely the elements of S. For example, we can
take the tree comprising just the paths from x1 to each xi j ∈ S that are disjoint except
for the initial vertex: x1 → x2 → · · · → xi1 and x1 → xi j−1+1 → · · · → xi j for
2 ≤ j ≤ r . The number of subsets of Xn containing xn but not containing x1 is 2n−2.

��
Proposition 5.7 The associative spectrum sn of the graph algebra corresponding to
the graph G given by V (G) = {v,w}, E(G) = {(v, v), (v,w)} is sn = 2n−2.

Proof For any DFS tree T of size n, a map ϕ : Xn → {v,w} is a homomorphism of T
into G if and only if all vertices that are mapped tow are leaves in T . Therefore,A(G)

satisfies a bracketing identity t ≈ t ′ if and only if the corresponding trees T := G(t)
and T ′ := G(t ′) are leaf-equivalent. Now Lemma 5.6 implies that sn = 2n−2. ��

Finally, we consider some graphs on three vertices.
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Proposition 5.8 The associative spectrum of the graph algebra corresponding to the
graph G given by V (G) = {u, v, w}, E(G) = {(u, v), (v, v), (u, w), (w,w)} is
sn(A(G)) = 2n−2.

Proof For any DFS tree T of size n, a map ϕ : Xn → {u, v, w} is a homomorphism
of T into G if and only if either ϕ(Xn) = v or ϕ(Xn) = w, or ϕ(x1) = u and all other
vertices are mapped to {v,w} in such a way, that if a vertex of depth one is mapped to
v (to w), then all of its descendants are also mapped to v (to w):

∀p ∈ Xn : dT (p) = 1 �⇒ ϕ(V (Tp)) = {ϕ(p)} ∈ {{v}, {w}}.

Thus the set of all homomorphisms of T intoG is determined by the partition {V (Tp) |
p ∈ Xn and dT (p) = 1} of the set {x2, . . . , xn}. This partition is in turn determined
uniquely by the set of depth-one vertices. Indeed, if the depth-one vertices of T are
xi1 , . . . , xis with 2 = i1 < · · · < is ≤ n, then V (Txik ) = X[ik ,ik+1−1] for k =
1, . . . , s−1 and V (Txis ) = X[is ,n]. By Proposition 2.1, this implies thatA(G) satisfies
a bracketing identity t ≈ t ′ if and only if Lt,t ′ ≥ 1. Therefore, by Lemma 5.2 we have
sn(A(G)) = D2(n) = 2n−2. ��
Proposition 5.9 The associative spectrum of the graph algebra corresponding to the
graph G given by V (G) = {u, v, w}, E(G) = {(u, v), (v, v), (v,w), (w, v), (w,w)}
is sn(A(G)) = 2n−2.

Proof For any DFS tree T of size n, a map ϕ : Xn → {u, v, w} is a homomorphism
of T into G if and only if either ϕ(Xn) ⊆ {v,w}, or ϕ(x1) = u, all depth-one vertices
are mapped to v, and the other vertices are mapped to {v,w} in an arbitrary way.
Thus the set of all homomorphisms of T into G is determined uniquely by the set of
depth-one vertices. Therefore, just as in the previous proposition, we can conclude
sn(A(G)) = D2(n) = 2n−2 with the help of Lemma 5.2. ��
Remark 5.10 The graph algebra of the directed path of length one with loops on both
vertices is isomorphic to the three-element groupoid with Siena Catalog number 84
and antiisomorphic to the one with number 82 (see [1]). These groupoids were shown
in [7, statements 2.4, 5.7] to be antiassociative; this result also follows immediately
from our Lemma 4.9.
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