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Introduction: Land use changes have seriously fragmented grasslands leading to 
extensive biodiversity loss worldwide. Habitat fragmentation affects grasslands 
at both local and landscape scales, adversely affecting the probability of species 
colonisation and extinction. In our study, we addressed the effects of fragment 
size and landscape-scale habitat connectivity on the vegetation composition in 
two grassland types, i.e., loess steppe fragments (situated on kurgans) and sand 
steppe fragments of the Pannonian forest steppe region.

Methods: We collected frequency data on vascular plant species in 12 1 m × 1 m 
quadrats in altogether 60 fragments along a connectivity gradient in sand steppes 
and loess steppe fragments. We analysed whether habitat specialists, generalists 
and exotic species were affected by the level of fragmentation based on species 
richness and traits related to local persistence (life span, clonality and soil seed 
bank type) and dispersal (dispersal strategy and seed mass) in the two grassland 
types using linear mixed-effects models.

Results: Based on our results, both fragment size and landscape-scale connectivity 
were important in shaping the trait composition of the vegetation. We observed 
more fragmentation effects in generalist than in specialist species. We found that 
isolation resulted in fewer specialist species with autochorous dispersal strategy 
in loess steppe fragments, but, at the same time, also fewer exotics. Isolated 
loess steppe fragments harboured fewer generalist species with persistent seed 
bank. Large loess steppe fragments supported more wind-dispersed species than 
smaller ones. In isolated sand steppe fragments, generalists were more frequent 
with endozoochorous dispersal strategy and without clonal propagation. Life span, 
clonal propagation and seed mass did not depend on the level of fragmentation 
in the two grassland types.

Discussion: Our results imply that both sand and loess steppe fragments can rely 
to some extent on the persistence of clonal perennial specialist and generalist 
species in small and isolated patches to mitigate fragmentation effects. In 
conclusion, these processes should be  supported by the preservation of large 
fragments, increase of habitat connectivity combined with targeted management 
of exotic species.
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1. Introduction

Land use change is one of the primary drivers of biodiversity loss 
worldwide, causing degradation and reduced habitat availability 
(Isbell et al., 2022). Temperate grasslands represent exceptionally high 
conservation values as they are among the most species-rich 
communities when considering small (<50 m2) spatial scales (Wilson 
et al., 2012). However, they have been increasingly fragmented due to 
ploughing and afforestation (Habel et al., 2013). Despite the drastic 
level of habitat loss, grasslands still contribute significantly to global 
and local biodiversity by harbouring many endangered animal and 
plant species confined to these habitats (Squires and Feng, 2018). 
Species preservation is essential to provide an insurance biodiversity 
capacity to reduce the risk caused by the temporal variability of 
ecosystem processes under current global changes (Loreau 
et al., 2001).

Habitat fragmentation may affect species at both local and larger 
spatial scales (Auffret et  al., 2018). At the landscape scale, the 
compositional and configurational heterogeneity of the surrounding 
habitats shape the species pool by affecting diaspore flow (Gaujour 
et al., 2012). At the local scale, species pool is filtered primarily by 
altered abiotic conditions and species interactions (Maurer et al., 
2003). Increasing fragmentation leads to an increased distance 
among habitat patches as it can considerably limit dispersal 
processes (Taylor et al., 1993) and reduce gene flow (Heinken and 
Weber, 2013). At the local scale, fragmentation results in reduced 
habitat patch sizes (Uroy et al., 2019) increasing the extinction risk 
of species populations due to reduced habitat quality and stronger 
edge effects (Soons et al., 2005). Unpredictable catastrophic events 
and demographic stochasticity can also lead to population 
extinctions more frequently in small patches (Turner, 1996). As 
isolation and fragment size reduction can amplify each other’s effect 
(Didham et  al., 2012), we  can gain deeper insights with their 
joint assessment.

Functional plant traits are effective tools for investigating 
fragmentation effects offering more general and mechanistic insights 
into ecosystem processes and higher predictability than taxonomic 
approaches (McGill et  al., 2006). Colonisation and extinction 
processes cause direct changes in community composition in the 
course of fragmentation (Jackson and Sax, 2010). These processes are 
driven by species-specific functional traits linked to population 
biological processes (Janečková et al., 2017). We might expect that 
species with efficient propagule dispersal or local persistence traits are 
more successful and well-preserved in habitat fragments than species 
without these traits (Marini et al., 2012).

