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Poisson Reductions of Master Integrable
Systems on Doubles of Compact Lie Groups

L. Fehér

Abstract. We consider three ‘classical doubles’ of any semisimple, con-
nected and simply connected compact Lie group G: the cotangent bundle,
the Heisenberg double and the internally fused quasi-Poisson double. On
each double we identify a pair of ‘master integrable systems’ and inves-
tigate their Poisson reductions. In the simplest cotangent bundle case,
the reduction is defined by taking quotient by the cotangent lift of the
conjugation action of G on itself, and this naturally generalizes to the
other two doubles. In each case, we derive explicit formulas for the re-
duced Poisson structure and equations of motion and find that they are
associated with well known classical dynamical r-matrices. Our principal
result is that we provide a unified treatment of a large family of reduced
systems, which contains new models as well as examples of spin Suther-
land and Ruijsenaars–Schneider models that were studied previously. We
argue that on generic symplectic leaves of the Poisson quotients the re-
duced systems are integrable in the degenerate sense, although further
work is required to prove this rigorously.
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1. Introduction

The variants of the method of Hamiltonian reduction [5,38,43] play a pivotal
role in deriving and analyzing integrable Hamiltonian systems. The starting
point in the applications is always a manifestly integrable system on a higher-
dimensional phase space that possesses a large symmetry group, which is used
for setting up its reduction. As examples, it is sufficient to mention that key
properties of the ubiquitous Calogero–Moser–Sutherland models [7,34,52] and
their relativistic [45] and spin generalizations [22,28,30] became transparent
from investigations based on this method [6,8,15,21,24,41]. For reviews of
the subject, see [5,36,37,40]. Building on our experience gained from previous
studies [11–14,16,19], here we wish to explore a general set of reductions of
important families of unreduced ‘master systems.’

Let G be a compact, connected and simply connected Lie group whose
Lie algebra G is simple. In this paper we study Poisson reductions of three
phase spaces associated with G. The first is the cotangent bundle

M := T ∗G � G × G, (1.1)

presented by means of right-trivialization and the identification G∗ � G. Its
Poisson–Lie generalization is the Heisenberg double [48]

M := G × B, (1.2)

which is obtained by combining the standard multiplicative Poisson structures
on G and its dual Poisson–Lie group B into a symplectic structure. This is a
natural generalization since T ∗G is the Heisenberg double for G equipped with
the zero Poisson structure. The third unreduced phase space is the so-called
internally fused quasi-Poisson double [1], denoted

D := G × G, (1.3)
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that is closely related to the moduli space of flat G-connections on the punc-
tured torus. Each of these spaces carries a pair of degenerate integrable sys-
tems, and reductions of those to integrable many-body models and their spin
extensions have already received considerable attention (see, e.g., [12,19,41,42]
and references therein). The goal of this paper is to describe a very general
reduction of these ‘master integrable systems’ in all three cases. We shall ap-
ply the same technique in our study of the distinct cases, and shall highlight
the similarities between the resulting reduced systems. The principal case of
our interest is the Heisenberg double M. We include the cotangent bundle in
our treatment mainly in order to motive the generalizations, although new
results will be obtained also in this familiar case. The unified treatment that
we present has not yet been developed in the literature, and could be useful
for further detailed explorations of the reduced systems descending from the
three doubles.

The doubles of G are G-manifolds, where M carries the cotangent lift of
the conjugation action of G on itself, G acts on D by diagonal conjugations,
and there is a similar action on M built from the conjugation action and the
dressing action of G on B. The Poisson brackets on M and M and the quasi-
Poisson bracket on D share the property that the G-invariant smooth functions
form a closed Poisson algebra. By Poisson reduction, we mean the restriction
to this Poisson algebra of invariant functions, which is to be thought of as a
Poisson structure on the corresponding quotient space defined by the G-action.
The first principal goal of our work is to derive an effective description of these
‘reduced Poisson algebras.’

Denote C∞(G)G, C∞(G)G and C∞(B)G the respective rings of invariant
real functions. The functional dimension of these rings of functions equals the
rank � of G. All three doubles are Cartesian products as manifolds, and we
let π1 and π2 denote the projections onto the first and second factors of those
Cartesian products. Then, for each of the three doubles, π∗

1(C∞(G)G) provides
an Abelian Poisson subalgebra of the Poisson algebra of the G-invariant func-
tions. We call the elements of π∗

1(C∞(G)G) pullback invariants. Using π2 in
the analogous manner, one also obtains Abelian Poisson algebras of pullback
invariants. The Poisson and quasi-Poisson structures allow one to associate a
(Hamiltonian or quasi-Hamiltonian) vector field to every function, defining an
evolution equation. We shall explain that the evolution equation obtained from
any pullback invariant gives rise to a degenerate integrable system [33,35,42],
which means1 that it admits a ring of constants of motion whose functional
dimension is equal to 2 dim(G) − �, where 2 dim(G) is the dimension of the
phase space. We shall also explicitly describe the integral curves of the pullback
invariants and their constants of motion in each case. This yields generaliza-
tions of well-known results concerning T ∗G. Our second principal goal is to
characterize the reductions of the degenerate integrable systems induced on
the master phase spaces by the pullback invariants.

1Here, we implicitly extended Definition 1.1 to the non-symplectic case of the quasi-Poisson
double.
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For clarity, recall that the functional dimension of a ring of smooth func-
tions F on a manifold X is k if there exists an open dense submanifold X̃ ⊆ X
such that the exterior derivatives of the elements of F span a k-dimensional
subspace of T ∗

x X for every x ∈ X̃. The fact that the rings of invariants of our
concern have functional dimension � = rank(G) follows from basic Lie theoretic
results, and the pullback invariants obviously have the same functional dimen-
sion as the original invariants. Below, the functional dimension of a Poisson
algebra is understood to mean the functional dimension of the underlying ring
of functions.

The quotient spaces of the master phase spaces are not smooth mani-
folds, but stratified Poisson spaces [38,50,51], which still can be decomposed
into disjoint unions of smooth symplectic leaves. However, this is quite a com-
plicated structure, and we will be content with describing the Poisson algebras
of the invariants, and the reductions of the evolution equations generated by
the pullback invariants, in terms of convenient partial gauge fixings. To explain
what this means, we next outline the case of the cotangent bundle. We then
briefly summarize how the picture generalizes to the other cases.

The Motivating Example of T ∗G and Its Generalizations

Let us fix a maximal torus G0 < G and let G0 < G be its Lie algebra. The group
G acts on itself by conjugations and on G by the adjoint action. We denote by
Greg and Greg the dense open subsets formed by the elements whose isotropy
subgroups are maximal tori in G, and let Greg

0 and Greg
0 be their intersections

with G0 and G0, respectively. Then, the G-orbits through the submanifolds

Mreg
0 := {(Q, J) ∈ M | Q ∈ Greg

0 } and
M′reg

0 := {(g, λ) ∈ M | λ ∈ Greg
0 } (1.4)

fill dense open subsets of M, denoted Mreg and M′reg. The restriction of
functions leads to isomorphisms

C∞(Mreg)G ⇐⇒ C∞(Mreg
0 )N and C∞(M′reg)G ⇐⇒ C∞(M′reg

0 )N,

(1.5)

where N < G denotes the normalizer of G0 inside G. Speaking colloquially,
we say that Mreg

0 and M′reg
0 provide partial gauge fixings for the G-action

on the dense open submanifolds Mreg ⊂ M and M′reg ⊂ M, and N is the
corresponding residual gauge group. The key point of our work is that we
use the isomorphisms (1.5) of the respective rings of functions to transfer the
Poisson bracket of the G-invariant functions to the rings C∞(Mreg

0 )N and
C∞(M′reg

0 )N. By definition, this gives the ‘reduced Poisson algebras’
(
C∞(Mreg

0 )N, {−,−}red

)
and

(
C∞(M′reg

0 )N, {−,−}′
red

)
. (1.6)

Since any smooth, even continuous, function can be recovered from its restric-
tion to a dense open subset, these Poisson algebras furnish two convenient
descriptions of the Poisson brackets of the elements of C∞(M)G. Their ex-
plicit formulas are given by Theorems 2.1 and 2.4, the former is well known,
while the latter seems to have escaped attention previously.
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Here, a few clarifying remarks are in order. First, it should be noted
that the reduced Poisson algebras (1.6) are larger than (C∞(M)G, {−,−}),
since not every smooth invariant function on a dense open subset extends
to a smooth function on the full of M. Second, these Poisson algebras can be
extended to G0-invariant smooth functions, for Mreg

0 /G0 is a covering space of
Mreg

0 /N with the fiber given by the Weyl group N/G0; and similar for M′reg
0 .

Without resorting to further ad hoc gauge fixings, it appears difficult to gain
more effective descriptions of the Poisson algebras of the invariant functions.

Now what can we say about the reductions of the two integrable systems
on M? Take an arbitrary function ϕ ∈ C∞(G)G and consider the restric-
tion of the pullback invariant π∗

2(ϕ) to Mreg
0 . This ‘reduced Hamiltonian’ de-

fines a derivation of the elements of C∞(Mreg
0 )N through the Poisson bracket

{−,−}red. This derivation can be presented as a vector field on Mreg
0 , which

then gives rise to a ‘reduced evolution equation’ on Mreg
0 . We find (Proposition

2.3) that the resulting evolution equation takes the following form:

Q̇ = (dϕ(J))0Q, J̇ = [R(Q)dϕ(J), J ]. (1.7)

Here, dϕ denotes the G-valued gradient of ϕ, the subscript zero refers to the
orthogonal decomposition G = G0 + G⊥, and R(Q) ∈ End(G) is a well-known
trigonometric solution of the modified classical dynamical Yang–Baxter equa-
tion [10]. It vanishes on G0 and, writing Q = exp(iq) with q ∈ iGreg

0 , it is given
by R(Q) = 1

2 coth( i
2adq) on G⊥. (Here, iG0 is a subset of the complexifica-

tion of G.) Of course, the so-obtained vector fields and evolution equations are
unique only up to the addition of arbitrary vector fields that are tangent to
the G0-orbits in Mreg

0 , which generate infinitesimal residual gauge transforma-
tions. This ambiguity drops out under the eventual projection to the reduced
phase space M/G. Thus, our slight abuse of the term reduced is harmless.

Similarly, the pullback invariants π∗
1(h) associated with the functions

h ∈ C∞(G)G lead to interesting reduced evolution equations on M′reg
0 . We

find (Proposition 2.6) that they take the following form:

ġ = [g, r(λ)∇h(g)], λ̇ = −(∇h(g))0. (1.8)

Using the Killing form 〈−,−〉G of G, ∇h(g) ∈ G is defined by the relation
〈X,∇h(g)〉G = d

dt

∣
∣
t=0

h(etXg) for all X ∈ G, and r(λ) ∈ End(G) is the rational
dynamical r-matrix that vanishes on G0 and operates on G⊥ as (adλ)−1. These
evolution equations matter up to residual gauge transformations like in the
case of (1.7).

By parametrizing J in (1.7) according to

J = −ip − R(Q)ξ − 1
2
ξ with p = iG0, ξ ∈ G⊥, (1.9)

and taking ϕ(J) = − 1
2 〈J, J〉G , the system (1.7) can be recognized as a spin

Sutherland system, for which the components of q and p form canonically
conjugate pairs and ξ is a so-called collective spin variable [19,30]. (See also
Eq. (2.37).) For G = SU(n), restriction to a small symplectic leaf in the re-
duced phase space gives the trigonometric (spinless) Sutherland system [24].
On the same symplectic leaf, but using a different parametrization and the
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Hamiltonian h(g) = �tr(g), the system (1.8) yields a specific real form of the
rational Ruijsenaars–Schneider system, which enjoys a duality relation with
the trigonometric Sutherland system [14,21].

