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Abstract
It is well established that cationic peptides can enter cells following attachment to polyanionic membrane components. We 
report that the basic nuclear localization signal (NLS) of the NF-κB p50 subunit is internalized via lipid raft-dependent 
endocytosis mediated by heparan sulfate proteoglycans and exerts significant NF-κB inhibitory activities both in vitro and 
in vivo. In vitro uptake experiments revealed that the p50 NLS peptide (CYVQRKRQKLMP) enters the cytoplasm and 
accumulates in the nucleus at 37 °C. Depleting cellular ATP pools or decreasing temperature to 4 °C abolished peptide 
internalization, confirming the active, energy-dependent endocytic uptake. Co-incubation with heparan sulfate or replac-
ing the peptide’s basic residues with glycines markedly reduced the intracellular entry of the p50 NLS, referring to the role 
of polyanionic cell-surface proteoglycans in internalization. Furthermore, treatment with methyl-β-cyclodextrin greatly 
inhibited the peptide’s membrane translocation. Overexpression of the isoforms of the syndecan family of transmembrane 
proteoglycans, especially syndecan-4, increased the cellular internalization of the NLS, suggesting syndecans’ involvement 
in the peptide’s cellular uptake. In vitro, p50 NLS reduced NF-κB activity in TNF-α-induced L929 fibroblasts and LPS-
stimulated RAW 264.7 macrophages. TNF-α-induced ICAM-1 expression of HMEC-1 human endothelial cells could also 
be inhibited by the peptide. Fifteen minutes after its intraperitoneal injection, the peptide rapidly entered the cells of the 
pancreas, an organ with marked syndecan-4 expression. In an acute pancreatitis model, an inflammatory disorder triggered 
by the activation of stress-responsive transcription factors like NF-κB, administration of the p50 NLS peptide reduced the 
severity of pancreatic inflammation by blocking NF-κB transcription activity and ameliorating the examined laboratory and 
histological markers of pancreatitis.
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Introduction

Peptide-mediated import of biomolecules has become a 
popular approach to modulating cellular functions (Heitz 
et al. 2009; Bohmova et al. 2018; Sanchez-Navarro 2021; 

Shoari et al. 2021; Yokoo et al. 2021;). Efficient intracel-
lular delivery of bioactive compounds (peptides, oligonu-
cleotides, etc.) with cell-penetrating peptides (CPPs)—small 
cationic peptides readily translocating through cell mem-
branes and delivering attached cargoes intracellularly—
opened up new possibilities for therapeutic interventions 
(Dougherty et al. 2019; Xie et al. 2020; Liu et al. 2021; 
Tarvirdipour et al. 2021). At the time of CPP discovery, 
endocytosis—due to lysosomal degradation of internalized 
agents—was viewed as an entry mechanism to be avoided 
for the intracellular delivery of bioactive agents. Thus, early 
studies claimed endocytosis-independent cellular internali-
zation of CPPs (Derossi et al. 1994, 1996, 1998; Oehlke 
et al. 1997; Vives et al. 1997; Letoha et al. 2003). How-
ever, the broadening knowledge of the newly explored lipid 
raft- and caveolae-mediated endocytic pathways helped to 
redefine the molecular mechanism of CPPs’ efficient cellular 
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entry and avoidance of lysosomal degradation (Nichols and 
Lippincott-Schwartz 2001; Nichols 2003; Parton and Rich-
ards 2003; Bathori et al. 2004; Kirkham and Parton 2005). 
Due to the advances in endocytosis research, later studies 
clearly showed that contrary to earlier claims, CPPs utilize 
endocytic pathways to transport attached cargoes into the 
cells (Console et al. 2003; Drin et al. 2003; Fittipaldi et al. 
2003; Richard et al. 2003). These newer studies confirmed 
that contrary to early anti-endocytic hypotheses, specific 
endocytic pathways can be efficiently exploited to deliver 
biomolecules into the cells (LeCher et al. 2017).

One of the earliest CPPs was a conjugate of the hydropho-
bic domain of Kaposi’s sarcoma fibroblast growth factor signal 
sequence and the NLS of NF-κB p50 that can enter the cells 
and block the nuclear import of stress-responsive transcrip-
tion factors (SRTFs) like NF-κB, AP-1, STAT1, and NFAT 
in inflammatory conditions (Lin et al. 1995; Torgerson et al. 
1998; Zhang et al. 1998; Kolenko et al. 1999; Liu et al. 2000; 
Letoha et al. 2005a, b, c). This NF-κB NLS-containing conju-
gate named SN50 was claimed to be internalized via an endo-
cytosis/receptor-independent mechanism (Veach et al. 2004). 
Cellular internalization was attributed purely to the hydropho-
bic signal sequence, while the basic NF-κB p50 NLS peptide 
alone was thought to be non-cell-permeable and thus have no 
biological effects (Torgerson et al. 1998). The wild-type (WT) 
NF-κB p50 NLS peptide (CYVQRKRQKLMP) specifically 
interacts with the cytoplasmic Rch1/importin-β NLS recep-
tor complex of Jurkat cell extracts, but it was reasoned that 
without the hydrophobic signal sequence this cationic NLS 
was unable to enter the cells and inhibit the inducible nuclear 
import of NF-κB proteins (including p50 and p65) and other 
SRTFs (Torgerson et al. 1998; Boothby 2001). This reasoning 
seemed inconsistent with the advanced concepts of cationic 
peptide internalization. As described above, cationic peptides 
have been widely used to import bioactive cargoes intracellu-
larly, and basic NLS peptides can even transport DNA into the 
nucleus (Eguchi et al. 2001; Snyder and Dowdy 2001; Akuta 
et al. 2002; Nakanishi et al. 2003; Arenal et al. 2004; Ahmed 
2017; Vedadghavami et al. 2020). Ragin et al. demonstrated 
that the NLS of the NF-κB p50 subunit is also internalized by 
cells at 37 °C and facilitates intracellular delivery of attached 
compounds (Ragin et al. 2002; Ragin and Chmielewski 2004). 
It is widely established that peptides abundant in arginines 
and lysines have the unique character to be taken up by cells 
through endocytic pathways induced by electrostatic binding 
to polyanionic proteoglycans (Sandgren et al. 2002; Belting 
2003; Futaki et al. 2007; Poon and Gariepy 2007; Christianson 
and Belting 2014; Zhu and Jin 2018). Previously we dem-
onstrated the syndecan-dependent cellular uptake of cationic 
CPPs (Letoha et al. 2010). Syndecans (SDCs), a family of 
transmembrane heparan-sulfate proteoglycans (HSPGs), effi-
ciently deliver a wide range of ligands intracellularly by attach-
ing them through their versatile polyanionic heparan-sulfate 

(HS) sidechains (Christianson and Belting 2014; Afratis et al. 
2017). Microbes, growth factors, and other endogenous pro-
teins endowed with cationic heparin-binding sequences can 
attach to SDCs and enter the cells via SDC-mediated endo-
cytosis (Gallay 2004; Elfenbein and Simons 2013; Favretto 
et al. 2014; Cagno et al. 2019; Hudak et al. 2019; Letoha et al. 
2019; Stow et al. 2020; De Pasquale et al. 2021; Hudak et al. 
2021a, b, 2022).