Dispersal potential can be best captured by assessing the main 
dispersal modes and propagule characteristics of the species, such as 
seed mass, shape and size (Ottaviani et al., 2020). The long-distance 
dispersal ability is critically important for species survival in 
fragmented landscapes (Bacles et  al., 2006). Species dispersing by 
wind or animals efficiently are assumed to be able to colonise more 
isolated fragments (Vittoz and Engler, 2007). Species with small seed 
mass have higher dispersal potential by wind because light seeds have 
lower terminal velocity (Lindborg et al., 2012), whereas heavy seeds 
with appendices may disperse by animals more effectively 
(Amartuvshin et al., 2019). Plant species with high dispersal potential 
are expected to be less vulnerable to fragmentation (Eriksson, 1996), 
although some studies detected similar (Hemrová and Münzbergová, 

2015) or even higher sensitivity to fragmentation of long-distance 
than short-distance dispersers (Deák et al., 2018).

Long life span, clonal reproduction and persistent soil seed bank 
are the main traits that are likely to contribute to local persistence 
(Maurer et  al., 2003). Long-lived species are assumed to be  less 
susceptible to fragmentation because of their smaller fluctuations in 
abundance (Heinken and Weber, 2013). Species capable of clonal 
propagation with a potentially unlimited life span are not dependent 
on sexual reproduction for population survival; therefore, they are 
expected to be less impacted by isolation (Heinken and Weber, 2013). 
However, environmental suppression of sexual propagation can also 
lead to monoclonal populations lowering long-term population 
viability (Honnay and Bossuyt, 2005). The persistent seed bank in the 
soil also enables plant populations to survive disturbances and tolerate 
environmental fluctuations, thus prolonging species persistence in the 
community (Eriksson, 1996). Based on the contradictory results of the 
different case studies, fragmentation effects on plant traits seem to 
be context and habitat specific, highlighting the need to assess them 
in various ecosystems (Heinken and Weber, 2013).

Inspecting only total species richness patterns can hide important 
aspects of underlying mechanisms of responses to fragmentation 
(Lindborg et  al., 2012). Depending on habitat specialisation, 
fragmentation effects vary on plant species (Yan et al., 2022). Specialist 
species have narrow environmental tolerances and thus are limited to 
specific habitat types (Pandit et al., 2009), and are more susceptible to 
disturbances than generalist species (Vázquez and Simberloff, 2002). 
Habitat generalists are important grassland constituents contributing 
to the total richness and abundance of the vegetation but do not 
indicate directly good or bad ecological status (Deák et al., 2020). 
Generalists can persist under a wide range of abiotic conditions; 
therefore, they are assumed to be less affected by fragmentation (Yan 
et  al., 2022). Non-indigenous species may behave similarly to 
generalists but have exceptionally high practical importance as drivers 
of unfavourable ecosystem changes and degradation indicators 
(Didham et al., 2005). In this paper, we used species groups based on 
habitat specialisation and origin to understand how the functional 
composition of the vegetation changes due to fragmentation.

The forest-steppe fragments of the Pannonic biogeographical 
region provide an ideal setting to assess the effects of fragmentation. 
The region is the westernmost part of the Eurasian forest-steppe 
biome, a distinct vegetation zone between closed forests and steppes 
in subhumid-semi arid climate zones (Erdős et  al., 2018a,b). The 
vegetation is of a mosaic nature where both the forest and steppe are 
stable vegetation components (Fekete et  al., 2002). Two substrate 
types, sand and loess, are widely distributed in the region, and both 
harbour valuable habitats listed as Natura 2000 priority habitat types 
(Pannonic loess steppic grasslands and Pannonic sand steppes) in 
Annex I of EU’s Habitat Directive (European Commission, 2013). 
Loess and sand steppes represent two extremes in terms of abiotic 
conditions and productivity (Molnár et al., 2012). Sandy substrates 
create highly stressed abiotic conditions, whereas water and nutrient 
cycling is more favourable for plant life on loess (Fekete et al., 2002). 
Loess and sand steppes have been exposed to extensive anthropogenic 
habitat loss and fragmentation (Gallé et al., 2022). Because of their 
clearly defined borders and unsuitable matrix, they can be regarded as 
terrestrial habitat islands (Deák et  al., 2016), serving as excellent 
model systems to study the effects of fragmentation (Ottaviani 
et al., 2020).
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In our study, we tested if species groups with different origin and 
habitat specialisation (i.e., specialists, generalists and exotics) show 
general response patterns against fragmentation in two contrasting 
steppe types of the Pannonian forest steppe region. We focused on the 
vegetation of open sand steppe and loess steppe fragments on forest 
steppes and kurgans (ancient burial mounds) in the Great Hungarian 
Plain. We  assessed the effects of fragment size (large vs. small 
fragments) and landscape-scale connectivity (Hanski’s connectivity 
index) on the richness and frequency of species with traits related to 
local persistence (life span, clonal propagation and soil seed bank 
type) and propagule dispersal (dispersal strategy and seed mass). 
We expected that (i) specialist plant species would experience more 
significant effects of connectivity and fragment size than generalists 
or exotics because they are more dependent on the fragmented steppe 
habitats; (ii) the importance of connectivity would be  higher for 
dispersal-limited species and (iii) fragment size would affect local 
persistence trait distribution primarily.