The above sketched results about reductions of the cotangent bundle
are known to experts, especially the reduced system described in terms of
Mreg

0 . In this paper we take the lead from this example and characterize the
reductions of the Heisenberg double M and the quasi-Poisson double D in a
similar manner. To highlight a key feature of these generalizations, note that
the first model Mreg

0 was obtained by ‘diagonalizing’ the first one out of the
pairs of elements forming M, and the second model M′reg

0 was obtained by
diagonalizing the second constituent of those pairs. The pullback invariants
built by using π∗

2 then led to interesting reduced evolution equations on Mred
0 ,

and those built on π∗
1 led to interesting evolution equations on M′reg

0 . The
situation turns out fully analogous for the reductions of the other two doubles.
In particular, we shall derive two presentations of the Poisson algebras of the G-
invariant functions, and describe the form of the interesting reduced evolution
equations induced by the two rings of pullback invariants. Concerning the
Heisenberg double, these results are summarized by Theorem 3.5 together
with Proposition 3.8, and Theorem 3.10 with Proposition 3.12, which are tied
with two partial gauge fixings akin to what is displayed in (1.4) for T ∗G. The
analogous results pertaining to the quasi-Poisson double are formulated in
Theorem 4.3 and Proposition 4.4. These theorems and propositions constitute
the main new results of the present paper.

Motivated by the case of T ∗G [41] and the results of [14–16,21], we say
that the two kinds of reduced systems that arise from the same double are
in duality with each other. In the case of the quasi-Poisson double, duality
actually becomes self-duality. The meaning of these dualities will be elaborated
in the text.

Degenerate Integrability and Reduction

First of all, let us specify the precise notion of degenerate integrability used in
this paper.

Definition 1.1. By definition [35], a degenerate integrable system on a symplec-
tic manifold of dimension N consists of an Abelian Poisson subalgebra of the
Poisson algebra of smooth functions such that its functional dimension, δ, is
smaller than N/2, and the functional dimension of its centralizer is (N − δ).
To put it more plainly, the system is built on 1 ≤ δ < N/2 functionally
independent, mutually Poisson commuting Hamiltonians that admit (N − δ)
functionally independent joint constants of motion. An additional requirement
is that the commuting Hamiltonians should possess complete flows.

Degenerate integrability is a stronger property than Liouville integrabil-
ity, which corresponds to the limiting case δ = N/2. For the structure of the
systems having this property, see [33,35,42,43]. Further variants of the notion
of integrability, as well as their extension to Poisson manifolds, and even to
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Abelian Lie algebras of non-Hamiltonian vector fields, are also discussed in the
literature [23,29,53].

The restrictions of our reduced systems are expected to give degenerate
integrable systems on generic symplectic leaves of the quotient space of the
double in each case. Reshetikhin has argued [41] that this is the case for the
complex holomorphic analog of the cotangent bundle T ∗G, and his arguments
can be adapted to the compact real form. His joint paper with Arthamonov
[4] leads to the same conclusion regarding the quasi-Poisson double. It may
well be that integrability holds on all symplectic leaves (with only Liouville
integrability on exceptional leaves), but we cannot prove this at present. Nev-
ertheless, we deem it worthwhile to outline two mechanisms that point toward
the heuristic statement that ‘degenerate integrability is generically inherited
by the reduced systems engendered by Poisson reduction.’

Let V be a G-invariant vector field on a G-manifold X. Equivalently, if
x(t) is an integral curve of V , then Aη(x(t)) is also an integral curve for each
η ∈ G, where Aη denotes the diffeomorphism of X associated with η ∈ G.
Suppose now that G is compact and denote by dG the probability Haar measure
on G. For any real function F ∈ C∞(X), define the function FG ∈ C∞(X)G

by averaging the functions A∗
ηF over G,

FG(x) :=
∫

G

F(Aη(x))dG(η), ∀x ∈ X. (1.10)

Clearly, if F is a constant of motion for the vector field V , then FG is a G-
invariant constant of motion for V . In [53], averaging was used for arguing that,
generically, degenerate integrability survives Poisson reduction. In this work,
it was assumed that the G-action is generated by an equivariant moment map
into G∗. However, the fine structure of the quotient space of X was treated
only rather casually. See also the review [23]. The averaging of the unreduced
constants of motion is applicable in all cases that we study except for the
pullback invariants from π∗

1(C∞(G)G) ⊂ C∞(M), since their Hamiltonian
vector fields are not G-invariant (but of course are projectable on M/G). This
is explained in Appendix C.

Now, we formulate a second mechanism whereby integrability can descend
to reduced systems. We extracted this mechanism from the work of Reshetikhin
[41]. It will turn out to be applicable to all of our examples of interest. We begin
by listing a number of strong assumptions. First, consider two G-manifolds X
and Y for which both quotient spaces X/G and Y/G are manifolds such that
πX : X → X/G and πY : Y → Y/G are smooth submersions. Second, suppose
that Ψ : X → Y is a smooth, G-equivariant, surjective map. Then, Ψ gives
rise to a well-defined smooth, surjective map Ψred : X/G → Y/G, for which

πY ◦ Ψ = Ψred ◦ πX . (1.11)

Third, suppose that we have a vector field V on X that is projectable to a
vector field Vred on X/G. Coming to the crux, if we now assume that Ψ is
constant along the integral curves of V , then we obtain that Ψred is constant
along the integral curves of Vred. Indeed, this holds since the integral curves
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of Vred result by applying πX to the integral curves of V . In such a situation,
Ψ∗(C∞(Y )) gives constants of motion for V and Ψ∗

red(C∞(Y/G)) gives con-
stants of motion for Vred. In particular, the functional dimension of the ring of
constants of motion for the projected vector field Vred is at most dim(G) less
than the dimension of Y . Under favorable circumstances, this mechanism can
be used to show the degenerate integrability of the reduced system on X/G
that descends from the commuting (Hamiltonian) vector fields of a degener-
ate integrable system on X. The unreduced commuting Hamiltonians must be
G-invariant and must remain independent after reduction. To put this mecha-
nism into practice, one may have to restrict oneself to dense open submanifolds
and to generic symplectic leaves of the quotient Poisson structure. This will
become clear in the examples.

Layout and Notations

The organization of the rest of the paper is shown by the table of contents.
Sections 2, 3 and 4 are devoted to the three doubles, starting from the cotan-
gent bundle. In each case, we first describe the unreduced phase space and
its degenerate integrable systems, and then turn to their reductions. We have
already delineated the theorems and proposition that contain our main new
results. These results and open problems are briefly discussed in Sect. 5. Three
appendices are also included, which contain auxiliary material. In particular,
Appendix A summarizes some Lie theoretic background that the reader may
wish to look at before reading Sect. 3.

Throughout the paper, our notations ‘pretend’ that we are dealing with
matrix Lie groups. For example, ηJη−1 in Eq. (2.5) denotes the adjoint action
of η ∈ G on J ∈ G. As another example, Xg in (2.13) stands for the value at
g ∈ G of the right-invariant vector field on G associated with the element X
from the Lie algebra G of G. Such matrix notations simplify many formulas
considerably, and can be easily converted into more abstract notation if de-
sired. Then, one can verify that our results are valid for abstract Lie groups
as well. Alternatively, one may employ faithful matrix representations of the
underlying Lie groups.

2. The Case of the Cotangent Bundle T ∗G

Let G be a connected and simply connected compact Lie group whose Lie alge-
bra G is simple. In this section, we describe two degenerate integrable systems
on the cotangent bundle T ∗G and characterize their Poisson reduction induced
by the conjugation action of G. The first system contains the Hamiltonian that
generates free geodesic motion on G, and its reduction leads to a trigonometric
spin Sutherland model. The reduction of the other system on T ∗G gives ratio-
nal spin Ruijsenaars–Schneider type models. Most of the results presented in
this section are available in the literature [19,41]. We include their treatment
mainly in order to motivate the subsequent generalizations. However, the de-
scriptions of the reduced Poisson brackets and equations of motion as given
by Theorem 2.4 and Proposition 2.6 appear to be new.
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Let us identify the dual space G∗ with G using the (negative definite) inner
product 〈−,−〉G , which is a multiple of the Killing form, and then identify
M := T ∗G with G×G using right translations. The canonical Poisson bracket
on the phase space

M = G × G = {(g, J) | g ∈ G, J ∈ G} (2.1)

can be written as

{F ,H}(g, J) = 〈∇1F , d2H〉G − 〈∇1H, d2F〉G + 〈J, [d2F , d2H]〉G , (2.2)

where the derivatives are taken at (g, J). Here and below, we use the G-valued
derivatives of any F ∈ C∞(M), defined by

〈X,∇1F(g, J)〉G + 〈X ′,∇′
1F(g, J)〉G :=

d
dt

∣
∣
∣
∣
t=0

F(etXgetX′
, J),

∀(g, J) ∈ M, X,X ′ ∈ G, (2.3)

and

〈X, d2F(g, J)〉G :=
d
dt

∣
∣
∣
∣
t=0

F(g, J + tX), ∀(g, J) ∈ M, X ∈ G. (2.4)

The group G acts by simultaneous conjugations of g and J , i.e., the action of
η ∈ G on M is furnished by the map

Aη : (g, J) �→ (ηgη−1, ηJη−1). (2.5)

This Hamiltonian action is generated by the moment map Φ : M → G,

Φ(g, J) = J − J̃ where J̃ := g−1Jg. (2.6)

The space of G-invariant real functions, C∞(M)G, forms a Poisson subalgebra.
By definition, this is identified as the Poisson algebra of smooth functions
carried by the quotient space M/G.

Let us first consider the invariant Hamiltonians H ∈ C∞(M)G of the
form

H(g, J) = ϕ(J) with ϕ ∈ C∞(G)G. (2.7)

That is, H = π∗
2(ϕ) using the natural projection π2 : M → G. There are

� := rank(G) functionally independent Hamiltonians in this set, since the ring
of invariants for the adjoint action of G on G, C∞(G)G, is freely generated
by � basic invariants (see, e.g., [32], Section 30). The Hamiltonian vector field
engendered by H can be written as

ġ = (dϕ(J))g, J̇ = 0, (2.8)

and its integral curve through the initial value (g(0), J(0)) reads

(g(t), J(t)) = (exp(tdϕ(J(0)))g(0), J(0)). (2.9)

The corresponding constants of motion are given by arbitrary functions of J
and J̃ (2.6). Since ψ(J) = ψ(J̃) for every function ψ ∈ C∞(G)G, and this
gives � relations, the functional dimension of the ring of constants of motion is
2 dim(G) − �. Therefore, the Hamiltonians (2.7) form a degenerate integrable
system.
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Another degenerate integrable system arises from the Hamiltonians H ∈
C∞(M)G of the form

H(g, J) = h(g) with h ∈ C∞(G)G. (2.10)

In other words, H = π∗
1(h) with the projection π1 : M → G. These Hamilto-

nians are in involution and form a ring of functional dimension rank(G), too.
The corresponding evolution equations read

ġ = 0, J̇ = −∇h(g), (2.11)

and their flows are given by

(g(t), J(t)) = (g(0), J(0) − t∇h(g(0))) . (2.12)

The constants of motion are now found as arbitrary functions of the pair (g,Φ),
where Φ is the moment map (2.6). To show that the functional dimension of
this ring of functions is 2 dim(G) − rank(G), consider the isotropy subalgebra
of g,

G(g) := {X ∈ G | Xg − gX = 0}, (2.13)

whose dimension equals � = rank(G) for generic g. Then, notice the identity

〈Φ(g, J),X〉G = 0 for all X ∈ G(g). (2.14)

On a dense open subset of M, this implies � relations between the components
of Φ(g, J), and apart from this Φ varies freely if g is generic. It follows that
the functional dimension of the ring of constants of motion is 2 dim(G) − �,
proving that the Hamiltonians (2.10) yield a degenerate integrable system.