Considering the immense evidence on the HSPG-mediated 
uptake of cationic peptides, we reexamined the cellular inter-
nalization and biological activity of the cationic NF-κB p50 
NLS unconjugated to any translocating peptide sequence. The 
peptide was labeled with FITC, and its uptake was investigated 
in vitro and in vivo. Besides general cell uptake studies, the 
NLS’ internalization was also assessed in SDC-specific cel-
lular assays. Effects of the peptide on NF-κB transcriptional 
activity were analyzed with various in vitro inflammatory 
models, including NF-κB reporter gene assays enabling the 
quantitative assessment of inducible NF-κB activity based on 
luminescence (Letoha et al. 2005a, b, c; Letoha et al. 2006). 
The NF-κB inhibitory activity of the peptide was tested in vivo 
in an experimental model of acute pancreatitis, an inflamma-
tory disorder initiated by the activation of SRTFs, including 
NF-κB and AP-1 (Gukovsky et al. 2003; Letoha et al. 2005a, 
b, c, 2006, 2007; Gukovsky and Gukovskaya 2013; Yu and 
Kim 2014). Since activated NF-κB is one of the most signifi-
cant initiators of pancreatic inflammation, CCK-induced acute 
pancreatitis offered an ideal experimental model to monitor 
the efficacy of the p50 NLS in inhibiting NF-κB activity 
in vivo (Gukovsky et al. 1998; Williams et al. 2002; Letoha 
et al. 2005a, b, c, 2006, 2007; Gukovsky and Gukovskaya 
2013; Huang et al. 2013). The broad inhibitory spectrum of 
the p50 NLS on NF-κB proteins (i.e., p50 NLS competes for 
proteins generally involved in nuclear import of NF-κB pro-
teins, including p50 and p65) seemed also beneficial in the 
complex NF-κB activation pathway of pancreatitis (Boothby 
2001; Gukovsky and Gukovskaya 2013; Huang et al. 2013).

Our results confirm that HSPG-, particularly SDC-medi-
ated endocytosis can be utilized for efficient peptide trans-
duction in vitro and in vivo. Thus, the present manuscript 
undermines the receptor-independent, non-endocytic uptake 
of the cationic NLS peptide and marks new pathways to 
be utilized for the intracellular delivery of novel bioactive, 
cationic peptides.

Results

The NF‑κB p50 NLS is Internalized by Live, Unfixed 
Cells

Confocal microscopic experiments on NF-κB p50 NLS-
treated live, unfixed cells (HMEC-1 human microvascular 
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endothelial cells, L929 murine fibroblasts, and RAW 264.7 
murine macrophages) showed a gradual increase in fluo-
rescence following the addition of the FITC-labeled NLS 
peptide at a concentration of 20 μM at 37 °C (Fig. 1). Intra-
cellular fluorescence increased markedly at 30 min of incu-
bation, demonstrating efficient internalization. At 90 min 
the FITC-labeled p50 NLS peptide appeared in the nuclei 
where it accumulated. Adding the NLS peptide to cells at 
4 °C, a temperature where the rigidity of cellular membranes 
unable endocytosis, hindered the cellular entry of the pep-
tide, hence demonstrating the endocytic nature of uptake 
(Supplementary Fig. S1). Replacing the basic residues with 
glycines (i.e., CYVQGGGQGLMP, indicated as GlyNLS) 
also impeded cellular uptake of the NLS, as intracellular 
fluorescence of cells treated with the FITC-labeled GlyNLS 
analog remained almost undetectably low even at 90 min of 
incubation at 37 °C, hence demonstrating the lack of uptake 
due to the loss of the basic residues (Supplementary Fig. 
S1). Simultaneous cell viability studies showed that nei-
ther the NLS nor its Gly analog (GlyNLS) affected cellular 
viability from concentrations of 1.56 μM to 50 μM (Sup-
plementary Fig. S2).

Flow Cytometric Assessment of the NF‑κB p50 NLS

Cellular uptake of the FITC-labeled p50 NLS peptide (NLS; 
at a concentration of 20 μM) was then quantified with 

standard flow cytometry. Fluorescence of surface-bound 
peptides was quenched by adding trypan blue (at a concen-
tration of 0.25% in ice-cold 0.1 M citrate buffer pH 4.0) one 
minute before flow cytometry hence only the intracellular 
FITC-labeled NLS was measured (Letoha et al. 2010, 2019). 
After 30 min of incubation, a small increase in the cellu-
lar fluorescence of the NLS-treated cells could be detected 
at 37 °C (Fig. 2a). At 60 and 90 min, intracellular fluores-
cence further increased, especially in RAW macrophages 
(Fig. 2b, c). ATP-depletion (with 0.1% mM sodium azide 
and 50 mM 2-deoxy-D-glucose) resulted in low intracellu-
lar fluorescence, which showed diminished peptide uptake 
(Fig. 2a–c). Pretreating the cells with methyl-β-cyclodextrin 
(MCD) to remove cholesterol from the membrane markedly 
reduced intracellular fluorescence, suggesting the involve-
ment of the cholesterol-enriched lipid rafts in the cellular 
internalization of the peptide at 37 °C (Fig. 2a–c). Exog-
enous heparan-sulfate (HS; 25 μg/mL) also diminished 
intracellular fluorescence at 37 °C, indicating the involve-
ment of polyanionic surface proteoglycans in attaching the 
cationic peptide (Fig. 2a–c). At 4 °C the cellular membranes 
become extremely rigid which stops endocytosis. At 4 °C all 
cells treated with the FITC-labeled peptide exhibited very 
low cellular fluorescence, providing further evidence of the 
endocytic nature of NLS uptake (Fig. 2d).