2. Materials and methods

2.1. Study area

Our study region lies in the Southern part of the Great Hungarian 
Plain (Figure 1). This is a lowland region with a continental climate 
characterised by mean annual temperature of 11°C and mean annual 
precipitation of 550 mm. The semi-natural vegetation of the Pannonic 
forest-steppe zone can be characterised by a mosaic of dry and open 
oak (Quercus spp.), and poplar (Populus spp.) forests and Festuca and 
Stipa species dominated steppes (Molnár et al., 2012). Here we focused 
on two major grassland components of the vegetation, i.e., open sand 
steppe and loess steppe.

Open sand steppes are endemic communities (Festucetum 
vaginatae) to the Pannonic biogeographical region. They are semi-
desert-like perennial grasslands occurring in inland sand dune ridges. 
The average cover of vascular plants is relatively sparse, ranging 
between 40 and 70% (Erdős et al., 2018a,b). The rest of the surface is 
usually covered by cryptogams (lichens and mosses) and bare ground. 
Tussock-forming Festuca vaginata and Stipa borysthenica dominate 

the vegetation, with many rare and threatened forbs confined to this 
vegetation type (Csecserits et  al., 2011). The soil is wind-blown 
arenosol with extremely low (below 3%) humus content and low 
water-retention capacity (Csecserits et al., 2011). Because of the low 
productivity of the soil, open sand steppes were mostly grazed by 
sheep or remained unmanaged until the 19th century (Molnár et al., 
2012). In the 1920s, intensive lowland afforestation programmes 
started, and by the end of the 20th century, most of the open sand 
grasslands were converted to non-native tree plantations in the region 
(Biró et al., 2008).

Loess steppes (Salvio-Festucetum rupicolae) are highly productive 
perennial vegetation types developed on chernozem soil (Fekete et al., 
2002). The vegetation is diverse, dominated by several perennial 
grasses (e.g., Festuca rupicola, Brachypodium pinnatum and Stipa spp.) 
and are rich in threatened forbs (Deák et al., 2016). Because of their 
favourable edaphic conditions and flat topography, loess steppe 
transformation most probably started already in the Neolithic, and 
was accelerated from the 18th century due to agricultural expansion 
and intensification (Deák et al., 2021a,b). It resulted in the loss of 90% 
of their original area by the end of the 20th century (Deák et al., 2016). 
In this study, we  focused on kurgans, i.e., ancient burial mounds 
created in the IV-I millennia BC (Deák et al., 2016). Kurgans usually 
take on a hemispherical shape with a height ranging between 0.5 and 
15 m, and a diameter between 10 and 110 m (Dembicz et al., 2021). As 
most kurgans are small and isolated in the region, they are usually left 
unmanaged resulting in the survival of semi-natural vegetation but 
also unfavourable spontaneous shrub encroachment and litter 
accumulation (Deák et al., 2016).

The sand and loess steppe fragments of our study could 
be characterised by contrasting surrounding landscape (Figure 1). The 
sand fragments were embedded into the matrix of small-scale 
plantation forests planted with non-native Pinus sylvestris, P. nigra and 
Robinia pseudoacacia trees, and some native Populus canescens (Biró 
et al., 2008). These were even-aged plantation forests created after 
ploughing and harvested with clear-cutting (Csecserits et al., 2016). 
The loess fragments were surrounded by intensively used large-scale 
agricultural fields, with some farmhouses and pastures. The region’s 
main crops are winter cereals, maize, sunflower and alfalfa (Gallé 
et al., 2022).

FIGURE 1

(A) Map of Central Europe showing Hungary, (B) map of the Great Hungarian Plain in Southeast Hungary with the study sites and (C) a loess fragment 
study site with the 1,000 m-buffer that was used to estimate Hanski’s connectivity. Note that for sand steppe fragments a 500 m-buffer was used.
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2.2. Study sites

We selected 15 small and 15 large fragments for each steppe type 
along a connectivity gradient (Figure 1). We considered fragment size 
as a patch-scale characteristic and connectivity as a landscape-scale 
predictor. We  visited 160 fragments around three (Fischerbócsa, 
Kéleshalom and Pirtó) and four villages (Dévaványa, Kunágota, Makó 
and Szentes) for sand and loess steppes, respectively. The available 
fragment sizes differed in the two types; therefore, we applied differing 
size ranges for the selection. For sand steppes, the size of the small and 
large fragments ranged between 0.16 and 0.48 ha, and 0.93–6.88 ha, 
respectively. In the case of loess steppes, the size of the small and large 
fragments varied between 0.01–0.10 ha, and 0.20–0.44 ha, respectively.