An element of G is regular if its isotropy group with respect to conjuga-
tions is a maximal torus in G, and an element of G is regular if its centralizer
in G is the Lie algebra of a maximal torus. We fix a maximal torus G0 < G
and let G0 denote its Lie algebra. Then, Greg, Greg

0 and Greg, Greg
0 stand for the

corresponding open dense subsets of regular elements. We also introduce the
following sets

Mreg := {(g, J) ∈ M | g ∈ Greg},

Mreg
0 := {(Q, J) ∈ M | Q ∈ Greg

0 }, (2.15)

and

M′reg := {(g, J) ∈ M | J ∈ Greg},

M′reg
0 := {(g, λ) ∈ M | λ ∈ Greg

0 }. (2.16)

The submanifolds Mreg
0 ⊂ Mreg and M′reg

0 ⊂ M′reg are stable under the
action of the normalizer of G0 in G, which we denote by N:

N := {η ∈ G | ηG0η
−1 = G0}. (2.17)

Note that G0 is a normal subgroup of N, and the factor group N/G0 is the
Weyl group of the pair (G0, G).
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Any continuous function F on M can be recovered from its restriction
to Mreg

0 , as well as from its restriction to M′reg
0 . The restrictions of the G-

invariant functions enjoy residual N-invariance. It is also easy to see that the
restrictions of functions provide the following isomorphisms:

C∞(Mreg)G ⇐⇒ C∞(Mreg
0 )N (2.18)

and

C∞(M′reg)G ⇐⇒ C∞(M′reg
0 )N. (2.19)

In preparation, now we introduce the dynamical r-matrices that will fea-
ture below. For this purpose, we consider the decomposition

G = G0 + G⊥, (2.20)

where G⊥ is the orthogonal complement of the fixed maximal Abelian subal-
gebra G0 < G with respect to the Killing form. Accordingly, we may write any
X ∈ G as

X = X0 + X⊥ where X0 ∈ G0, X⊥ ∈ G⊥. (2.21)

Then, for any Q ∈ Greg
0 we introduce R(Q) ∈ End(G) by

R(Q)(X) =
1
2
(AdQ + id) ◦ (AdQ − id)−1

|G⊥
(X⊥), (2.22)

using that (AdQ − id) is invertible on G⊥. Moreover, for any λ ∈ Greg
0 we define

r(λ) ∈ End(G) by

r(λ)(X) := (adλ)−1
|G⊥

(X⊥), (2.23)

using that adλ is invertible on G⊥. These linear operators are well-known so-
lutions of the (modified) classical dynamical Yang–Baxter equation [10]. They
vanish identically on G0 and are antisymmetric

〈R(Q)X,Y 〉G = −〈X,R(Q)Y 〉G ,

〈r(λ)X,Y 〉G = −〈X, r(λ)Y 〉G , ∀X,Y ∈ G. (2.24)

With the necessary definitions at hand, we are ready to derive convenient
characterizations of the Poisson algebras of the invariant functions. We begin
by noting that every G-invariant function on M satisfies the basic identity

g−1∇1F(g, J)g − ∇1F(g, J) = [J, d2F(g, J)]. (2.25)

This is a consequence of the property

d
dt

∣
∣
∣
∣
t=0

F (
etXge−tX , etXJe−tX

)
= 0, ∀X ∈ G, (2.26)

taking into account the equality ∇′F(g, J) = g−1∇F(g, J)g.
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2.1. Spin Sutherland Models from Reduction

For any F ∈ C∞(Mreg
0 ) define ∇1F (Q, J) ∈ G0 by

〈X0,∇1F (Q, J)〉G :=
d
dt

∣
∣
∣
∣
t=0

F (etX0Q, J),∀X0 ∈ G0, (Q, J) ∈ Mreg
0 ,

(2.27)

and define d2F (Q, J) ∈ G similarly to (2.4).

Theorem 2.1. Let F,H ∈ C∞(Mreg
0 )N be the restrictions of invariant func-

tions F ,H ∈ C∞(Mreg)G. Defining the reduced Poisson bracket of F and H
by

{F,H}red(Q, J) := {F ,H}(Q, J), ∀(Q, J) ∈ Mreg
0 , (2.28)

the following formula holds:

{F,H}red(Q, J) = 〈∇1F, d2H〉G − 〈∇1H, d2F 〉G + 〈J, [R(Q)
d2F, d2H] + [d2F,R(Q)d2H]〉G , (2.29)

where R(Q) is given by (2.22) and the derivatives are taken at (Q, J).

Proof. In order to evaluate the right-hand side of (2.28), we have to express
the derivatives of F and H in terms of the derivatives of the corresponding
restricted functions. Plainly, we have

d2F(Q, J) = d2F (Q, J) and (∇1F(Q, J))0 = ∇1F (Q, J), (2.30)

where we use the decomposition (2.20). The invariance with respect to G0 < G
implies [J, d2F (Q, J)]0 = 0. For X⊥ := (∇1F(Q, J))⊥ and Y⊥ :=[d2F (Q, J), J ],
the identity (2.25) gives

(AdQ−1 − id)X⊥ = Y⊥. (2.31)

This can be solved:

X⊥ = AdQ ◦ (id − AdQ)−1Y⊥ =
(

1
2
id + R(Q)

)
Y⊥ (2.32)

with R(Q) (2.22), where the inverse is understood to be taken on G⊥. By using
these equalities as well as the antisymmetry (2.24) and the invariance property
of the Killing form, at (Q, J) we obtain

〈∇1F , d2H〉G = 〈∇1F, d2H〉G +
1
2
〈J, [d2H, d2F ]〉G + 〈J, [d2F,R(Q)d2H]〉G .

(2.33)

Inserting this and 〈∇1H, d2F〉G into (2.2), together with 〈J, [d2F , d2H]〉G =
〈J, [d2F, d2H]〉G , leads to the claimed formula (2.29). �

Remark 2.2. On account of the isomorphism (2.18), the formula (2.29) defines
a Poisson bracket on C∞(Mreg

0 )N, which can be identified with the ring of
smooth functions on Mreg/G � Mreg

0 /N. This space of functions is larger
than C∞(M/G), since there exist G-invariant smooth functions on Mreg that
do not extend smoothly to the full manifold M. (For example [18], in the G =
SU(n) case the ordered eigenvalues of g ∈ G give such functions.) On the other
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hand, the same formula (2.29) yields a Poisson bracket also on C∞(Mreg
0 )G0 ,

since Mreg
0 /G0 is a covering space of Mreg

0 /N, with the fibers labeled by the
elements of the Weyl group N/G0. To avoid any possible confusion, we note
that in (2.29) 〈∇1F, d2H〉G = 〈∇1F, (d2H)0〉G since ∇1F is G0-valued, and
similarly for the second term.

The following statement is an immediate consequence of Theorem 2.1
and the identity

[J, dϕ(J)] = 0, ∀J ∈ G, (2.34)

which is verified by every ϕ ∈ C∞(G)G.

Proposition 2.3. If H(g, J) = ϕ(J) with ϕ ∈ C∞(G)G, then for its restriction
H ∈ C∞(Mreg

0 )N and any F ∈ C∞(Mreg
0 )N the Poisson bracket (2.29) reads

{F,H}red(Q, J)=〈∇1F (Q, J),dϕ(J)〉G +〈d2F (Q, J),[R(Q)dϕ(J), J ]〉G . (2.35)

This gives the derivative of F with respect to an evolution vector field on Mreg
0 ,

and the corresponding ‘reduced evolution equation’ on Mreg
0 can be taken to be

Q̇ = (dϕ(J))0Q, J̇ = [R(Q)dϕ(J), J ]. (2.36)

The solutions of the evolution equation (2.36) result by applying suitable
(point dependent) G-transformations to the unreduced integral curves (2.9),
and they project onto the reduced dynamics on Mreg/G � Mreg

0 /N. This
follows from the general theory of Hamiltonian reduction [38]. Of course, the
evolution vector field on Mreg

0 is not unique, because the derivative of F ∈
C∞(Mreg

0 )N is zero along any vector field that is tangent to the orbits of
G0 in Mreg

0 . We fixed this ambiguity by requiring that the derivative of any
F ∈ C∞(Mreg

0 ) should be given by the right-hand side of (2.35).
The reduced system governed by the Poisson bracket (2.29) and equations

of motion (2.36) can be interpreted as a spin Sutherland model. Since this is
well known [19,30], we only note that for ϕ(J) := − 1

2 〈J, J〉G the parametriza-
tion (1.9) of J by the new variables q (with Q = eiq), p and ξ leads to

− 1
2
〈J, J〉G = −1

2
〈ip, ip〉G +

1
2

∑

α>0

|ξα|2
|α|2 sin2(α(q)/2)

, (2.37)

which is a standard spin Sutherland Hamiltonian. Here, the sum is over the
positive roots of the complexification GC of G with respect to the Cartan
subalgebra GC

0 < GC, and the spin variable ξ ∈ G⊥ is expanded as ξ =∑
α>0(ξαEα − ξ∗

αE−α) using root vectors E±α (normalized according to Ap-
pendix A).

2.1.1. Degenerate Integrability After Reduction. We now discuss how the
mechanism outlined around Eq. (1.11) is applicable to the present case. By
inspecting the restriction on Mreg

0 , it is easily seen that π∗
2(C∞(G)G) gives

rise to � = rank(G) generically independent Hamiltonians on M/G. Let us
now define the smooth, G-equivariant map Ψ1 : M → G × G by

Ψ1(g, J) := (J̃ , J) with J̃ = g−1Jg, (2.38)
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where η ∈ G acts on G×G by applying Adη to both components of (a, b) ∈ G×
G. Then, taking any function χ ∈ C∞(G×G)G, the function Ψ∗

1(χ) ∈ C∞(M)G

is a smooth, G-invariant constant of motion. We next outline a train of thought
indicating that these constants of motion guarantee degenerate integrability
after reduction.

The isotropy subgroup of generic elements from the image of Ψ1 is clearly
just the center ZG of G. These generic elements form a manifold Y of dimen-
sion 2 dim(G) − �, and its pre-image X ⊂ M is a dense, open, G-invariant
subset. Thus, taking Ψ := Ψ1 in (1.11), we obtain dim(G) − � functionally
independent constants of motion for the restriction of the reduced system to
X/G ⊂ M/G. By using the moment map Φ (2.6), the G-invariant functions of
the form φ◦Φ, with any φ ∈ C∞(G)G, descend to � independent Casimir func-
tions on M/G. Fixing the values of these Casimir functions, generically one
obtains a symplectic leaf of dimension dim(G)−� in M/G. Thus, on the inter-
section of such a generic symplectic leaf with X/G, there remain dim(G) − 2�
independent constants of motion. This is sufficient for degenerate integrability
since the commuting reduced Hamiltonians remain independent on the generic
symplectic leaves.

The above arguments make us confident to expect degenerate integrabil-
ity on generic symplectic leaves of M/G. These arguments essentially coincide
with those presented by Reshetikin [41] for the corresponding complex holo-
morphic systems. A more complete, rigorous analysis of reduced integrability
is beyond the scope of the present paper.

2.2. The Duals of the Spin Sutherland Models

Now, we turn to the characterization of the Poisson algebra of the invariant
functions in terms of their restriction to M′reg

0 (2.16). For any F ∈ C∞(M′reg
0 ),

d2F (g, λ) ∈ G0 is defined by

〈X0, d2F (g, λ)〉G :=
d
dt

∣
∣
∣
∣
t=0

F (g, λ + tX0),∀X0 ∈ G0, (g, λ) ∈ M′reg
0 ,

(2.39)

and the derivatives with respect to the first variable are given by (2.3).

Theorem 2.4. Let F,H ∈ C∞(M′reg
0 )N be restrictions of invariant functions

F ,H ∈ C∞(M′reg)G. Defining the reduced Poisson brackets of F and H by

{F,H}′
red(g, λ) := {F ,H}(g, λ), ∀(g, λ) ∈ M′reg

0 , (2.40)

the following formula holds:

{F,H}′
red(g, λ) = 〈∇1F, d2H〉G − 〈∇1H, d2F 〉G

+〈∇′
1F, r(λ)∇′

1H〉G − 〈∇1F, r(λ)∇1H〉G , (2.41)

where r(λ) is given by (2.23) and the derivatives are taken at (g, λ).