SDCs Mediate the Cellular Internalization 
of the NF‑κB p50 NLS

The contribution of SDCs to several cationic CPPs have 
already been explored (Letoha et al. 2010; Montrose et al. 
2013). Considering the previously obtained data on the HS-
dependent uptake of the NLS, we studied its uptake in cell 
lines expressing specific SDC isoforms. K562 cells report-
edly exhibit very low endogenous HSPG expression, except 
for a minimal amount of betaglycan and SDC3 (Shafti-Ker-
amat et al. 2003; Letoha et al. 2010). Due to their low HSPG 
expression and lack of caveolin-1, the molecular base of 
caveolae-mediated endocytosis, K562 cells offer an ideal 
cellular environment to express SDC isoforms and study 
their functionality without the interference of other HSPGs 
and caveolae-mediated endocytosis (Parolini et al. 1999; 
Hudak et al. 2019; Letoha et al. 2019). After creating stable 
SDC transfectants in K562 cells, the various SDC-express-
ing clones were selected and standardized according to their 
HS expression (Supplementary Fig. S3) (Hudak et al. 2019, 
2021b, 2022; Letoha et al. 2019). Thus stable SDC trans-
fectants with even HS expression were selected and, along 
with WT K562 cells, incubated with the FITC-labeled NLS 
peptide for 90 min at 37 °C. Cellular internalization of the 
fluorescently labeled NLS was assessed with imaging flow 
cytometry. To remove surface fluorescence due to extracel-
lularly attached fluorescent NLS, peptide-treated cells were 

Fig. 1   Cellular internalization of the NF-κB p50 NLS visualized with 
confocal microscopy. HMEC-1, L929, and RAW 264.7 cells were 
treated with the FITC-labeled NF-κB p50 NLS for 30, 60, and 90 min 
at a concentration of 20 μM at 37 °C. Peptide uptake was examined 
with confocal microscopy. Scale bar = 10 μm
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trypsinized with the method of Nakase et al. before the 
flow cytometric analyses (Nakase et al. 2007; Hudak et al. 
2019, 2021b, 2022). Imaging flow cytometry demonstrated 
that SDC overexpression increases NLS uptake, especially 
SDC4, that increased cellular uptake of the FITC-labeled 
NLS the most (Fig. 3a–c). Simultaneous cell viability meas-
urements showed that the NLS did not affect cellular viabil-
ity at the applied concentrations of 20 μM (Supplementary 
Fig. S4).

The NF‑κB p50 NLS Peptide Suppresses NF‑κB 
Transcription Activity in Different Cell Types

Luciferase reporter gene assays, utilizing stably transformed 
cells expressing the firefly luciferase under NF-κB-responsive 
elements, were used next to study the in vitro NF-κB inhibitory 
effects of the NF-κB p50 NLS peptide. The proinflammatory 
cytokine TNF-α (10 U/mL) induces NF-κB-driven luciferase 
activity in L929 cells (Fig. 4a). Treatment with the NF-κB p50 
NLS 30 min prior to TNF-α dose-dependently and markedly 

reduced TNF-α–induced NF-κB activity at concentrations 
between 1.56 and 25 μM (Fig. 4a).

The NF-κB inhibitory effect of the peptide was then meas-
ured in LPS-stimulated murine macrophages. The p50 NLS 
decreased the LPS-induced luciferase activity of RAW 264.7 
macrophages, however, to a smaller extent than in the case of 
TNF-α-induced L929 fibroblasts (Fig. 4b).

TNF-α induces ICAM-1 expression on the surface of 
HMEC-1 cells through NF-κB-dependent mechanisms (True 
et al. 2000). As shown in Fig. 5c, NF-κB-dependent ICAM-1 
expression was reduced by NF-κB p50 NLS pretreatment 
(Fig. 4c). Replacing the basic residues of the NLS with gly-
cines abolished the peptide’s inhibitory effect on NF-κB or 
ICAM-1 expression, demonstrating that cationic residues and 
efficient internalization is crucial for the peptide’s bioactivity 
(Supplementary Fig. S5).

Fig. 2   Cellular internalization of the NF-κB p50 NLS peptide quanti-
fied with flow cytometry. HMEC-1, L929, and RAW 264.7 cells were 
treated with the FITC-labeled p50 NLS peptide (“NLS”) at a con-
centration of 20  μM for various amounts of time and cellular fluo-
rescence was analyzed with FACS. ATP-depletion was carried out 
by incubating the cells with 0.1% sodium azide (“azide”) and 50 mM 
2-deoxy-D-glucose in Opti-MEM for 60 min prior to the addition of 

the NLS peptide at 37  °C. To disrupt lipid rafts, some of the cells 
were treated with 5  mM/mL of MCD for 60  min before peptide 
treatment. Other cells were co-incubated with 25 μg/mL of heparan 
sulfate (HS) and the NLS peptide. a–c show the results of the flow 
cytometric analyses at 37 °C and d shows the ones at 4 °C. The bars 
represent the mean + SEM of four independent experiments. a.u., 
arbitrary units
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The NF‑κB p50 NLS Peptide Ameliorates Acute 
Experimental Pancreatitis

After demonstrating the efficient intracellular uptake and the 
NF-κB suppressing the activity of the p50 NLS in vitro, we 
tested the peptide’s anti-inflammatory effects in an animal 
model of acute pancreatitis, a disease triggered by activated 
SRTFs including NF-κB.

First, we analyzed whether the peptide could enter the 
pancreas in vivo. According to the Human Protein Atlas, 
the pancreas shows a definite SDC4 expression (Uhlen 
et al. 2005, 2015). Thus, pancreas tissues were dissected 
from rats 15 min after intraperitoneal (IP) injection of the 
FITC-labeled p50 NLS peptide or pure PBS (controls). Fluo-
rescent microscopic analysis revealed fluorescent intracel-
lular signals, the characteristic features of endocytosis in 
the pancreatic samples of the NLS-injected rats (Fig. 5b, 

c), demonstrating that the NF-κB p50 NLS peptide was 
internalized in vivo. Contrary to the NLS-injected rats, the 
pancreas of control animals displayed low and blunt auto-
fluorescence without any distinct intracellular signs of endo-
cytosis (Fig. 5a–c). Cellular uptake studies also showed the 
efficient cellular entry of the fluorescently labelled p50 NLS 
peptide into AR42J pancreatic acinar cells (Supplementary 
Fig. S6). Unlike the p50 NLS peptide, the GlyNLS analog 
in which the basic residues are replaced with glycines (i.e., 
CYVQGGGQGLMP) exhibited no sign of cellular uptake 
into AR42J cells.