For measuring connectivity, we calculated Hanski’s connectivity 
index (Hanski and Ovaskainen, 2000) for all potential fragments:

 
CIi d Aij jj i= −( )≠∑ exp α β

where dij stands for the shortest edge-to-edge distance (in km) 
between fragment i and j within the search radius, Aj is the size of 
habitat patch j (in m2), α is a constant scaling the species-specific 
dispersal ability over distance dij and β is an emigration parameter 
scaled over the size of patch j as a source of migration (Moilanen and 
Hanski, 2001). Following Rösch et al. (2013), both parameters were 
set to 0.5 as we applied the index to entire communities. The grain size 
of the landscape matrix differed in the two steppe types, with a small-
scale forest plantation matrix in the first, and a large-scale agricultural 
matrix in the latter case (Kuli-Révész et  al., 2021). Therefore, 
we applied different buffer radii for the connectivity index calculations 
(500 for sand and 1,000 m for loess steppes) based on the ecosystem 
base map of Hungary (Tanács et  al., 2021) and Google aerial 
photographs by using Quantum GIS 3.6.1 (QGIS Development Team, 
2019). We considered all semi-natural vegetation patches (open sand 
grasslands, loess steppe, other forest-steppe fragments and alkali 
grasslands) as sources of immigration. The connectivity values ranged 
between 24 and 811 for sand steppe (mean = 394, SD = 206), and from 
0 to 2,637 for loess steppe fragments (mean = 689, SD = 748).

2.3. Vegetation sampling

We sampled the vegetation in 12 1 × 1 m quadrats in each 
fragment. Six quadrats were placed 1–2 m from fragment edges, and 
six were positioned in the centre to cover habitat heterogeneity. They 
were located at least 5 m from each other to avoid spatial 
autocorrelation. We  recorded the presence of each vascular plant 
species in the quadrats in May–June 2019 and 2020. We summed up 
the occurrences of each plant species for all quadrats in the two 
sampling periods for each fragment. Thus, the frequency of a species 
(used as a proxy for abundance) could range between zero and 24 in 
a fragment.

We divided the plant species according to their habitat 
specialisation into the following categories: (i) steppe specialists with 
a regional preference for open sand or loess steppes; (ii) generalist 
species including all other native species not confined exclusively to 
sand or loess steppe habitats and (iii) exotic species. Species were 
assigned to groups based on field guides and expert knowledge 

(Király, 2009; Gallé et al., 2022). We assessed five traits related to local 
persistence and dispersal potential to reveal whether functional traits 
of the three species groups respond differently to local- and landscape-
scale fragmentation effects in the two grassland types. We chose traits 
that are rather stable within species because we collected trait values 
from databases that were not observed in the field.

For local persistence, these were the following: life span, clonal 
propagation and soil seed bank longevity. Life span was categorised 
into two levels, short-lived species, including annuals and biennials, 
and long-lived species. The life span of some species could be both 
short and long. For these, we used the most common life span category 
according to Király (2009). Clonality was used as a categorical trait 
with two values (clonal and non-clonal). We differentiated between 
transient and persistent soil seed bank types, where transient stands 
for longevity shorter than 1 year and persistent longer than a year, 
including short- and long-term persistent seed banking. In cases 
where more than one value was available, we assigned the longer term 
value for the species. We used seed dispersal strategies as a functional 
trait related to diaspore dispersal potential, according to Sádlo et al. 
(2018). They described dispersal mode combinations with different 
relative importance corresponding to similar diaspore morphological 
features and ecological demands of the species. They characterised 
nine strategies based on dispersal mode combinations. In our 
fragments, four strategy types occurred [dispersal strategy names 
follow the nomenclature suggested by Sádlo et al. (2018)]: (i) Allium 
type was the most common strategy with mainly autochory and to a 
small degree epi-, endozoochory and anemochory; (ii) Bidens type is 
dominated by autochory and epizoochory, and to a lesser extent 
endozoochory; (iii) in Cornus type, species disperse predominantly 
with autochory and endozoochory and (iv) Epilobium type can 
be  characterised by anemochory beside autochory, and rarely 
zoochory. Seed mass has an important role in both local persistence 
and dispersal potential, and we  considered it in relation to both 
processes. Seed mass was measured as thousand seed weight. Trait 
values were collected from various databases such as PADAPT 
(Sonkoly et al., 2022), Pladias (Wild et al., 2019), LEDA (Kleyer et al., 
2008), CLO-PLA (Klimešová and de Bello, 2009), TRY (Kattge et al., 
2020) and regional seed mass records (Csontos et al., 2003, 2007; 
Török et al., 2013, 2016), and the field guide of the Hungarian flora 
(Király, 2009). For details of species list and trait values see 
Supplementary Table 1.