Proof. First of all, we remark that

∇1F(g, λ) = ∇1F (g, λ), (d2F(g, λ))0 = d2F (g, λ), (2.42)
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and, as a consequence of the invariance under G0 < G,

(∇′
1F(g, λ) − ∇1F(g, λ))0 = 0. (2.43)

The subscript 0 refers to the decomposition (2.21). In view of the formula (2.2),
we have to express (d2F(g, λ))⊥ in terms of the derivatives of F with respect
to the variable g. By applying (2.25) at (g, λ) and using the above relations,
we find

(d2F(g, λ))⊥ = r(λ) (∇′
1F (g, λ) − ∇1F (g, λ)) (2.44)

with r(λ) (2.23). Then, substitution in the right-hand side of (2.40) leads to

{F,H}′
red = 〈∇1F, d2H〉G − 〈∇1H, d2F 〉G

+〈∇1F, r(λ)(∇′
1H − ∇1H)〉G − 〈∇1H, r(λ)(∇′

1F − ∇1F )〉G
+〈λ, [r(λ)(∇′

1H − ∇1H), r(λ)(∇′
1F − ∇1F )]〉G . (2.45)

This can be simplified by virtue of the classical dynamical Yang–Baxter equa-
tion [10], which can be written as [19]

[r(λ)X, r(λ)Y ] = r(λ) ([X, r(λ)Y ] + [r(λ)X,Y ])

+ dY0r(λ)X − dX0r(λ)Y +
∑

i

Ki〈X, dKi
r(λ)Y 〉G , (2.46)

∀X,Y ∈ G, where dX0 , dY0 and dKi
are directional derivatives, and 〈Ki,K

j〉 =
δj
i with a pair of dual bases of G0. We observe that

〈
λ,

∑

i

Ki〈X, dKi
r(λ)Y

〉

G
= 〈X, dλr(λ)Y 〉 and dλr(λ) = −r(λ).

(2.47)

We now take X := (∇′
1H − ∇1H), and Y := (∇′

1F − ∇1F ), for which
X0 = Y0 = 0. Noticing that 〈λ, r(λ)Z〉G = 0 for all Z ∈ G, because r(λ)
is antisymmetric (2.24) and vanishes on G0, we obtain

〈λ, [r(λ)(∇′
1H − ∇1H), r(λ)(∇′

1F − ∇1F )]〉G
= −〈∇′

1H − ∇1H, r(λ)(∇′
1F − ∇1F )〉G . (2.48)

By inserting this into (2.45) and collecting terms, we arrive at the claimed
formula (2.41). �

Remark 2.5. The formula (2.41) defines a Poisson bracket not only on
C∞(M′reg

0 )N, but also on C∞(M′reg
0 )G0 . It should be noted that 〈∇1F, d2H〉G

= 〈(∇1F )0, d2H〉G since d2H is G0-valued.

The next result follows from Theorem 2.4 by using that

∇h = ∇′h, ∀h ∈ C∞(G)G. (2.49)

Proposition 2.6. If H is the restriction of an invariant Hamiltonian H = π∗
2h

displayed in (2.10), then (2.41) simplifies to

{F,H}′
red(g, λ) = −〈d2F (g, λ),∇h(g)〉G

+〈∇′
1F (g, λ) − ∇1F (g, λ), r(λ)∇h(g)〉G . (2.50)
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The corresponding reduced evolution equation on M′reg
0 can be taken to be

ġ = [g, r(λ)∇h(g)], λ̇ = −(∇h(g))0. (2.51)

The counterpart of the discussion presented after Proposition 2.3 is ap-
plicable in this case as well. We merely note that the solutions of the evolution
equations (2.51) can be obtained by applying suitable G-transformations to
those unreduced integral curves (2.12), whose initial values belong to M′reg

0 .
It is known [14] that in the G = SU(n) case the above reduced system

contains a real form of the rational Ruijsenaars–Schneider model on a special
symplectic leaf. The leaf in question arises by fixing the Casimir functions φ◦Φ
(φ ∈ C∞(G)G) in such a way that the corresponding joint level surface in G �
G∗ is a minimal (co)adjoint orbit of dimension 2(n−1). The main Hamiltonian
of this model is associated with the function h(g) = �tr(g) on G. This lends
justification to the terminology ‘spin Ruijsenaars–Schneider type models’ [41]
as a name for the models that stem from the integrable Hamiltonians (2.10) in
general. However, in contrast to the spin Sutherland models described in the
preceding subsection, it is still an open problem to separate the variables of
these models into canonically conjugate pairs complementing the components
of λ and additional ‘spin’ degrees of freedom.

2.2.1. Degenerate Integrability and Duality. The degenerate integrability of
the reduced systems built on the pullback invariants π∗

1(C∞(G)G) can be an-
alyzed quite similarly to the previous case of π∗

2(C∞(G)G). Now one may use
the map

Ψ2 : M → G × G defined by Ψ2(g, J) := (g,Φ(g, J)), (2.52)

which is constant along the flows of any H ∈ π∗
1(C∞(G)G), and is G-equivariant

with respect to the same action that operates on M. The arguments presented
at the end of Sect. 2.1 go through with little modification, as is discussed in
[41] in the holomorphic case. In particular, employing any χ ∈ C∞(G × G)G,
the function Ψ∗

2(χ) ∈ C∞(M)G is a smooth, G-invariant constant of motion.
Incidentally, the maps Ψ1 (2.38) and Ψ2 (2.52) are Poisson maps with

respect to suitable Poisson structures on the target spaces G × G and G × G,
which can be easily found by requiring this property to hold. Therefore, the
just mentioned G-invariant constants of motion Ψ∗

2(χ) form a closed Poisson
subalgebra of C∞(M)G (and similarly for Ψ1).

Finally, let us comment on the duality between the spin Sutherland and
the spin Ruijsenaars-Schneider systems. To this end, we regard the functions
of Q in (2.15) and λ in (2.16) as ‘position variables’ for the respective models.
Those functions of Q that descend to well-defined functions on M/G arise
from π∗

1(C∞(G)G) and the functions of λ having the same property arise from
π∗

2(C∞(G)G). In this way, one of the two sets of pullback invariants plays the
role of ‘global position variables’ in every reduced system, while the other set
engenders the commuting Hamiltonians of interest of the same system. The
role of the two sets of pullback invariant is interchanged in the two systems.
That is, since both systems leave on the same phase space M/G, the global
position variables of one system are the interesting Hamiltonians of the other
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one, and vice versa. This kind of duality was originally discovered by Ruijse-
naars for spinless models (see the review [44] and references therein). We call
it Ruijsenaars duality or action-position duality, taking into account that in
integrable models the commuting Hamiltonians are in bijective correspondence
with the action variables. We prefer this to the term action-angle duality, which
is also used in the literature.

3. Integrable Systems from the Heisenberg Double

In this section, we first describe the Heisenberg double associated with a com-
pact Lie group G and specify two degenerate integrable systems on this phase
space. We then study the Poisson reduction of these systems. For notations,
see the remark at the end of Sect. 1 and also Appendix A. For the underlying
theory of Poisson–Lie groups, one may consult the reviews [27,49].

3.1. The Basics of the Heisenberg Double

We start with a compact simple Lie algebra, G, and pick a maximal Abelian
subalgebra, G0. These can be regarded as real forms of a complex simple Lie
algebra, GC, and its Cartan subalgebra, GC

0 . Choosing a system of positive
roots, we obtain the triangular decomposition

GC = GC

< + GC

0 + GC

>, (3.1)

where GC
> is spanned by the eigenvectors associated with the positive roots.

Referring to this, we may present any X ∈ GC as

X = X< + X0 + X> (3.2)

with the terms taken from the corresponding subspaces. The real vector space

B := iG0 + GC

> (3.3)

is a Lie subalgebra of the ‘realification’ GC

R
of GC (i.e., GC viewed as a real Lie

algebra), and it gives rise to the direct sum decomposition

GC

R = G + B. (3.4)

Correspondingly, we may write any X ∈ GC

R
as

X = XG + XB, XG ∈ G, XB ∈ B. (3.5)

We equip GC

R
with the invariant, non-degenerate, symmetric bilinear form

〈−,−〉I, defined as the imaginary part of the complex Killing form 〈−,−〉 of
GC. The decomposition (3.4) represents a so-called Manin triple [27,49], since
G and B are isotropic subalgebras of GC

R
with respect to 〈−,−〉I.

Let GC

R
be a connected and simply connected real Lie group whose Lie

algebra is GC

R
, and denote G and B its connected subgroups associated with

the Lie subalgebras G and B. These subgroups are simply connected and G is
compact. Later we shall also need the connected subgroup GC

0 < GC

R
associated

with GC
0 as well as the subgroups G0 < G and B0 < B associated with G0 and

iG0. Occasionally, we view GC

R
as the realification of the corresponding complex

Lie group, GC.
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Now, we recall [48,49] that the group manifold

M := GC

R (3.6)

carries the following two natural Poisson brackets:

{F,H}± := 〈∇F, ρ∇H〉I ± 〈∇′F, ρ∇′H〉I with ρ :=
1
2

(πG − πB) , (3.7)

where πG and πB are the projections from GC

R
onto G and B, respectively, de-

fined by means of (3.4). Here, we use the GC

R
-valued ‘left and right derivatives’

of F,H ∈ C∞(M):

〈X,∇F (K)〉I + 〈X ′,∇′F (K)〉I :=
d
dt

∣
∣
∣
∣
t=0

F
(
etXKetX′)

, ∀K ∈ M, X,X ′ ∈ GC

R .

(3.8)

The minus bracket makes M into a Poisson–Lie group, of which G and B are
Poisson–Lie subgroups. Their inherited Poisson brackets take the form

{ϕ1, ϕ2}B(b) = 〈D′ϕ1(b), b−1(Dϕ2(b))b〉I, (3.9)

and

{f1, f2}G(g) = −〈D′f1(g), g−1(Df2(g))g〉I. (3.10)

The derivatives are G-valued for ϕi ∈ C∞(B) and B-valued for fi ∈ C∞(G),
reflecting that these subalgebras are in duality with respect to 〈−,−〉I. To be
sure, we write the definitions

〈X,Dϕ(b)〉I + 〈X ′,D′ϕ(b)〉I :=
d
dt

∣
∣
∣
∣
t=0

ϕ
(
etXbetX′)

, ∀b ∈ B, X,X ′ ∈ B,

(3.11)

〈X,Df(g)〉I + 〈X ′,D′f(g)〉I :=
d
dt

∣
∣
∣
∣
t=0

f
(
etXgetX′)

, ∀g ∈ G, X,X ′ ∈ G,

(3.12)

where ϕ ∈ C∞(B) and f ∈ C∞(G). We shall also use the G-valued derivatives
of f ∈ C∞(G),

〈X,∇f(g)〉G + 〈X ′,∇′f(g)〉G :=
d
dt

∣
∣
∣
∣
t=0

f(etXgetX′
), ∀g ∈ G, X,X ′ ∈ G,

(3.13)

and note that the Killing form 〈−,−〉G of G is the restriction to G of the
complex Killing form 〈−,−〉 of GC. One has

〈X,Y 〉G = 〈X, iY 〉I = 〈X, (iY )B〉I, ∀X,Y ∈ G, (3.14)

and thus the two kinds of derivatives of f ∈ C∞(G) are related by

Df = (i∇f)B. (3.15)

Defining Ri ∈ End(G) by

Ri(X) := (−iX)G , ∀X ∈ G, (3.16)
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the relation of the derivatives can also be written as

Df = i∇f + Ri(∇f). (3.17)

Of course, analogous relations hold for the right derivative D′f , too. With
these relations at hand, one can prove the identity

− 〈D′f1(g), g−1Df2(g)g〉I = 〈∇′f1(g), Ri∇′f2(g)〉G − 〈∇f1(g), Ri∇f2(g)〉G .