After showing its efficient in  vivo delivery into the 
pancreas, the NLS’ effects were studied in the experimen-
tal model of CCK-induced pancreatitis. Rats receiving 
2 × 100 μg/kg body weight of CCK IP exhibited the relevant 
molecular and histological features of pancreatic inflamma-
tion, including intrapancreatic edema and cellular damage 

Fig. 3   SDC isoforms enhance the in  vitro cellular uptake of the 
NF-κB p50 NLS. WT K562 cells and SDC transfectants were treated 
with the FITC-labeled NLS at a concentration of 20 μM for 90 min at 
37 °C. After incubation, the cells were washed, trypsinized and cel-
lular uptake was evaluated with imaging flow cytometry. a Brightfield 
(BF) and fluorescent cellular images of FITC-NLS-treated WT K562 
cells and SDC transfectants. Scale bar = 20  μm. b Representative 

flow cytometry histograms showing the intracellular fluorescence of 
FITC-NLS-treated WT K562 cells and SDC transfectants. c Detected 
fluorescence intensities were normalized to FITC-NLS-treated WT 
K562 cells as standards. The bars represent the mean + SEM of four 
independent experiments. Statistical significance vs. standards was 
assessed with analysis of variance (ANOVA). *p < 0.05; **p < 0.01
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(as revealed by the increased pancreatic weight/body weight 
ratio and serum amylase activity in Fig. 6a). Concentrations 
of proinflammatory cytokines, TNF-α and IL-6 in the pan-
creas were also significantly increased (Fig. 6b). Supramaxi-
mal CCK doses triggered leukocyte sequestration, raising 
MPO activities in the pancreas and the lung (Fig. 6c). CCK 
also induced ROS production. Thus the level of MDA, the 
measure of lipid peroxidation, was significantly higher 
compared to controls. Due to increased ROS production, 
intrapancreatic GSH (that participates in eliminating ROS) 
was depleted after two injections of CCK (Fig. 6d). Pre-
treatment with 2 mg/kg of the NF-κB p50 NLS peptide IP 
30 min before the first CCK dose improved all these labora-
tory parameters, thus ameliorating the pancreatitis-inducing 
effects of CCK (Fig. 6a–d).

Electrophoretic mobility shift assay (EMSA) performed on 
nuclear extracts of pancreas samples was utilized to assess 
the NF-κB inhibitory effect of the peptide. The DNA-binding 
activity of NF-κB was relatively weak in the untreated controls 

(Fig. 7). CCK administration significantly increased the DNA-
binding activity of NF-κB, which could be inhibited with the 
p50 NLS pretreatment. While CCK also induced the degra-
dation of IκB-α, pretreatment with the p50 NLS peptide had 
no significant effect on CCK-induced degradation of IκB-α 
(Supplementary Fig. S7).

Histology revealed that administration of 2 × 100 μg/kg 
body weight CCK induced acute pancreatitis, which was 
characterized by microfocal necrosis, vacuolar degeneration, 
marked edema, inflammatory activity, and stasis (Fig. 8a). 
Pretreatment with 2 mg/kg of the NF-κB p50 NLS peptide 
significantly reduced the morphological damage induced by 
CCK in the pancreas (Fig. 8b). The values for each of the 
scored parameters are shown in Table 1.

Fig. 4   TNF-α–induced NF-κB transcriptional activity and ICAM-1 
expression is suppressed by the NF-κB p50 NLS suppresses in vitro. 
a, b Luciferase reporter assays of TNF-α-triggered L929 fibroblasts 
(a) and LPS-activated RAW 264.7 macrophages (b) with NF-κB-Luc 
are shown. Controls were treated with 10 U/mL of TNF-α or 30 ng/
mL LPS. The p50 NLS-treated cells were incubated with various pep-
tide concentrations for 30 min before 10 U/mL TNF-α or 30 ng/mL 
LPS was added. Luciferase activity was analyzed 6 h later. Detected 

luminescence intensities were normalized to TNF-α or LPS-only-
treated cells as standards. The bars represent the means + SEM of 
four independent experiments. c Surface ICAM-1 expression as 
detected with flow cytometry on HMEC-1 cells pretreated with the 
p50 NLS for 30  min before TNF-α (10  U/mL) incubation for 6  h. 
Detected ICAM-1 expression values were normalized to TNF-α-only-
treated cells as standards. The bars represent the means + SEM of 
four independent experiments
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Fig. 5   The pancreas internalizes 
the NF-κB p50 NLS in vivo. 
The in vivo internalization 
studies were carried out by 
injecting 20 nM/kg body weight 
of FITC-labeled NF-κB p50 
NLS or PBS (Ctrl) IP into male 
Wistar rats. The images show 
pancreas samples taken from 
rats 15 min after injecting PBS 
(a) or the FITC-labeled NLS 
peptide (b) IP. Images represent 
three independent studies. 
Scale bar = 50 μm. c BioTek 
Gen5 Software was utilized to 
assess fluorescence intensity 
of pancreatic samples. Two 
samples from each group from 
three independent studies were 
analyzed. Detected fluorescence 
intensities were normalized to 
PBS-treated controls. The bars 
represent the mean + SEM of six 
samples from three independent 
experiments. Statistical signifi-
cance vs. Ctrl was assessed with 
ANOVA. ***p < 0.001

Fig. 6   The NF-κB p50 NLS peptide improves the laboratory mark-
ers of acute pancreatitis in  vivo. Acute pancreatitis was induced 
with 2 × 100 μg/kg of CCK IP in male Wistar rats. p50 NLS peptide-
treated animals received 2 mg/kg IP of the p50 NLS 30 min before 
the first CCK dose. Figure a shows pancreatic weight/body weight 
ratio and serum amylase activity, b shows intrapancreatic TNF-α and 
IL-6 levels, c shows pancreatic and lung MPO activity and d shows 

pancreatic MDA and GSH levels. Means + SEM of 10 animals in 
each group are shown. Light gray bars represent controls (receiving 
3 × 0.5  mL of PBS IP), black bars represent Group CCK (animals 
receiving 2 × 100  μg/kg of CCK IP) and dark gray bars represent 
Group NLS + CCK (animals treated with 2  mg/kg of p50 NLS IP 
30 min before the first injection of CCK). *p < 0.05 vs Group CCK; 
**p < 0.01 vs Group CCK
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Discussion

As proteoglycan-mediated endocytic uptake of cationic pep-
tides is now widely established, it is time to reconsider our 
views about the internalization of biomolecules. Our study 
demonstrates that basic nuclear localization signal (NLS) of 
the NF-κB p50 subunit—without any cell-transporter motif 
attached—can be efficiently internalized through proteo-
glycan-mediated endocytic pathways and retain its reported 
biological activity to inhibit NF-κB’s nuclear translocation 
and transcriptional activity.