2.4. Statistical analyses

We analysed the effects of fragment size and connectivity and 
their interaction on the richness of the three species groups (i.e., 
specialists, generalists and exotics) and the richness and frequency of 
plant species with different trait categories. Dispersal strategy 
categories with less than three species were not tested statistically (i.e., 
Bidens type and Cornus type specialists and exotics except for Cornus 
type exotics in loess steppe fragments). For each fragment, 
we calculated the number and frequency of species assigned to each 
species group and trait category. We also quantified the fragment-level 
community-weighted mean for the seed mass weighted by species 
frequency. Statistical analyses were performed using R version 4.1.1 
(R Core Team, 2022). We  implemented the analyses for the two 
grassland types separately. We  modelled the relationships with 
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generalised linear mixed-effects models (GLMMs) using Poisson error 
terms and log link function for the categorical traits (Bates et al., 2021) 
and linear mixed-effects models for the continuous variable, 
community-weighted mean of seed mass after log transformation 
(Pinheiro et  al., 2017). Hanski’s connectivity index values were 
log-transformed and ranged between 0 and 1. We treated fragment 
size as a categorical fixed variable (small vs. large), the ranged 
connectivity index as a continuous explanatory variable and location 
(village) served as a random factor in the models. The models were 
visually inspected for violations of homoscedasticity by checking 
residuals against fitted values. We tested the models for overdispersion 
and zero inflation using the DHARMa package (Hartig, 2022). When 
we detected overdispersion, we recalculated the models with negative 
binomial error term. In the case of significant zero-inflation, 
we refitted the model as a zero-inflated Poisson or negative binomial 
model using fragment size as the explanatory variable in the zero part 
of the model, while fragment size and connectivity and their 
interaction were used in the non-zero part of the models using the 
glmmTMB package (Brooks et al., 2017). We calculated the conditional 
coefficient of determination (i.e., variance explained by the entire 
model including both the fixed and random effects) for the models via 
the delta method with the MuMIn package (Barton, 2022). Data were 
visualised using the ggplot2 package (Wickham, 2011).

3. Results

We recorded a total of 178 species in the sand steppe fragments 
and 270 species in the loess grassland fragments during the 2 years of 
sampling (Table  1). Sandy fragments harboured 67 specialists, 97 
generalists and 14 exotic species, while loess grassland fragments were 
more diverse, with altogether 43 specialist, 193 generalist and 34 
exotic species. The mean richness was 22.3 (SD = 3.9) for specialist, 
32.7 (SD = 7.9) for generalist and 4.4 (SD = 1.7) for exotic species in the 
sand steppe fragments, and 4.4 (SD = 2.9), 54.3 (SD = 8.0) and 5.5 
(SD = 2.7) in the loess steppe fragments, respectively. We found that 
the specialist species pool was dominated by perennial and clonal 
species as opposed to generalist species in both grassland types 
(Table 1). In both grassland types, species with a persistent seed bank 
and autochory-dominated Allium-type dispersal strategy dominated 
the vegetation in every species group. The average seed mass was the 
lowest in the case of specialists and the highest in exotics in both 
grassland types.

In the sand steppe fragments, we  found no effect of either 
fragment size or connectivity on the richness of the three species 
groups (Supplementary Table 2). In contrast, the species richness of 
specialist and exotic species was higher with 69 and 31% in the most 
connected fragments compared to the most isolated ones in loess 
steppe fragments regardless of their size (Figures 2A,B).

We did not find any significant effect of connectivity and fragment 
size on the richness or the frequency of short-lived, long-lived or 
clonal species in any species groups of the two steppe types 
(Supplementary Tables 3, 4). In contrast, isolated sand steppe 
fragments had a higher richness of non-clonal generalists than 
connected patches (Figure 3A). In the case of loess steppe specialists, 
we  found that non-clonal species were more abundant in smaller 
fragments than in the larger ones (Figure 3B). Exotic species did not 
show any significant pattern in clonality along connectivity gradient 

or fragment size in either of the grassland types 
(Supplementary Table  4). We  did not observe any effects of 
connectivity or fragment size on the richness or frequency of 
specialists with different soil seed bank persistence in either fragment 
type (Supplementary Table 5). We  found that both generalist and 
exotic species forming persistent seed bank were more frequent in 
well-connected loess fragments (Figures 3C,D). This difference was 
not observed in the case of sand steppe fragments. Species with 
transient seed bank did not show any trend along the connectivity 
gradient or fragment size in either species groups or grassland types 
(Supplementary Table 5).