(3.18)

In terms of the decomposition X = X> + X0 + X<, one has

Ri(X) = i(X> − X<), (3.19)

and the right-hand side of (3.18) has the familiar form of a Sklyanin bracket.
The Poisson bracket {−,−}+ (3.7) corresponds to a symplectic form

[2], and (M, {−,−}+) is called [48] the Heisenberg double of the Poisson–
Lie groups G and B. It is a Poisson–Lie analog2 of the cotangent bundle T ∗G
(and of T ∗B). Any element K ∈ M admits unique (Iwasawa) decompositions
[26] into products of elements of G and B, which we write as

K = gLb−1
R = bLg−1

R with gL, gR ∈ G, bL, bR ∈ B. (3.20)

These decompositions give rise to the maps ΞL,ΞR : M → G and ΛL,ΛR :
M → B,

ΞL(K) := gL, ΞR(K) := gR, ΛL(K) := bL, ΛR(K) := bR. (3.21)

These are all Poisson maps from the (M, {−,−}+) onto the respective Poisson–
Lie groups, and the same is true for the products of any two of these maps into
the same group. Without going into details, we recall that any Poisson map
into a Poisson–Lie group serves as a moment map that generates a (possibly
only infinitesimal) Poisson–Lie action of the corresponding dual group [31]. In
particular, the Poisson map Λ : M → B defined by

Λ(K) := ΛL(K)ΛR(K), ∀K ∈ M, (3.22)

generates the so-called quasi-adjoint action of G on the Heisenberg double. As
was shown in [25], the corresponding action map, A1 : G × M → M , is given
by

A1(η,K) = ηKΞR(ηΛL(K)), ∀η ∈ G, K ∈ M. (3.23)

This is a Poisson map if G × M is equipped with the product Poisson bracket
coming from (G, {−,−}G) and (M, {−,−}+). According to the general theory
[48], the ring of G-invariant real functions, C∞(M)G, forms a Poisson sub-
algebra of (C∞(M), {−,−}+), which is, by definition, the Poisson algebra of
smooth functions on the quotient space M/G. Taking this quotient is an ex-
ample of Poisson reduction. It is worth noting that C∞(M)G is nothing but
the centralizer of Λ∗C∞(B), i.e., C∞(M)G consists of those functions that
Poisson commute with the functions depending only on the moment map Λ
(3.22).

2The cotangent bundle of any Lie group can be viewed as the Heisenberg double of the
group equipped with the identically zero Poisson bracket [48].
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For the implementation of the Poisson reduction, an alternative model of
the Heisenberg double will also prove convenient. This model, which is akin to
a trivialization of the cotangent bundle T ∗G, is the manifold

M := G × B, (3.24)

and we transfer the Poisson bracket from M to M by means of the diffeomor-
phism

m : M → M defined by m := (ΞR,ΛR). (3.25)

Said more directly, the pair (gR, bR) = m(K) is used as a new variable instead
of K ∈ M ≡ GC

R
. It is shown in Appendix B that the map m is a Poisson

diffeomorphism if M is endowed with the following Poisson bracket:

{F ,H}(g, b) =
〈
D′

2F , b−1(D2H)b
〉
I
− 〈

D′
1F , g−1(D1H)g

〉
I

+ 〈D1F ,D2H〉
I
− 〈D1H,D2F〉

I
(3.26)

for functions F ,H ∈ C∞(M). The derivatives on the right-hand side are taken
at (g, b) ∈ G×B, with respect to the first and second variable, according to the
definitions (3.12) and (3.11), respectively. In particular, D1F is B-valued and
D2F is G-valued. An alternative form of (3.26) results by employing G-valued
derivatives with respect to the first variable, defined like in (3.13).

In terms of the model M, the quasi-adjoint action A1 (3.23) turns into
A2 : G × M → M,

A2(η, (b, g)) =
(
ΞR(ηb)−1gΞR(ηb),DressΞR(ηb)−1(b)

)
. (3.27)

Here, we use the dressing action of G on B, defined by

Dressη(b) := ΛL(ηb), ∀η ∈ G, b ∈ B, (3.28)

whose infinitesimal version reads

dressX(b) :=
d
dt

∣
∣
∣
∣
t=0

DressetX (b) = b(b−1Xb)B, ∀X ∈ G, (3.29)

where the decomposition (3.5) is applied to (b−1Xb) ∈ GC

R
. The action A2 is

related to A1 according to

A2
η ◦ m = m ◦ A1

η, ∀η ∈ G, (3.30)

where Ai
η denotes the map of the relevant manifold obtained by fixing the first

argument of Ai. We observe that the G-action A2 (3.27) has the same orbits
as the simpler action given by the map A : G × M → M:

A(η, (g, b)) := (ηgη−1,Dressη(b)). (3.31)

Since the orbits of A are the same as those of the Poisson–Lie action A2, these
two G-actions share the same invariant functions, and thus are equivalent from
the point of view of Poisson reduction.

The real Lie algebra GC

R
carries the Cartan involution, θ, that fixes G

pointwise and multiplies the elements of iG by −1. It lifts to a corresponding
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involutive automorphism Θ of GC

R
, of which G < GC

R
is the fixed point set.

Referring to (3.1), θ maps GC
> onto GC

<. We shall use the notations

Zτ := −θ(Z), Kτ := Θ(K−1), ∀Z ∈ GC

R , ∀K ∈ GC

R. (3.32)

The maps Z �→ Zτ and K �→ Kτ are anti-automorphisms satisfying

Xτ = −X, ∀X ∈ G and Kτ = K−1, ∀K ∈ G. (3.33)

This operation is often denoted simply by dagger, since for the classical Lie
groups one can choose the conventions in such a way that Xτ = X† and
Kτ = K† with dagger denoting the matrix adjoint [26]. Later we shall also
need the closed submanifold

P := exp(iG) ⊂ GC

R, (3.34)

which is diffeomorphic not only to G but also to B. Note that P is a connected
component of the fixed point set of the anti-automorphism K �→ Kτ of GC

R
,

and a diffeomorphism with B is provided by the map

ν : B → P, ν(b) := bbτ . (3.35)

The map (3.35) intertwines the dressing action with the obvious conjugation
action of G on P, since we have

Dressη(b)(Dressη(b))τ = ηbbτη−1, ∀η ∈ G, b ∈ B. (3.36)

This implies that any element of B can be transformed into B0 = exp(iG0) by
the dressing action. As an alternative to G × B, one may also take G × P as
a model of the Heisenberg double.

Remark 3.1. After small notational changes, all considerations of the paper
apply to reductive compact Lie groups as well. For example, one can take
G = U(n), GC = gl(n,C), and GC = GL(n,C), in which case B can be taken
to be the upper triangular subgroup whose diagonal elements are positive real
numbers. Then, Kτ = K†, and P is the space of positive definite, Hermitian
matrices. The reader may keep this example (or the example of G = SU(n))
in mind when reading the text. We restricted ourselves to simple Lie algebras
just in order have a shorter presentation.

3.2. Two Degenerate Integrable Systems on the Heisenberg Double

Now, we present two degenerate integrable systems. For this, we let π1 and π2

be the projections from M onto G and B, respectively,

π1 : (g, b) �→ g, π2 : (g, b) �→ b. (3.37)

Then, consider the following families of functions on M,

π∗
1(C∞(G)G) and π∗

2(C∞(B)G), (3.38)

where the superscript refers to invariance with respect to the conjugation and
dressing actions of G on G and on B, respectively. When presented in terms
of the model M , these become

Ξ∗
R(C∞(G)G) and Λ∗

R(C∞(B)G), (3.39)
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since π1 ◦ m = ΞR and π2 ◦ m = ΛR. Both of these rings of functions have
functional dimension � = rank(G) ≡ dim(G0), since this true for C∞(G)G and
for C∞(B)G (see Appendix A). All the Hamiltonians in (3.39) are invariant
under the quasi-adjoint action of G on M , as is easily seen from Eqs. (3.27)
and (3.30). In order to see that they yield two Abelian Poisson algebras and to
identify their constants of motion, let us describe the flows generated by these
Hamiltonians. For this, we notice from (3.7) that the Hamiltonian vector field
belonging to H ∈ C∞(M) generates the evolution equation

K̇ = ρ(∇H(K))K + Kρ(∇′H(K)). (3.40)

Proposition 3.2. The Hamiltonian H = Λ∗
Rφ with φ ∈ C∞(B)G generates the

following evolution equation on the Heisenberg double M = GC

R
by means of

the Poisson bracket {−,−}+ (3.7),

K̇ = −KDφ(bR), (3.41)

which in terms of the decompositions K = bLg−1
R = gLb−1

R (3.20) gives

ġR = Dφ(bR)gR, ḃL = ḃR = 0, ġL = −gLD′φ(bR). (3.42)

The solution K(t) corresponding to the initial value K(0) is provided by

K(t) = K(0) exp (−tDφ(bR(0))) , (3.43)

or equivalently

bR(t) = bR(0), bL(t) = bL(0), gR(t) = exp(tDφ(bR(0)))gR(0),
gL(t) = gL(0) exp(−tD′φ(bR(0))). (3.44)

Proof. We begin by pointing out that φ ∈ C∞(B)G satisfies

Dφ(b) = bD′φ(b)b−1, ∀b ∈ B. (3.45)

For arbitrary φ ∈ C∞(B) one has Dφ(b) = (bD′φ(b)b−1)G . By (3.29), the
infinitesimal dressing invariance means that 〈D′φ(b), (b−1Xb)B〉I = 0 for all
X ∈ G. This is equivalent to (bD′φ(b)b−1)B = 0, which implies (3.45). By
using Lemma B.2 in Appendix B, we then get

∇′H(K) = −Dφ(bR), ∇H(K) = −gLD′φ(bR)g−1
L , (3.46)

which are both G-valued. Formula (3.41) follows by putting these derivatives
into (3.40),

K̇ = −1
2
(KDφ(bR) + gLD′φ(bR)g−1

L K) = −KDφ(bR), (3.47)

where we applied (3.45) and the decomposition K = gLb−1
R . By taking K =

bLg−1
R and using that Dφ(bR) is G-valued, (3.41) implies ġR = Dφ(bR)gR and

ḃL = 0. It follows that bL remains constant. The moment map Λ (3.22) is also
constant along the flow, for H ∈ C∞(M)G, and therefore bR stays constant as
well. Hence, we obtain the formula for gR(t).
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The formula for the time development of gL then follows directly from
(3.42), or alternatively from the identity gL = bLg−1

R bR. In detail,

gL(t) = bL(0)gR(0)−1 exp(−tDφ(bR(0)))bR(0)

= gL(0)bR(0)−1 exp(−tDφ(bR(0)))bR(0) = gL(0) exp(−tD′φ(bR(0))),

(3.48)

where we took (3.45) into account. This also provides a consistency check on
our calculations. �

Since all smooth functions depending on bL and bR are constants of mo-
tion, we see in particular that the elements of Λ∗

RC∞(B)G Poisson commute.3

The number of independent constants of motion is 2 dim(B) − �. This is a
consequence of the identity

b−1
L (b−1

L )τ = g−1
R (bRbτ

R)gR (3.49)

that leads to � relations between the functions of bR and bL. We here used that
G acts by conjugations on the model P of B (3.35), and thus

F (b−1
L (b−1

L )τ ) = F (bRbτ
R), ∀F ∈ C∞(P)G. (3.50)

The ring C∞(P)G � C∞(B)G is generated by � = rank(G) basic invariants,
which equals the functional dimension of Λ∗

RC∞(B)G (3.39) as well. In conclu-
sion, these Hamiltonians form a degenerate integrable system on M . Of course,
the same is true for the equivalent Hamiltonians π∗

2C∞(B)G (3.38) on M.

Proposition 3.3. Consider the Hamiltonian H = Ξ∗
Rh with h ∈ C∞(G)G.

Then, the corresponding evolution equation reads

K̇ = KDh(gR). (3.51)

The constituents in the decompositions K = bLg−1
R = gLb−1

R (3.20) satisfy

ḃR = −Dh(gR)bR, ḃL = bLDh(gR), ġL = 0, ġR = [(i∇h(gR))G , gR].
(3.52)

The solution can be written as

bR(t) = β(t)−1bR(0), bL(t) = bL(0)β(t),
gL(t) = gL(0), gR(t) = γ(t)gR(0)γ(t)−1, (3.53)

where β(t) and γ(t) are determined by the following factorization problem in
GC

R
:

exp(it∇h(gR(0))) = β(t)γ(t) with β(t) ∈ B, γ(t) = G. (3.54)

Equivalently to (3.53), we have K(t) = K(0)β(t).