Considering current knowledge on proteoglycan-medi-
ated peptide transduction, it is unsurprising that a cationic 
12-mer NLS peptide can enter the cells via endocytosis. 
Endocytosis is a complex mechanism that involves clathrin-
dependent and independent pathways (Kumari et al. 2010). 
Clathrin-independent endocytosis includes phagocytosis, 
constitutive pinocytotic pathways, and endocytosis mediated 
by caveolae and glycolipid rafts (Nichols and Lippincott-
Schwartz 2001; Nichols 2003; Parton and Richards 2003; 
Kirkham and Parton 2005). Contrary to classic clathrin-
dependent endocytosis, caveolar or lipid raft-mediated inter-
nalization can avoid the lysosomes and hence the degrada-
tion of internalized molecules (Bathori et al. 2004; Kiss and 
Botos 2009; Sousa de Almeida et al. 2021). As recycling and 
internalization of proteoglycans occur through lipid rafts, 
thus by attaching to polyanionic cell surface proteoglycans, 
cationic peptides can utilize lipid raft-mediated pathways 
to enter the cells (Belting 2003; Christianson and Belting 
2014). The importance of binding to polyanionic heparan 
sulfate proteoglycans and entering the cells by lipid-raft-
mediated endocytosis was clearly confirmed in our flow 

cytometric uptake experiments when incubating the cells 
with HS or MCD markedly decreased internalization of the 
NLS peptide. The replacement of basic residues with glycine 

Fig. 7   The NF-κB p50 NLS peptide inhibits NF-κB transcrip-
tion activity in acute pancreatitis in vivo. a A representative EMSA 
showing DNA-binding activity of NF-κB in pancreatic samples. b 
Intensities of NF-κB bands were densitometrically quantified rela-
tive to untreated controls (i.e., normal pancreas). Values presented 
are means + SEM, n = 10 animals/group. Light gray bars represent 
controls (receiving 3 × 0.5  mL PBS IP), black bars represent Group 
CCK (animals receiving 2 × 100 μg/kg of CCK IP) and dark gray bars 
represent Group NLS + CCK (animals treated with 2  mg/kg of p50 
NLS IP 30 min before the first injection of CCK). *p < 0.05 vs Group 
CCK; **p < 0.01 vs Group CCK

Fig. 8   Effect of the NF-κB p50 NLS on pancreatic morphological 
damage in CCK-induced pancreatitis. a A representative pancreatic 
sample from the Group CCK (animals treated with 2 × 100 μg/kg of 
CCK IP) showing marked edema, inflammatory activity, microfocal 
necrosis (HE × 100); and microfocal necrosis, vacuolar degeneration 
in the acinar cells (insert: HE × 250). Scale bar = 50 μm. b A repre-
sentative pancreatic sample from animals receiving p50 NLS pretreat-
ment before CCK (i.e., Group NLS + CCK): milder edema, milder 
acinar degeneration, and vacuolization (HE × 100 and HE × 250). 
Scale bar = 50 μm

Table 1   Effects of the NLS on the histologic parameters in CCK-
induced acute pancreatitis

Means + SEM of 10 animals in each group are shown
*p < 0.05 vs Group CCK; **p < 0.01 vs Group CCK

Controls Group CCK Group NLS + CCK

Edema 0.1 ± 0.067** 0.9 ± 0.067 0.65 ± 0.076*
Vascular change 0.1 ± 0.067** 0.7 ± 0.082 0.45 ± 0.05*
Inflammation 0** 0.6 ± 0.07 0.35 ± 0.076*
Acinar necrosis 0** 0.75 ± 0.083 0.45 ± 0.09*
Calcification 0 0.125 ± 0,065 0
Fat necrosis 0* 0.167 ± 0.071 0.05 ± 0.05
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also abolished peptide uptake, highlighting the paramount 
role of electrostatic interactions in peptide uptake. Both 
ATP-depletion or low temperature blocked peptide entry, 
further providing evidence on the energy-dependent and 
temperature-sensitivite endocytic uptake mediated by poly-
anions of the cholesterol-enriched lipid rafts.

Proteoglycans comprise a heterogeneous group of pro-
teins substituted with linear polysulfated and, thereby, highly 
negatively charged glycosaminoglycan polysaccharides (e.g. 
heparan sulfate) (Iozzo 2001; Letoha et al. 2006; Sarrazin 
et al. 2011). Cell surface proteoglycans bind a multitude 
of ligands and influence cellular physiology and pathology, 
including cytokine-signaling and inflammation (Letoha et al. 
2006; Billings and Pacifici 2015; O'Callaghan et al. 2018; 
El Masri et al. 2020). Among cell surface proteoglycans, 
the SDC family of transmembrane HSPGs act as molecular 
ferries by attaching cationic proteins and delivering them 
intracellularly (Letoha et al. 2010, 2019, 2021a, 2021b, 
2022; Christianson and Belting 2014; Hudak et al. 2019). 
SDC-mediated endocytosis occurs independently of clathrin 
and caveolin but in a lipid raft-dependent manner: ligands 
induce clustering and redistribution of SDCs to lipid rafts 
and stimulate the lipid raft-dependent endocytosis of the 
SDC-ligand complex (Payne et al. 2007; Szilak et al. 2013; 
Christianson and Belting 2014; Hudak et al. 2019). Besides 
their endocytic activity, SDCs are also heavily involved in 
cell signaling and transmit signals from the cell exterior 
to the cytoplasm (Tkachenko et al. 2005; Couchman et al. 
2015; Afratis et al. 2017). Thus, the SDC-mediated uptake of 
the p50 NLS peptide can explain its efficient internalization 
and the maintenance of its ability to inhibit NF-κB-driven 
inflammatory pathways, as demonstrated by the inhibition of 
NF-κB activities in vitro and in vivo. Among SDCs, the p50 
NLS peptide showed the highest affinity towards SDC4, the 
ubiquitously expressed member of the SDC4 family (Letoha 
et al. 2010, 2019; Keller-Pinter et al. 2021). Still, the over-
expression of the other SDC isoforms also increased the 
cellular uptake of the peptide markedly. SDCs enables the 
entry of the peptide into a wide array of SDC-expressing 
cells, including, but not limited to macrophages and pancre-
atic acinar cells, two key cells types whose Ca2 + overload 
initiates acute pancreatitis (Uhlen et al. 2015; Gryshchenko 
et al. 2021; Petersen et al. 2021). During acute pancreatitis, 
excessive Ca2 + signal generation also occurs in pancreatic 
stellate cells, a cell type with pronounced SDC4 expression 
(Chronopoulos et al. 2020; Petersen et al. 2021).