Species with Allium and Epilobium dispersal strategies (i.e., 
autochory and anemochory) dominated both grasslands with 
altogether 71% and 17%, and 77% and 11% in sand and loess 
fragments, respectively. Autochorous Allium-type species did not 
respond to either connectivity or fragment size in our study, except for 
loess fragments, where increased connectivity resulted in a higher 
richness of Allium-type specialists (Supplementary Table 6; Figure 4A). 
Isolation resulted in a higher frequency of generalist species with 
autochory- and endozoochory-dominated Cornus-type dispersal in 
smaller compared to larger fragments in the sand steppes (Figure 4B). 
We  observed more species and higher frequency of generalists 
Epilobium dispersal strategy characterised by anemochory and 
autochory in large than in small loess steppe fragments (Figures 4C,D). 
We showed that Cornus-type exotic species were more abundant in 
terms of both richness and frequency in small compared to large 
isolated fragments (Figures  4E,F). Bidens dispersal type with 
autochory and epizoochory dispersal modes was not different based 
on fragment size and connectivity in either species group and 
fragment type (Supplementary Table 6). Community-weighted means 
of seed mass did not have any trend along the connectivity gradient 
or with increasing fragment size for either species group in the two 
grassland types (Supplementary Table 7).

4. Discussion

Our results highlighted that both local and landscape-scale factors 
were important in shaping the vegetation composition of Pannonic 
steppe fragments. We  observed more fragmentation effects in 
generalists than in specialist species. We found that isolation resulted 
in fewer specialist species with autochorous (Allium type) dispersal in 
loess steppe fragments. Isolated loess steppe fragments also harboured 
fewer generalist species with persistent seed bank but, at the same 
time, also fewer exotics. Large loess steppe fragments supported more 
species with Epilobium-type dispersal strategy than smaller ones. 
We did not find any systematic change along the two fragmentation 
factors in the sand fragments, except for the high frequency of 
generalists without clonal propagation and Cornus-type 
(endozoochory- and autochory-dominated) dispersal strategy in 
small and isolated fragments.

4.1. Fragmentation effects on species 
groups

In sand steppes, we did not observe any fragmentation effects 
on the trait composition of the specialist flora. This was contrary 
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to our expectations, as several studies showed that habitat 
specialists are sensitive to fragmentation (e.g., Auffret et al., 2018; 
Yan et  al., 2022). The absence of an effect of sand steppe 
fragmentation on the distribution of specialists may refer to their 
better dispersal abilities (Hemrová and Münzbergová, 2015), long-
term species persistence (Tilman et al., 1994) or their combination. 
This is in line with our results, as specialist species of the sand 
steppes have a high potential for local persistence because the 
majority of the species are long-lived clonal perennials and have 
lighter seeds helping dispersal among remnant patches (Bakker 
et al., 1996).

We observed more fragmentation effects in generalists and exotic 
species than in specialists. Rösch et al. (2013) found that community 
composition changes were primarily driven by the responses of 
generalist species during the fragmentation of dry calcareous 
grasslands as they compose the dominant part of the vegetation. 
Pandit et al. (2009) also suggested that generalists should respond 
strongly to patch configuration and connectivity gradients. In line 
with them, we observed most habitat fragmentation effects in the case 
of the generalist species group. We found that clonality and dispersal 
strategies of generalist species depended on fragment size, connectivity 
or both factors in the two grassland types, and soil seed bank 
persistence in loess fragments. Reduced patch size results in a high 
edge-core area ratio that can be exploited by generalists as opposed to 
specialists (Brückmann et al., 2010). In such case, habitat generalists 
offer insurance biodiversity, especially if the habitat is disturbed (Deák 
et al., 2020). However, the increasing dominance of generalist species 
following fragmentation relative to specialists can lead to biotic 
homogenisation and be  considered an unfavourable degradation 
process (Öckinger et al., 2010).

We detected a two-fold frequency increase of exotic species in 
loess steppe fragments along the increasing connectivity gradient, but 
we found no such effect in sand fragments. This result suggests that 
exotic species in the sand steppes are mostly good dispersing invasives 
that are not hindered by fragmentation (Csecserits et al., 2016), while 
the exotics of loess remnants are dispersal limited to some extent. 
Moreover, forest plantations around sand fragments also facilitate the 
invasion of alien plants (Szitár et al., 2014). We found differential 
responses of the species groups, suggesting that focusing on only one 
group (e.g., specialists) may be  insufficient to evaluate vegetation 
responses to habitat fragmentation.