3Their property (3.45) implies that the dressing invariant functions, C∞(B)G, form the
center of the Poisson algebra (C∞(B), {−, −}B) (3.9).
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Proof. Lemma B.2 now gives

∇H(K) = −bLD′h(gR)b−1
L , ∇′H(K) = −gRD′h(gR)g−1

R . (3.55)

Any function h ∈ C∞(G) satisfies Dh(g) = (gD′h(g)g−1)B, and Dh(g) =
D′h(g) holds for h ∈ C∞(G)G. Thus, we get

ρ(∇′H(K)) = (gRD′h(gR)g−1
R )B − 1

2
gRD′h(gR)g−1

R

= Dh(gR) − 1
2
gRDh(gR)g−1

R , (3.56)

and ρ(∇H(K)) = 1
2bL(Dh(gR))b−1

L . Inserting these into (3.40) leads to (3.51):

K̇ = K(Dh(gR) − 1
2
gRDh(gR)g−1

R ) +
1
2
bL(Dh(gR))b−1

L K = KDh(gR),

(3.57)

where the last equality relies on writing K = bLg−1
R . Since Dh(gR) ∈ B, (3.51)

implies that ḃR = −Dh(gR)bR and ġL = 0. Then, ḃL = bLDh(gR) follows,
because Λ (3.22) Poisson commutes with any H ∈ C∞(M)G. Due to (3.15),

i∇h(gR) = Dh(gR) + (i∇h(gR))G , (3.58)

and [gR, i∇h(gR)] = 0 because of the invariance property of h. By using these
relations, the formula for ġR is derived from

gR = bRg−1
L bL. (3.59)

Turning to the solution, we first note that the curve (gR(t), bR(t)) defined by
(3.53) satisfies the differential equations

ġR(t) = [γ̇(t)γ(t)−1, gR(t)],

ḃR(t) = −β(t)−1β̇(t)bR(t).
(3.60)

Moreover, the equality (4) implies

β(t)γ(t)i∇h(gR(0)) = β̇(t)γ(t) + β(t)γ̇(t). (3.61)

From here, we get

i∇h(gR(t)) = iγ(t)∇h(gR(0))γ(t)−1 = β(t)−1β̇(t) + γ̇(t)γ(t)−1, (3.62)

where first equality holds because of the G-invariance of h. We see from (3.62)
that

β(t)−1β̇(t) = (i∇h(gR(t)))B and γ̇(t)γ(t)−1 = (i∇h(gR(t)))G . (3.63)

Inserting these relations into (3.60), we obtain

ḃR(t) = (−i∇h(gR(t)))B bR(t),

ġR(t) = [(i∇h(gR(t)))G , gR(t)].
(3.64)

Since (i∇h(gR))B = Dh(gR), comparison with (3.52) shows that the proof is
complete. �
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It is clear that Ξ∗
RC∞(G)G is generated by � = rank(G) functionally

independent Hamiltonians, which are in involution, since they remain constant
along the flows (3.53). To show their degenerate integrability, we observe that
any smooth real function of

W (K) := bLbRg−1
L = bLgRb−1

L (3.65)

is a constant of motion. Indeed, Λ(K) = bLbR and ΞL(K) = gL are both
constants of motion by (3.52). We see from (3.65) that the set of the elements
W (K) is the union of those conjugacy classes in GC that have representatives
in G0 < G. Generically, the elements of this set can be parametrized by (N −�)
real variables, where N = 2dim(G) is the dimension of the Heisenberg double.
This holds since the generic elements of G0 < GC

R
are fixed precisely by GC

0

with respect to conjugations. It follows that the functional dimension of the
ring of joint constants of motion of the Hamiltonians belonging to Ξ∗

RC∞(G)G

is (N − �), and thus these Hamiltonians form a degenerate integrable system.

Remark 3.4. It is a simple exercise to re-derive the evolution equations for
the variables (gR, bR) = m(K) working directly with (M, {−,−}) (3.26). In
the above, we have chosen to use the model (M, {−,−}+) of the Heisenberg
double since we wished to present the time development of all constituents
that enter K = gLb−1

R = bLg−1
R . However, the model (M, {−,−}) will prove

more convenient in what follows.

3.3. Deformation of Spin Sutherland Models from Poisson Reduction

Now, we consider Poisson reduction based on the G-action A (3.31) on M
(3.24). This means that we keep only the G-invariant functions, and charac-
terize their Poisson brackets by restriction to a convenient gauge slice.

We denote by C∞(M)G the ring of invariant functions. Any F ∈ C∞(M)G

satisfies the identity

D1F(g, b) − D′
1F(g, b) + (bD′

2F(g, b)b−1)B = 0, ∀(g, b) ∈ M, (3.66)

as follows by the taking derivative of F ◦AetX = F with respect to t, for every
X ∈ G. Here, we utilized the decomposition (3.4), but below we shall also use
the alternative decomposition

GC = GC

0 + GC

⊥,GC

⊥ ≡ GC

< + GC

>, (3.67)

whereby we may write

X = X0 + X⊥, ∀X ∈ GC. (3.68)

Consider the connected subgroup GC
0 < GC corresponding to GC

0 . By definition,
the subset GC

0,reg ⊂ GC
0 consists of those g0 ∈ GC

0 for which Adg0 ∈ End(GC)
is invertible on GC

⊥. It is clear that Greg
0 ⊂ GC

0,reg and for any g0 ∈ GC
0,reg we

extend the definition (2.22) by putting

R(g0)(X) =
1
2
(Adg0 + id) ◦ (Adg0 − id)−1

|GC

⊥
(X⊥),∀g0 ∈ GC

0,reg, X ∈ GC.

(3.69)
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We introduce the following subsets of M (3.24),

Mreg := {(g, b) ∈ M | g ∈ Greg}, Mreg
0 := {(Q, b) ∈ M | Q ∈ Greg

0 },

(3.70)

and observe that the restriction of functions provides an isomorphism

C∞(Mreg)G ⇐⇒ C∞(Mreg
0 )N, (3.71)

using the normalizer N (2.17). For any F ∈ C∞(Mreg
0 ), we introduce the

derivative D1F (Q, b) ∈ B0 by

〈D1F (Q, b),X0〉I =
d
dt

∣
∣
∣
∣
t=0

F (etX0Q, b), ∀X0 ∈ G0. (3.72)

The G-valued derivatives D2F and D′
2F are determined analogously to (3.11).

Theorem 3.5. Let F,H ∈ C∞(Mreg
0 )N be the restrictions of F ,H∈C∞(Mreg)G,

and define

{F,H}red(Q, b) := {F ,H}(Q, b). (3.73)

Then, Eq. (3.26) leads to the following formula of the reduced Poisson bracket:

{F,H}red(Q, b) = 〈D1F,D2H〉I − 〈D1H,D2F 〉I + 〈R(Q)(bD′
2Hb−1)B,D2F 〉I

−〈R(Q)(bD′
2Fb−1)B,D2H〉I, (3.74)

where the subscript B refers to (3.4), the derivatives are taken at (Q, b), and
R(Q) is given by (3.69).

Proof. At any (Q, b) ∈ Mreg
0 , we have

D′
2F(Q, b) = D′

2F (Q, b), (D1F(Q, b))0 = (D′
1F(Q, b))0 = D1F (Q, b),

(3.75)

where we use the decomposition (3.1). Then, the identity (3.66) implies that

(bD′
2Fb−1)B0 = 0, with B = B0 + B>, (3.76)

and

(AdQ−1 − id)D1F(Q, b)> = (bD′
2F (Q, b)b−1)B. (3.77)

This is solved by

(D1F(Q, b))> = −
(

1
2
id + R(Q)

)
(bD′

2F (Q, b)b−1)B, (3.78)

where we use the triangular decomposition (3.1).
We have to substitute the above relations into

{F ,H}(Q, b) =
〈
D′

2F , b−1(D2H)b
〉
I
+ 〈D1F ,D2H〉

I
− 〈D1H,D2F〉

I
,

(3.79)
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which is obtained from (3.26) by noting that
〈
D′

1F , Q−1(D1H)Q
〉
I

= 0
since AdQ−1 maps B to B. At (Q, b), because the Poisson bracket is antisym-
metric,

〈
D′

2F , b−1(D2H)b
〉
I
=

1
2

〈
(bD′

2Fb−1)B,D2H
〉
I
− 1

2
〈
(bD′

2Hb−1)B,D2F
〉
I
. (3.80)

On the other hand, we get

〈
D1F ,D2H

〉
I
=

〈
D1F − (1

2
id + R(Q)

)
(bD′

2F (Q, b)b−1)B,D2H
〉
I
,

(3.81)

and similar for 〈D1H,D2F〉
I
. The sum of these expressions gives us formula

(3.74). �

Remark 3.6. Analogous to the reduced Poisson brackets (2.29) presented in
Sect. 2, formula (3.74) defines a Poisson algebra structure not only on
C∞(Mreg

0 )N, but on the larger ring C∞(Mreg
0 )G0 as well.

Now, we deal with the reduction of the dynamics induced by the Hamil-
tonians in π∗

2(C∞(B)G). The projection of the Hamiltonian vector field of
H = π∗

2φ on the quotient space Mreg/G descends also from the evolution vec-
tor field living on Mreg

0 that is described below. This represents an intermediate
step between the dynamics on Mreg and on Mreg/G.

Proposition 3.7. If H = π∗
2φ with φ ∈ C∞(B)G, i.e., H(g, b) = φ(b), then

formula (3.74) of the reduced Poisson bracket simplifies to

{F,H}red(Q, b) = 〈D1F (Q, b),Dφ(b)〉I + 〈D′
2F (Q, b),

(
b−1(R(Q)Dφ(b))b

)
B〉I,
(3.82)

and the corresponding reduced evolution equation on Mreg
0 can be taken to be

Q̇ = (Dφ(b))0Q, ḃ = b
(
b−1(R(Q)Dφ(b))b

)
B . (3.83)

Proof. For the restriction H of H on Mreg
0 , we get

(bD′
2H(Q, b)b−1)B = (bD′φ(b)b−1)B = 0, (3.84)

because φ ∈ C∞(B)G, as was noted before (3.45). Moreover, we have D1H(Q, b)
= 0 and, due to the antisymmetry of R(Q),

〈R(Q)(bD′
2Fb−1)B,D2H〉I = −〈D′

2F (Q, b),
(
b−1(R(Q)Dφ(b))b

)
B〉I.

(3.85)

Thus, we obtain (3.82) from (3.74). Then, we see that the derivative of F
given by {F,H}red coincides with the derivative along the integral curves of
the evolution equation (3.83), which is the very justification of this equation.
Of course, the evolution equation on Mreg

0 can be changed by adding any vector
field that vanishes upon projection on Mreg/G � Mreg

0 /N. �
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Let us recall that the manifold P (3.34) can serve as a model of B by
means of the diffeomorphism ν (3.35). For any function φ on B we introduce
the corresponding function φ̃ on P by the definition

φ̃(L) = φ(b) with L := ν(b) = bbτ . (3.86)

Then, we define the derivative Dφ̃(L) ∈ G by

〈Dφ̃(L),X〉I =
d
dt

∣
∣
∣
∣
t=0

φ̃(etXLetXτ

), ∀X ∈ B, (3.87)

where used the notation (3.32). This implies the equality

Dφ̃(L) = Dφ(b) for L = bbτ . (3.88)

Proposition 3.8. In terms of the variables (Q,L) ∈ Greg
0 × P introduced in

(3.86), the reduced evolution equation (3.83) takes the form

Q̇ = (Dφ̃(L))0Q, L̇ = [R(Q)(Dφ̃(L)), L], (3.89)

which generalize the spin Sutherland evolution equation (2.36).

Proof. Let us put X := R(Q)(Dφ̃(L)), which belongs to G, and note that
(
b−1(R(Q)Dφ(b))b

)
B = b−1Xb − (b−1Xb)G . (3.90)

Then, starting from (3.83), we get

L̇ = ḃbτ + bḃτ = Xbbτ − b(b−1Xb)Gbτ + b(bτXτ − ((b−1Xb)G)τ bτ ) = [X,L],
(3.91)

because Y τ = −Y for all Y ∈ G. �

It is an interesting exercise to recast the Poisson bracket (3.26) and its
reduced version (3.79) in terms of the models G × P and Greg

0 × P of M and
Mreg

0 .