In live rats, the peptide rapidly entered the pancreas, an 
organ exhibiting pronounced SDC expression (Uhlen et al. 
2015). The observed rapidity of the peptide’s in vivo inter-
nalization is also advantageous in the experimental model 
of CCK-induced acute pancreatitis, where NF-κB activation 
and nuclear translocation peak 30 min after CCK stimulation 
(Gukovsky et al. 1998; Letoha et al. 2006). The p50 NLS’ 

reported broad inhibitory spectrum on the nuclear import 
NF-κB proteins (i.e., intracellularly delivered p50 NLS is 
not specific for p50, but it also blocks the nuclear import of 
p65 and other SRTFs) also offers significant therapeutic ben-
efits in an acute inflammatory disorder regulated by complex 
NF-κB activation pathways (Torgerson et al. 1998; Boothby 
2001; Wu et al. 2020). The performed EMSA showed that 
p50 NLS pretreatment could suppress CCK-induced nuclear 
translocation and DNA-binding activity of NF-κB. NF-κB 
inhibitory activity of the NLS peptide resulted in improved 
parameters of pancreatitis. Thus, pretreatment with the 
NF-κB p50 NLS peptide ameliorated CCK-induced cellular 
damage, edema and neutrophil sequestration both within 
the pancreas and lung. Moreover, pretreatment with the 
p50 NLS decreased proinflammatory cytokines and ROS 
production in the pancreas. Histopathological evaluation of 
pancreas samples also confirmed improvements due to p50 
NLS treatment. Thus, the cationic NLS peptide could also 
preserve its NF-κB-inhibitory and anti-inflammatory effects 
in vivo.

In summary, our study demonstrates the efficient intracel-
lular delivery of a cationic NLS peptide to inhibit NF-κB-
dependent inflammatory pathways and provides preclinical 
proof of concept on the efficient utilization of SDC-mediated 
peptide transduction to modulate acute inflammation of the 
pancreas.

Materials and Methods

Peptide Synthesis and Labeling

The NF-κB p50 NLS peptide (CYVQRKRQKLMP) and its 
Gly analog (GlyNLS, CYVQGGGQGLMP) were synthe-
sized in solid phase by standard methodology as described 
previously (Torgerson et al. 1998). For the uptake experi-
ments, the peptides were labeled with fluorescein isothio-
cyanate (FITC; cat. no. 46950; Sigma-Aldrich, Darmstadt, 
Germany) as described by Fulop et al. (2001). CCK was 
prepared with the method of Penke et al. (1984).

Cell Lines

Human microvascular endothelial HMEC-1 cells (ATCC, 
Manassas, VA, USA, cat. no. CRL-3243), murine L929 
fibroblasts (Merck KGaA, Darmstadt, Germany; cat. no. 
85011425-1VL) and RAW 264.7 macrophages (ATCC, cat. 
no. TIB-71) were cultured as described previously (Letoha 
et al. 2005a, b, c, 2006). AR42J rat pancreatic acinar cells 
(ATCC, cat. no. 30-2004) were cultured in F12 medium 
(with 20% FBS) according to the guidelines of ATCC. 
Full-length SDC1-4 transfectants, established in K562 
cells (ATCC, cat. no. CCL-243), were created as described 
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previously (Supplementary Fig. S3) (Letoha et al. 2019; 
Hudák et al. 2021). Stable SDC transfectants were selected 
by measuring SDC expression with flow cytometry using 
APC-labeled SDC antibodies specific for the respective 
SDC isoform as described previously (Letoha et al. 2019; 
Hudak et al. 2021b). HS expression of the applied SDC 
transfectants were measured with flow cytometry by using 
anti-human HS antibody (10E4 epitope; cat.no. 370255-S; 
Amsbio, Abingdon, UK) with Alexa Fluor (AF) 647-labeled 
secondary anti-mouse IgM and respective isotype control 
(cat. no. 02-6800; Thermo Fisher Scientific, Waltham, MA, 
USA), as described previously(Letoha et al. 2019; Hudak 
et al. 2021b).

Cell Viability Measurements

The effect of the applied peptides (NLS and its GlyNLS 
analog) on cell viability was assessed with the EZ4U cell 
proliferation assay (Biomedica Gmbh, Vienna, Austria, cat. 
no. BI-5000), according to the instructions of the manufac-
turer (Hudak et al. 2021b). Absorbance was measured with 
a BioTek Cytation 3 multimode microplate reader.

Confocal Laser Scanning Microscopy

Internalization of the FITC-labeled p50 NLS peptide into 
L929, RAW 264.7 and HMEC-1 cells was visualized by con-
focal laser scanning microscopy. Cells were preincubated in 
Opti-MEM (cat. no. 31985062; Thermo Fisher Scientific, 
Waltham, MA, USA) at either 37 or 4 °C for 30 min before 
incubation with the peptides(Letoha et al. 2006). The peptide 
solution was prepared at a concentration of 20 μM in Opti-
MEM by diluting a 1 mM stock solution of peptide in phos-
phate-buffered saline (PBS) (Letoha et al. 2005a, b, c). After 
various amounts of time (30, 60, 90 min) at 37 and 0 °C, 
the cells were rinsed three times with ice-cold PBS, and 
fluorescence distribution was immediately analyzed on an 
Olympus FV1000 confocal laser scanning microscope. Exci-
tation was obtained with an Argon ion laser set at 488 nm 
for FITC excitation and the emitted light was filtered with 
an appropriate long-pass filter (514 nm). Sections presented 
were taken approximately at the mid-height level of the cells. 
Photomultiplier gain and laser power were identical within 
each experiment. Cell viability was routinely determined by 
using trypan blue exclusion tests (Letoha et al. 2005a, b, c).

Flow Cytometry Analysis of Peptide Uptake

L929 fibroblasts, RAW 264.7 macrophages, and HMEC-1 
cells were used to quantify the cellular internalization of 
the fluorescent peptide. 6 × 105 cells/mL in Opti-MEM were 
incubated with the FITC-labeled peptide (at a concentration 
of 20 μM) at 37 and 4 °C for 30, 60 and 90 min, respectively. 