4.2. Fragmentation effects on dispersal 
traits

Local species persistence and dispersal traits have been shown 
to influence plant species sensitivity to habitat fragmentation by 
several studies (e.g., Lindborg, 2007; Marini et  al., 2012). Plant 
species with high dispersal potential are expected to 
be disproportionally overrepresented in isolated patches (Dupré and 
Ehrlén, 2002). We found that not only isolation but also fragment 
size affected dispersal strategies according to Sádlo et al. (2018). 
Endozoochorous dispersal (Cornus type) strategy was more frequent 
in small and isolated sites among sand generalists and exotics in 
loess fragments. Most of these species were shrubs and trees with 
efficient bird dispersal (e.g., Celtis occidentalis, Elaeagnus angustifolia, 
and Morus alba). Extensive shrub encroachment is considered 
unfavourable in this region as they take up the space from the 
herbaceous vegetation (Ónodi et  al., 2021), and if they are 

TABLE 1 Number of species occurred in each species groups, percentage of species assigned to each category of local persistence and dispersal 
potential traits, and average thousand seed weight of the species for each species groups found in sand and loess steppe fragments.

Sand steppe fragments Loess steppe fragments

Specialist Generalist Exotic Specialist Generalist Exotic

Number of species 67 97 14 43 193 34

Life span

  Long-lived (%) 91.0 42.3 64.3 86.0 36.8 38.2

  Short-lived (%) 9.0 57.7 35.7 14.0 63.2 61.8

Clonality

  Clonal (%) 61.2 36.1 50.0 51.2 31.1 29.4

  Non-clonal (%) 38.8 63.9 50.0 48.8 68.9 70.6

Soil seed bank persistence

  Persistent (%) 50.7 62.9 50.0 55.8 71.5 70.6

  Transient (%) 17.9 25.8 21.4 18.6 11.4 11.8

  No data (%) 31.3 11.3 28.6 25.6 17.1 17.6

Dispersal strategy

  Allium type (%) 80.6 68.0 42.9 90.7 76.2 61.8

  Bidens type (%) 0 7.2 7.1 0 8.3 5.9

  Cornus type (%) 1.5 10.3 14.3 0 4.7 20.6

  Epilobium type (%) 17.9 14.4 35.7 9.3 10.9 11.8

Mean seed mass 

(mg/1000 seeds + SD)

2.1 (3.9) 6.1 (22.8) 30.8 (58.5) 1.6 (1.7) 5.0 (16.2) 31.2(68.4)
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non-native, transformative vegetation changes and biotic 
homogenisation can occur (Didham et  al., 2005). Generalists 
dispersing predominantly with anemochory and autochory 
(Epilobium dispersal strategy type) in loess fragments were more 
species rich and frequent in large fragments showing that successful 
arrival and establishment by wind is proportional to habitat area; 
therefore, this strategy is less efficient in small remnants. We did not 
find any fragmentation impacts for the epizoochory- and autochory-
dominated Bidens-type dispersal strategy, maybe because of the 
general absence of grazing in both ecosystem types, similar to the 
results of Soons et  al. (2005). In fragmented landscapes, many 
habitat remnants can remain unoccupied by bad disperser species 
(Lindborg et al., 2012). In line with this, we found that isolation also 
negatively affected loess specialist species with autochorous Allium-
type dispersal. This has important nature conservation implications 
as these species have the least efficient autochorous dispersal (Vittoz 
and Engler, 2007). Therefore, they are particularly sensitive to 
fragmentation and may need active interventions to mitigate 
dispersal limitation or species reintroduction.

Propagule size is an important functional trait for both species 
persistence and dispersal, as small diaspores are expected to have 
higher colonisation potential (Marini et al., 2012), whereas longer 
longevity but also higher local colonisation rates are predicted for 
larger ones (Fröborg and Eriksson, 1997). However, similar to our 

results, seed mass was not always found to be correlated with remnant 
area or isolation (Dupré and Ehrlén, 2002; Lindborg, 2007).

4.3. Fragmentation effects on local 
persistence traits

Species longevity, the presence of persistent seed bank and clonal 
reproduction represent a potentially important form of temporal 
functional connectivity extending the life span of remnant populations 
and rescuing those that have gone locally extinct (Auffret et al., 2015). 
We did not find any fragmentation impact on the longevity of plant 
species in our study. This was opposing to our expectations, as several 
studies proved that perennial species are less sensitive to habitat loss 
because of their long generation time (e.g., Heinken and Weber, 2013), 
whereas short-lived species are more susceptible to fragmentation, 
especially fragment size, because of their larger natural fluctuations in 
abundance (Marini et al., 2012).