3.3.1. Reduced Integrability and Interpretation as Deformed Spin Sutherland
Models. Let us define the smooth, G-equivariant map Ψ3 : M → P × P by

Ψ3(g, b) := (L̃, L) with L = bb† and L̃ := g−1Lg, (3.92)

where η ∈ G acts on P×P by conjugating both components of (a, b) ∈ P×P.
Then, for any function χ ∈ C∞(P × P)G, Ψ∗

3(χ) ∈ C∞(M)G gives a smooth,
G-invariant constant of motion. Recalling that P = exp(iG), we see the close
analogy with the constants of motion observed in the cotangent bundle case
(cf. Eq. (2.38)). Thus, degenerate integrability on generic symplectic leaves of
M/G should hold in our present case as well. We do not repeat the arguments
of Sect. 2.1, only make two remarks. First, � = rank(G) Casimir functions on
M/G arise from the functions of the form φ ◦ Λ ◦ m−1, where m : M → M
is given in (3.25), Λ : M → B is the moment map (3.22), and φ ∈ C∞(B)G.
Second, π∗

2(C∞(B)G) gives rise to � generically independent Hamiltonians on
M/G. These Hamiltonians are the G-invariant functions of L, and they gener-
ically remain independent after fixing the just mentioned Casimir functions.
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Let us consider a dressing orbit OB of G in B, i.e., a symplectic leaf in
the Poisson–Lie group B. It is known from general theory [27,31,49] that the
quotient spaces Λ−1(OB)/G are Poisson subspaces of M/G � M/G. (They
are stratified symplectic spaces in general, which are unions of a dense open
symplectic leaf and lower-dimensional strata [38,50,51]). By using the Poisson–
Lie version of symplectic reduction, we developed a detailed description of
these subspaces in [12]. Now, we translate the result into our present Poisson
reduction setting.

Let Go
0 be an arbitrarily chosen connected4 component of Greg

0 . Denote
by B> the maximal nilpotent subgroup of B associated with the subalgebra
B> = B ∩ GC

> (3.3), and consider also B0 := {ep | p ∈ iG0}. For arbitrarily
given Q ∈ Go

0 and S+ ∈ B>, the equation

Q−1b−1
+ Qb+S+ = 1B (3.93)

admits a unique solution for b+ ∈ B>, which defines the function b+(Q,S+).
Then, all the elements (Q, b) ∈ Mreg

0 with Q ∈ Go
0 can be uniquely written in

the form

b = epb+(Q,S+) with (Q, p, S+) ∈ Go
0 × iG0 × B>, (3.94)

and this induces the identification

Mred/G � Mreg
0 /N � Go

0 × iG0 × (B>/G0). (3.95)

In this parametrization of the Poisson quotient, the components of q in Q = eiq

and p form canonically conjugate pairs, and S+ ∈ B> is a ‘collective spin degree
of freedom’ that decouples from q and p under the reduced Poisson bracket.
The space B>/G0 represents the reduction of B with respect to G0 < G, at
the zero value of the classical moment map that generates the conjugation
action of G0 on B. The ‘main reduced Hamiltonians’ are obtained by taking
the trace of

L(Q, p, S+) = epb+(Q,S+)b+(Q,S+)τep (3.96)

in the fundamental irreducible representations of GC. In [12], the structure of
b+(Q,S+) was elaborated (for G = U(n) even its fully explicit formula was
given), and by using this it was shown that the Lax matrices L(Q, p, S+) and
the main Hamiltonians of the models at issue are deformations of the Lax
matrices (1.9) and main Hamiltonians of the spin Sutherland models (2.37).
For the details of these results, one can consult [12].

3.4. The Duals of the Deformed Spin Sutherland Models

Now, we describe the reduction of the integrable system of Proposition 3.3
by utilizing that any element of B can be transformed into the subgroup
B0 = B ∩ GC

0 by the dressing action of G.
Let us introduce

Breg
0 := B0 ∩ GC

0,reg (3.97)

4The closure of Go
0 in G0 is homeomorphic to the space of conjugacy classes of G, and is

also homeomorphic to a convex polytope in G0, a so-called Weyl alcove [9].



1852 L. Fehér Ann. Henri Poincaré

and denote by Breg the union of the G-orbits in B that intersect Breg
0 . Then,

define

M′reg := {(g, b) ∈ M | b ∈ Breg}, M′reg
0 := {(g,Γ) ∈ M | Γ ∈ Breg

0 }.

(3.98)

We remark that all powers of Γ ∈ Breg
0 belong to Breg

0 . Similarly to (3.71), the
restriction of functions provides the isomorphism

C∞(M′reg)G ⇐⇒ C∞(M′reg
0 )N. (3.99)

Our aim is to find the formula for the Poisson bracket on C∞(M′reg
0 )N in-

duced by this isomorphism. The derivation follows the steps of the previ-
ous section, but it is slightly more complicated. In preparation, we introduce
�(Γ) ∈ End(GC) by

�(Γ)(X) = (sinh adγ)−1(X⊥), ∀Γ = eγ ∈ Breg
0 , X = (X0 + X⊥) ∈ GC.

(3.100)

This is well-defined5 due to the definition of Breg
0 . Note that �(Γ) vanishes on

GC
0 and it maps B> to itself. Below, we shall apply the operator R(Γ2) (3.69),

which can also be written as

R(Γ2)(X) =
1
2
(coth adγ)(X⊥). (3.101)

For any F ∈ C∞(M′reg
0 ), the derivative D2F (g,Γ) ∈ G0 is determined by

〈D2F (g,Γ),X0〉I =
d
dt

∣
∣
∣
∣
t=0

F (g, etX0Γ), ∀X0 ∈ B0, (3.102)

and the B-valued derivatives D1F and D′
1F are determined analogously to

(3.12).
Let F ∈ C∞(M′reg

0 )N be the restriction of F ∈ C∞(M′reg)G. Then, we
obviously have

D1F(g,Γ) = D1F (g,Γ), D′
1F(g,Γ) = D′

1F (g,Γ),
D2F(g,Γ)0 = D′

2F(g,Γ)0 = D2F (g,Γ), (3.103)

and the residual G0-invariance of F implies

D1F (g,Γ)0 = D′
1F (g,Γ)0. (3.104)

The full expression of D2F(g,Γ) through the derivatives of F is given by the
next lemma.

Lemma 3.9. Let F ∈ C∞(M′reg
0 )N be the restriction of F ∈ C∞(M′reg)G. At

any fixed (g,Γ) ∈ M′reg
0 , put

X0 := D2F ∈ G0, Y := (D′
1F − D1F ) ∈ B>. (3.105)

Then, the invariance condition (3.66) reads

(ΓD′
2FΓ−1)B = Y, (3.106)

5In fact, GC

⊥ is spanned by the root vectors Eα and α(γ) is a nonzero real number for

eγ ∈ Breg
0 . See Appendix A.
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and this implies the formula

D′
2F = X0 +

1
2
�(Γ)(Y + Y τ ). (3.107)

Furthermore, we have

ΓD′
2FΓ−1 = X0 +

1
2
(Y + Y τ ) + R(Γ2)(Y + Y τ ), (3.108)

and

D2F ≡ (ΓD′
2FΓ−1)G = X0 +

1
2
(Y τ − Y ) + R(Γ2)(Y + Y τ ). (3.109)

Here, Γ = eγ ∈ Breg
0 and the operators (3.100), (3.101) are employed. For the

definition of Y τ , see Eq. (3.32) and Appendix A.

Proof. Let us note that any V ∈ GC can be decomposed as

V = V> + V0 + V< = V> + V i
0 + V r

0 + V<, V i
0 ∈ G0, V r

0 ∈ B0, (3.110)

and then

VB = V> + (V<)τ + V r
0 , VG = V i

0 + V< − (V<)τ . (3.111)

According to (3.106), we need to solve an equation of the form

(ΓXΓ−1)B = Y (3.112)

for X, where Y = Y> ∈ B> and X = (X> + X< + X i
0) ∈ G. By using that

Γτ = Γ and X> = −(X<)τ , we get

(ΓXΓ−1)B = X i
0 + ΓX>Γ−1 − Γ−1X>Γ = X i

0 + 2(sinh adγ)(X>). (3.113)

From here, we get

X> =
1
2
�(Γ)(Y ). (3.114)

Since X< = −(X>)τ and (adγV )τ = −adγV τ for all V ∈ GC, this implies

X = X i
0 +

1
2
�(Γ)(Y + Y τ ). (3.115)

Then, we find

ΓXΓ−1 = (sinh adγ + cosh adγ)(X) = X i
0 +

1
2
(Y + Y τ ) + R(Γ2)(Y + Y τ ).

(3.116)

Notice that R(Γ2)(Y +Y τ ) ∈ G. Consequently, by applying (3.111) to (Y +Y τ )
with Y = Y>, we obtain

(ΓXΓ−1)G = X i
0 +

1
2
(Y τ − Y ) + R(Γ2)(Y + Y τ ). (3.117)

By taking X = D′
2F(g,Γ), the proof is finished. �
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Let us recall that the functions f on G have the G-valued derivatives ∇f
and ∇′f defined in (3.13), and (as seen from (3.17)) these are related to the
B-valued derivatives Df and D′f by

i∇f(g) =
1
2

(
Df(g) + (Df(g))τ ), i∇′f(g) =

1
2
(D′f(g) + (D′f(g))τ

)
.

(3.118)

In consequence of (3.16) and (3.17), one also has

Ri∇f(g) =
(

− i∇f(g))G =
1
2
(Df(g) − (Df(g))τ

)
,

Ri∇′f(g) =
(

− i∇′f(g))G =
1
2
(D′f(g) − (D′f(g))τ

)
. (3.119)

These relations are applied below to functions on M′reg
0 = G×Breg

0 , regarding
the derivatives with respect to the first variable.

Theorem 3.10. Let F,H ∈ C∞(M′reg
0 )N be the restrictions of the functions

F ,H ∈ C∞(M′reg)G, respectively, and define

{F,H}′
red(g,Γ) := {F ,H}(g,Γ), ∀(g,Γ) ∈ M′reg

0 . (3.120)

Then, Eq. (3.26) implies the following formula for this reduced Poisson bracket:

{F,H}′
red(g,Γ) = 〈∇1F,D2H〉G − 〈∇1H,D2F 〉G

+ 2〈∇′
1F,R(Γ2)(i∇′

1H)〉G − 2〈∇1F,R(Γ2)(i∇1H)〉G ,
(3.121)

where ∇1F and ∇1H denote the G-valued derivatives defined similarly to
(3.13), and R(Γ2) (3.101) is used.

Proof. We have to evaluate formula (3.26) at (g,Γ) ∈ G × Breg
0 for invariant

functions. By using the equalities (3.103) and Lemma 3.9, we find

〈D1F ,D2H〉I − 〈D1H,D2F〉I = 〈D1F,D2H〉I − 〈D1H,D2F 〉I
+ 〈D1F,

(
R(Γ2) +

1
2
id

)
(D′

1H − D1H)τ 〉I

− 〈D1H,
(
R(Γ2) +

1
2
id

)
(D′

1F − D1F )τ 〉I.
(3.122)

We took into account that R(Γ2) maps B to itself and that 〈X,Y 〉I = 0 for
any X,Y ∈ B. Next, direct substitution gives

〈ΓD′
2FΓ−1,D2H〉I = 〈D′

1F − D1F,
(
R(Γ2) +

1
2
id

)
(D′

1H − D1H)τ 〉I.
(3.123)

We now collect terms, and in doing so employ the antisymmetry of R(Γ2)
together with the properties

〈Uτ , V τ 〉I = −〈U, V 〉I, R(Γ2)(Uτ ) = −(R(Γ2)U)τ , ∀U, V ∈ GC, (3.124)
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which follow from the definitions. This gives

〈D1F ,D2H〉I − 〈D1H,D2F〉I + 〈ΓD′
2FΓ−1,D2H〉I

= 〈D1F,D2H〉I − 〈D1H,D2F 〉I
+ 〈D′

1F,R(Γ2)(D′
1H)τ 〉I − 〈D1F,R(Γ2)(D1H)τ 〉I

+
1
2
〈D′

1F, (D′
1H)τ 〉I − 1

2
〈D1F, (D1H)τ 〉I.