The cells were washed twice and resuspended in 0.5 mL of 
physiological saline. Equal volumes of this suspension and 
a stock solution of trypan blue (cat. no: T6146-5G; Merck 
KGaA, Darmstadt, Germany; 500 μg/mL dissolved in ice-
cold 0.1 M citrate buffer at pH 4.0) were allowed to mix 
for 1 min before FACS analyses. In this way, sample pH 
was lowered to pH 4.0, thereby optimizing the quenching 
effect of trypan blue (Sahlin et al. 1983). Cellular uptake was 
measured with flow cytometry using a FACScan (Becton 
Dickinson, Franlin Lakes, NJ, USA). A minimum of 10,000 
events per sample was analyzed. The viability of the cells 
was determined by appropriate gating in a forward-scatter-
against-side-scatter plot to exclude dead cells, debris, and 
aggregates (Letoha et al. 2005a, b, c).

To investigate the involvement of cholesterol-rich mem-
brane domains (lipid rafts) in peptide uptake, cells were pre-
treated with 5 mM methyl-β-cyclodextrin (MCD; Sigma-
Aldrich, cat.no: C4555-5G) for 60 min at 37 °C and then 
treated as mentioned above(Letoha et al. 2005a, b, c). To 
study the role of polyanionic cell-surface proteoglycans the 
cells were incubated with the FITC-labeled peptides in the 
presence of HS (25 μg/mL; Sigma-Aldrich; cat. no. H4777-
1MG) in Opti-MEM and then processed as usual for the 
FACS analyses.

To block endocytosis, cells were either incubated at 4 °C 
or their cellular ATP pools were depleted. For experiments 
at 4 °C, the cells were maintained for 30 min on ice before 
peptide incubation and throughout the experiments (Letoha 
et al. 2005a, b, c). To induce ATP depletion, the cells were 
incubated with 0.1% sodium azide (Sigma-Aldrich; cat.no. 
S2002-5G) and 50 mM 2-deoxy-D-glucose (Sigma-Aldrich; 
cat.no. D8375-1G) in Opti-MEM for 60 min before the addi-
tion of peptides at 37 °C (Fischer et al. 2004).

Imaging Flow Cytometry Analysis of Peptide Uptake

WT K562, SDC transfectants or AR42J cells were utilized 
to quantify the internalization of the FITC-labeled p50 NLS 
peptide. Briefly, 6 × 105 cells/mL in DMEM/F12 medium 
were incubated with FITC-labeled p50 NLS or its Gly 
analog (at a concentration of 20 μM) for 90 min (15 min for 
AR42J) at 37 °C (Letoha et al. 2005a, b, c). After incuba-
tion with the, the cells were trypsinized (with the method 
described by Nakase et al.) to remove the extracellularly 
attached peptides from the cell surface (Nakase et al. 2007; 
Hudak et al. 2019, 2021b, 2022). The cells were then rinsed 
three times with PBS containing 1% BSA and progressed 
towards flow cytometry. Cellular uptake was then measured 
with flow cytometry using an Amnis FlowSight imaging 
flow cytometer (Amnis Corporation, Seattle, WA, USA). 
A minimum of 10,000 events per sample was analyzed. 
Appropriate gating in a forward-scatter-against-side-scatter 
plot was utilized to exclude cellular debris and aggregates. 
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Fluorescence analysis was conducted with the Amnis 
IDEAS analysis software (Hudak et al. 2021b).

Transformation of Cell Lines

Mouse L929 cells (5 × 105/60 mm plate) were transformed 
with pNF-κB-luc4 and pSV-2/neo plasmids (coding for fire-
fly luciferase under the control of 5 NF-κB-responsive ele-
ments and the neor gene controlled by the SV40 enhancer/
promoter, respectively) using the DMRIE-C cationic lipid 
transfection agent (Thermo Fisher Scientific; cat. no. 
10459014) as described previously (Letoha et al. 2005a, 
b, c). Selection started 48 h later; the cells were exposed 
to geneticin (400 mg/L; Sigma-Aldrich) for two weeks, 
refreshing the medium twice weekly. Clones were isolated 
and tested for the intensity of their TNF-α-elicited NF-κB 
induction (50–100 U/mL recombinant TNF-α, 6–10 h of 
induction time). RAW 264.7 cells (5 × 105/60 mm plate) 
subcultured the previous day were transformed overnight 
with the above plasmids complexed with polyethylene-imine 
(jetPEI, cat. no. 101000053; Vectura, Illkirch, France) as 
described previously (Letoha et al. 2005a, b, c).

Luciferase Assays

Luciferase assays on 1 day-old cultures of L929 and RAW 
264.7 cells transformed with pNF-κB-luc4 and pSV-2/neo 
plasmids were carried out as described previously (Letoha 
et al. 2005a, b, c, 2006). Briefly, 3 × 104 cells/well (in MIX 
MEM 10% FCS) were exposed to various concentrations 
(0.39 to 25 uM) of the p50 NLS peptide for 30 min. Then 
the cells were treated with TNF-α (10 U/mL) or LPS (30 ng/
mL) in 100 μL of the above medium per well (Letoha et al. 
2005a, b, c, 2006). After 6 h of incubation with TNF-α or 
LPS, the medium was removed and the cells were washed 
and lysed for 10 min at room temperature in Reporter Lysis 
Buffer (20 μL/well; cat. no. E4030; Promega Co., Madison, 
WI, USA) (Letoha et al. 2005a, b, c, 2006). The substrate 
was added (20 μL/well; Promega Co.) and luciferase activity 
was measured in a BioTek Cytation 3 Cell Imaging Multi-
Mode Plate Reader (BioTek, Winooski, VT, USA). Control 
cells received TNF-α (10 U/mL) or LPS (30 ng/mL) treat-
ment only and processed as mentioned above. Cell viability 
was assessed by trypan blue exclusion assays (Letoha et al. 
2005a, b, c, 2006).

ICAM‑1 Expression

ICAM-1 expression of HMEC-1 cells, grown on micro-
plates (Corning Life Sciences), was conducted as 
described previously (Letoha et al. 2005a, b, c, 2006). 
3 × 104 cells/well in HE-SFM 2% FCS were exposed to 
various concentrations (3.13 to 50 uM) of the p50 NLS 

peptide for 30 min. Thirty minutes later the cells were 
treated with TNF-α (10 U/mL in 100 μL of the above 
medium per well). After 6 h of incubation with TNF-α, 
the cells were trypsinized, washed and resuspended in 10% 
FCS, then vortexed for 5 min at 2000 rpm, resuspended 
in PBS and vortexed again for 5 min. Then the medium 
was removed and the cells were incubated in PBS with the 
FITC-conjugated monoclonal mouse anti-human ICAM-1 
antibody (5–10 µg/mL; cat. no. BMS108FI; Thermo Fis-
cher Scientific) for 30 min on ice. After two washes and 
fixation with 2% paraformaldehyde, while being vortexed, 
the samples were analyzed by flow cytometry using the 
FACScan flow cytometer and the CellQuest analysis pro-
gram (Becton Dickinson). Control cells received only 
TNF-α treatment (Letoha et al. 2006). The viability of 
the cells was determined by concurrent propidium iodide 
(10 µg/mL; Sigma-Aldrich; cat. no. P4170-250MG) stain-
ing and appropriate gating in a forward-scatter-against-
side-scatter plot to exclude dead cells, debris, and aggre-
gates (Letoha et al. 2005a, b, c).