Fragmentation is expected to affect clonally reproducing species 
less than non-clonal species (Hemrová and Münzbergová, 2015). 
According to that, we did not observe any response of species with the 
ability of clonal propagation against fragmentation. However, 
we found that non-clonal species were more abundant in isolated and 
small patches in both sand and loess fragments. Likewise, Lindborg 
(2007) observed that long-lived species with clonal ability were 
unrelated to contemporary grassland connectivity and area whereas 
non-clonal species were more abundant in isolated fragments. 
However, they also found that small and isolated fragments in the 
50 years’ historical landscape had a high share of species with clonal 
propagation, inferring that an extinction debt existed in clonal plants 
and may exist in our case, too (Tilman et al., 1994).

The persistent seed bank can create a temporal rescue effect for 
communities (Honnay et al., 2008). We did not find any association of 
fragmentation with seed bank persistence in sand fragments. Lindborg 
(2007) suggested that in the long term, connectivity loss and area 
reduction would create a plant community dominated by long-lived 
and clonal plants and plants with a persistent seed bank. In the case of 
loess fragments, this potential seems to be depleted as we found a 
lower frequency of generalists with persistent seed bank in 
isolated sites.

4.4. Fragmentation effects on the two 
grassland types

Overall, the vegetation of loess steppe fragments seemed to 
be  more affected by fragmentation than that of the sand steppe 
fragments, although we did not make a direct comparison of the two 
grassland types. In sand steppe fragments, the taxonomic richness of 
the species groups was similar in fragments with different sizes and 
levels of connectivity. In contrast, specialist and exotic species 
occurring in loess fragments were more species rich in connected 
fragments. This difference was most probably due to the smaller size 
of loess fragments and their functionally more hostile large-scale 
agricultural matrix compared to sand fragments (Gallé et al., 2022). 
Furthermore, we  can consider sand fragments functionally less 
isolated because there are more road verges, forest fringes (Rédei et al., 
2014), and thin grassland strips between forestry units that can serve 

FIGURE 2

(A) Species richness of specialist and (B) exotic species along a 
connectivity gradient in loess steppe fragments. p-value shows the 
statistical significance of the explanatory variable, R2 stands for the 
conditional coefficient of determination of the model, whereas the 
grey shaded area represent the standard error of the mean.
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plant population persistence by supporting meta-population dynamics 
and thus immigration processes (Szitár et al., 2014). In contrast, road 
verges preserved only a small portion of grassland specialist plant 
species near loess grasslands in our study area because of frequent 
mowing and trampling (Deák et al., 2020, 2021b).

The absence of fragmentation effects of the current landscape can 
also refer to an extinction debt, that is a time-delayed extinction to 
be realised in the future without further habitat modification after 
habitat loss in the past (Kuussaari et al., 2009). A weak extinction debt 
was shown in the sandy steppe study region by Rédei et al. (2014), who 
found that the richness of sand specialist flora reflected the historical 
landscape composition in the 18th century, but they did not find any 
correlation with the present composition. Deák et al. (2021a) also 
showed for kurgans that the landscape structure of the 1970s best 
explained the species richness of loess grassland specialists, referring 
to an unpaid extinction debt. Their results are not in contradiction 
with our results, as they showed that contemporary connectivity 
explained specialist richness almost as well as that in the 1970s. It is 
also possible that the local management regime (e.g., mowing or 
grazing) not assessed in this study overrode and obscured 
fragmentation impacts (Gallé et al., 2022).

5. Conclusion

We found that habitat specialist plant species were less 
dependent on connectivity and habitat area than generalists and 
exotic species in sand and loess steppe fragments. However, there 
may be  an extinction debt in the effect of fragmentation. Both 
habitat connectivity and fragment size, two important measures of 
habitat fragmentation, affected vegetation composition regarding 
local persistence and dispersal potential-related traits. Based on our 
analyses, we can predict how shifted species composition would 
enable communities to respond to further habitat fragmentation if 
they still own regeneration and resilience potential. We may rely on 
the persistence of long-lived and clonal specialist and generalist 
species in fragmented sand and loess steppes, as they showed no 
response for fragment size and connectivity loss. The regeneration 
potential of the vegetation following fragmentation can 
be improved by preserving large fragments and increasing habitat 
connectivity in parallel. However, given the fact that these also do 
not buffer against exotic species, active and targeted management 
of exotic species is also important, especially in times of climate 
change extremely threatening these habitats.

FIGURE 3

(A) Species richness of non-clonal generalists in sand grassland fragments, (B) frequency of non-clonal specialists, (C) generalists with persistent seed 
bank and (D) exotics with persistent soil seed bank in loess steppe fragments in small and large fragments along a connectivity gradient. p-value shows 
the statistical significance of the explanatory variable, R2 stands for the conditional coefficient of determination of the model, whereas the grey shaded 
area represent the standard error of the mean.
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