In Vivo Uptake Experiments

In vivo uptake studies in male Wistar rats (provided by the 
Animal Center of the Biological Research Center) weigh-
ing 250–300 g were carried out as described previously 
(Letoha et al. 2005a, b, c, 2006, 2007). The animals were 
kept at a constant room temperature with a 12 h light–dark 
cycle and were allowed free access to water and standard 
laboratory chow (Innovo Kft., Isaszeg, Hungary). All ani-
mal experiments were performed according to national and 
institutional ethical guidelines. The animal study protocol 
was approved by the Institutional Animal Ethics Commit-
tee of the Biological Research Centre and by the National 
Scientific Ethical Committee on Animal Experimentation 
(protocol code XVI./04714/001/2006., approved on 08 
March 2006) and complied with the European Commu-
nities Council Directive of 24 November 1986 (86/609/
EEC). Six animals were intraperitoneally (IP) injected 
with 20 nM/kg of the FITC-labeled p50 NLS peptide (in 
0.5 mL PBS). Control animals (n = 6) received IP injec-
tions of 0.5 mL PBS. Rats were anesthetized (with pento-
barbital sodium 50 mg/kg IP) and killed 15 min after the 
injections by exsanguinations through the abdominal 
aorta. Pancreas tissues were harvested and frozen in His-
toPrep media (cat. no. SH75-125D; Thermo Fisher Scien-
tific). Sections (10 to 50 μm) were cut on a cryostat and 
analyzed with fluorescence microscopy (BioTek Cytation 
3). The fluorescence signals detected were measured with 
BioTek Gen5 Software. The animal study is reported in 
accordance with ARRIVE guidelines (Animal Research: 
Reporting of In Vivo Experiments).
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CCK‑Induced Pancreatitis

CCK-induced pancreatitis utilizing various experimental 
groups of rats (each group contained 10 animals) was car-
ried out as described previously (Letoha et al. 2005a, b, c, 
2006, 2007). The rats were fasted for 16 h then acute pan-
creatitis was induced by injecting 100 μg/kg body weight 
of CCK (dissolved in PBS) IP twice at an interval of 1 h 
(“Group CCK”). The p50 NLS pretreated group (“Group 
NLS + CCK”) received 2 mg/kg body weight of the NF-κB 
p50 NLS peptide (in PBS) IP 30 min before the first injection 
of CCK. Control rats received 3 × 0.5 mL PBS IP instead of 
CCK or the NF-κB p50 NLS. Anesthetized (pentobarbital 
sodium; 50 mg/kg IP; Sigma Aldrich; cat. no. P3761) rats 
were killed by exsanguinations through the abdominal aorta 
4 h after the first CCK injection (Letoha et al. 2005a, b, c, 
2006, 2007). The pancreas and lungs were quickly removed, 
cleaned of fat and lymph nodes, weighed, frozen in liquid 
nitrogen and stored at − 80 °C until use (Letoha et al. 2005a, 
b, c, 2006, 2007).

Electrophoretic Mobility Shift Assay (EMSA) 
of NF‑κB

The EMSA was carried out as described previously (Letoha 
et al. 2005a, b, c, 2006).

Western Blotting

Western blot analysis of pancreatic IκB-α was performed as 
described previously (Letoha et al. 2006). β-tubulin (mouse 
monoclonal, Santa Cruz Biotechnology (Dallas, TX, USA), 
Inc., cat. no. sc-5274) was used as loading control (Hudak 
et al. 2021b).

Molecular Markers of Acute Pancreatitis

Molecular markers of acute pancreatitis were analyzed as 
described previously (Letoha et al. 2005a, b, c, 2006, 2007). 
The pancreatic weight/body weight ratio was utilized to 
evaluate the degree of pancreatic edema. The serum levels of 
amylase were determined by a colorimetric kinetic method 
(cat. no. D96569; Dialab, Vienna, Austria). All blood sam-
ples were centrifuged at 2500×g for 20 min. Tumor necrosis 
factor-α (TNF-α) and IL-6 concentrations were measured 
in the pancreatic cytosolic fractions with ELISA kits (cat. 
no. ERA57RB and ERA32RB; all Thermo Fisher Scien-
tific) according to the manufacturers’ instructions. As a 
marker of tissue leukocyte infiltration, pancreatic and lung 
MPO activity was assessed by Kuebler et al. (Kuebler et al. 
1996). Pancreatic MDA level was measured after the reac-
tion with thiobarbituric acid, according to the method of 
Placer et al., and was also corrected for the protein content 

of the tissue (Placer et al. 1966). GSH level was determined 
spectrophotometrically with Ellman’s reagent (Sedlak and 
Lindsay 1968).

Histological Evaluation of CCK‑Induced Acute 
Pancreatitis

Histological evaluation of CCK-induced acute pancreati-
tis was carried out as described previously (Letoha et al. 
2005a, b, c, 2006, 2007). A portion of the pancreas was fixed 
in 8% neutral formaldehyde solution (Sigma-Aldrich; cat. 
no. 47608) and subsequently embedded in paraffin (Sigma-
Aldrich; cat. no. P3558). Sections were cut at 4 μm thickness 
and stained with hematoxylin and eosin (cat. no. ab245880; 
Abcam, Waltham, MA, USA). The slides were coded and 
read for the traditional histological markers of pancreatic tis-
sue injury by two independent observers who were blind to 
the experimental protocol. They used the scoring system of 
Hughes et al. for the evaluation of acute pancreatitis (Hughes 
et al. 1996). Thus, semiquantitative grading of interstitial 
edema (0–1), vascular changes (0–2), inflammation (0–1), 
acinar necrosis (0–2) calcification (0–0.5) and fat necrosis 
(0–0.5) of the pancreas samples was evaluated in each ani-
mal (described in more details in Table 2).

Statistical Analysis

Results are expressed as means + standard error of the mean 
(SEM). Differences between experimental groups were 
evaluated by using one-way analysis of variance (ANOVA). 
Values of p < 0.05 were accepted as significant (Hudak et al. 
2019; Letoha et al. 2019).
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