(3.125)

Since D2H ∈ G0, we have

〈D1F,D2H〉I = 〈(D1F )0,D2H〉I = 〈i(∇1F )0,D2H〉I = 〈∇1F,D2H〉G .

(3.126)

Referring (3.119), we can write

〈D′
1F,R(Γ2)(D′

1H)τ 〉I = 〈D′
1F,R(Γ2)((D′

1H)τ + D′
1H)〉I

= 2〈∇′
1F,R(Γ2)(i∇′

1H)〉G , (3.127)

where the last step holds since 〈D′
1F,X〉I = 〈∇′

1F,X〉G for all X ∈ G, and
R(Γ2)(iX) ∈ G for all X ∈ G. Therefore, the first 4 terms of (3.125) yield the
right-hand side of (3.121). The rest of the terms cancel, because (by (3.119))
we have

1
2
〈D′

1F, (D′
1H)τ 〉I − 1

2
〈D1F, (D1H)τ 〉I

= 〈∇1F,Ri∇1H〉G − 〈∇′
1F,Ri∇′

1H〉G , (3.128)

and this is just the opposite of the remaining term −〈(D′
1F, g−1(D1H)g〉I of

(3.26). This holds due to the identity (3.18). �

Remark 3.11. Formula (3.121) defines a Poisson bracket not only on the ring
C∞(M′reg

0 )N, but on the larger ring C∞(M′reg
0 )G0 , too. The proof shows that

one may rewrite it in the alternative form

{F,H}′
red(g,Γ) = 〈i(∇1F )0,D2H〉I − 〈i(∇1H)0,D2F 〉I

+ 〈D′
1F,R(Γ2)(D′

1H)τ )〉I − 〈D1F,R(Γ2)(D1H)τ )〉I.
(3.129)

One can also use the identity (3.128) to get an alternative formula the Poisson–
Lie structure (3.18) on G. It may be worth noting that

〈∇1F,D2H〉G = 〈i∇1F,D2H〉I = 〈i(∇1F )0,D2H〉I
= 〈(D1F )0,D2H〉I = 〈D1F,D2H〉I,

(3.130)

since D2H ∈ G0.

Proposition 3.12. If H = π∗
1h with h ∈ C∞(G)G, i.e., H(g, b) = h(g), then

formula (3.121) of the reduced Poisson bracket becomes

{F,H}′
red(g,Γ) = −〈D2F (g,Γ), i(∇h(g))0)〉I

+2〈∇′
1F (g,Γ) − ∇1F (g,Γ),R(Γ2)(i∇h(g))〉G . (3.131)
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Introducing the new variable P := Γ2, the reduced evolution equation induced
by the Hamiltonian H on M′reg

0 can be written as

ġ = 2[g,R(P )(i∇h(g))], Ṗ = −2i(∇h(g))0P, (3.132)

which is quite analogous to (3.89).

As a consistency check, we verified that the reduced evolution equation
(3.132) results also by applying the projection method to the corresponding
unreduced evolution equation (3.64). Of course, the evolution equation on
M′reg

0 is unique only up to infinitesimal gauge transformations that do not
change its eventual projection on M′reg/G � M′reg

0 /N.
In the G = SU(n) case, the reduced system characterized by Theorem

3.10 and Proposition 3.12 gives [15] a special real form of the trigonometric
Ruijsenaars–Schneider system on a small symplectic leaf of dimension 2(n −
1) in M′reg

0 /N. Thus one may expect to obtain spin Ruijsenaars–Schneider
type systems on generic symplectic leaves. However, it is not known how to
introduce positions, momenta and spin variables in such a way that would
endow the reductions of the pullback invariants π∗

1(C∞(G)G) with a many-
body interpretation. This is analogous to the open problem that exists in
relation to the second kind of reduced systems obtained from T ∗G.

Toward Integrability After Reduction. We here explain that the mechanism
described around Eq. (1.11) is applicable in the present case, too. For this, we
use the original model (M, {−,−}+) (3.7) of the Heisenberg double and define
the map Ψ4 : M → GC by

Ψ4(K) := W (K) ≡ ΛL(K)ΞR(K)ΛL(K)−1 (3.133)

using formula (3.65) and the definitions (3.21). We have seen that this map
is constant along the Hamiltonian flows generated by the pullback invariants
Ξ∗

R(C∞(G)G). The conjugation action of G on GC is defined by the maps Cη,

Cη(K) := ηKη−1, ∀K ∈ GC, η ∈ G. (3.134)

We wish to show that Ψ4 is equivariant with respect to the quasi-adjoint action
(3.23) and the conjugation action,

Ψ4 ◦ A1
η = Cη ◦ Ψ4, ∀η ∈ G. (3.135)

In order to derive this, notice from (3.23) that

ΛL(A1
η(K)) = ΛL(ηΛL(K)) and

ΞR(A1
η(K)) = ΞR(ηΛL(K))−1ΞR(K)ΞR(ηΛL(K)). (3.136)

Therefore, we obtain

Ψ4(A1
η(K)) = ΛL(ηΛL(K))ΞR(ηΛL(K))−1ΞR(K)ΞR(ηΛL(K))ΛL(ηΛL(K))−1

= ηΛL(K)ΞR(K)(ηΛL(K))−1 = ηΨ4(K)η−1. (3.137)

Let us then consider the ring of G-invariant real functions

C∞(GC)G
conj := {F ∈ C∞(GC) | F ◦ Cη = F, ∀η ∈ G}. (3.138)
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For every F ∈ C∞(GC)G
conj, the function F ◦ Ψ4 ∈ C∞(M) is a joint constant

of motion for the pullback invariants Ξ∗
R(C∞(G)G), and we see from (3.135)

that this function is invariant with respect to the quasi-adjoint action of G on
M . The alternative formula (cf. (3.65))

Ψ4(K) = Λ(K)ΞL(K)−1 (3.139)

shows that the above constants of motion contain the elements of Λ∗(C∞(B)G),
where Λ is the moment map (3.22). All constants of motion F ◦ Ψ4 descend
to the reduced space M/G, and those that depend only on Λ become numeri-
cal constants on the symplectic leaves of this (stratified) Poisson space. Thus,
relying on a straightforward counting argument, we expect that the pullback
invariants Ξ∗

R(C∞(G)G) engender degenerate integrable systems on generic
symplectic leaves in M/G.

By using the diffeomorphism m : M → M (3.25), one can transfer the
above construction to the alternative framework based on the unreduced phase
space M = G × B.

Finally, let us note that the two kinds of reduced systems described in
this section are subject to a similar duality relation that we outlined at the
end of Sect. 2.

Remark 3.13. Let us consider the function χρ(K) := trρ(K) on GC, where ρ
is some finite-dimensional irreducible representation of GC. Then, we obtain
trρ(W (K)) = trρ(ΞR(K)). This shows that the constants of motion F ◦ Ψ4

contain the basic pullback invariants associated with the real and imaginary
parts of the characters of the irreducible representations of G.

4. Reduction of the Quasi-Poisson Double G × G

Quasi-Hamiltonian manifolds [3] and quasi-Poisson manifolds [1] were intro-
duced primarily in order to provide a purely finite-dimensional construction
of the symplectic and Poisson structures of moduli spaces of flat connections,
which were originally obtained by infinite-dimensional symplectic reduction.
Since then, interesting applications of these concepts came to light in several
fields, including the construction of finite-dimensional integrable Hamilton-
ian systems [8,11,16,18]. The content of this section is closely related to the
work Arthamonov and Reshetikhin [4], who constructed degenerate integrable
systems on moduli spaces of flat connections, working mostly in a complex
holomorphic setting.

Let us recall that a quasi-Poisson manifold is a G-manifold, here denoted
S, equipped with a G-invariant bivector, Π, whose key property is that the
formula

{F ,H} := (dF ⊗ dH)(Π) (4.1)

defines a Poisson algebra structure on the space of invariant function C∞(S)G.
By the standard identification C∞(S/G) ≡ C∞(S)G, this leads to a Poisson
structure on the quotient space. Defining the quasi-Poisson bracket of any
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smooth functions by (4.1), we may associate a quasi-Hamiltonian vector field
VH with any H ∈ S∞(S) by putting

VH[F ] := {F ,H}. (4.2)

The vector field VH descends to S/G if H is G-invariant. This means that
the process of taking the quotient by the G-action works for quasi-Poisson
manifolds in the same way as it does for Poisson manifolds. The quotient space
is known to be a disjoint union of smooth symplectic manifolds, just as for
reductions defined by Hamiltonian actions of compact Lie groups [38,50,51].

For general functions, the quasi-Poisson bracket (4.1) violates the Jacobi
identity in a specific manner. For this and further details, one may consult [1].

An important quasi-Poisson manifold is the double

D := G × G (4.3)

of a connected compact Lie group. For our purpose, we continue to assume
that the Lie algebra G of G is simple and G is simply connected. To describe
the relevant bivector, we take a basis, ea, of the Lie algebra G that satisfies

〈ea, eb〉G = −δa,b, (4.4)

where, as before, we use the negative definite invariant bilinear form on G.
To simplify the appearance of the formulas, below we omit the subscript G
from 〈−,−〉G . We let eL

a and eR
a denote the left-invariant and right-invariant

vector fields on G that extend the tangent vector ea at the unit element of
G. Furthermore, we let e1,L

a and e2,L
a stand for the corresponding vector fields

on D that are tangent to the first and second G factors of D, respectively.
Similarly, we introduce e1,R

a and e2,R
a as well. Then, the bivector Π of the

(internally fused) double [1] is given by6

2Π = e1,L
a ∧ e2,R

a + e1,R
a ∧ e2,L

a

+ e1,R
a ∧ e1,L

a + e2,L
a ∧ e2,R

a − e1,R
a ∧ e2,R

a − e2,L
a ∧ e1,L

a . (4.5)

Here and below, the summation convention is in force; the wedge product does
not contain 1

2 . This bivector is invariant with respect to the conjugation action
of G on D, where η ∈ G operates by the map

Aη : (g1, g2) �→ (ηg1η
−1, ηg2η

−1). (4.6)

The G-valued derivatives of F ∈ C∞(D), defined in the same way as in (3.13),
can be written as

∇1F = −eae1,R
a [F ], ∇′

1F = −eae1,L
a [F ], (4.7)

and similarly for ∇2F and ∇′
2F . To be clear about the notations, note that

e1,R
a [F ](g1, g2) =

d
dt

∣
∣
∣
∣
t=0

F(exp(tea)g1, g2), ∀(g1, g2) ∈ D. (4.8)

6This is obtained from example 5.3 of [1] by performing the fusion procedure of Proposition
5.1 of this reference.
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Then, the quasi-Poisson bracket (4.1) of any two smooth functions F and H
takes the following form:

2{F ,H} = 〈∇′
1H,∇2F〉 − 〈∇2H,∇′

1F〉 + 〈∇1H,∇′
2F〉 − 〈∇′

2H,∇1F〉
+ 〈∇2H,∇1F〉 − 〈∇1H,∇2F〉 + 〈∇′

1H,∇′
2F〉 − 〈∇′

2H,∇′
1F〉

+ 〈∇1H,∇′
1F〉 − 〈∇′

1H,∇1F〉 + 〈∇′
2H,∇2F〉 − 〈∇2H,∇′

2F〉.
(4.9)

This is obtained from (4.5) by using identities like

e1,L
a [F ]e2,R

a [H] = −〈∇′
1F ,∇2H〉. (4.10)

In the next statement, we apply the natural projections π1 and π2 from
D to G,

π1(g1, g2) := g1, π2(g1, g2) := g2. (4.11)

Proposition 4.1. Consider arbitrary functions F ∈ C∞(D) and φ ∈ C∞(G)G.
Then, we have

{F , π∗
2φ}(g1, g2) = −〈∇′

1F(g1, g2),∇φ(g2)〉,
{F , π∗

1φ}(g1, g2) = 〈∇′
2F(g1, g2),∇φ(g1)〉. (4.12)

Thus, the quasi-Hamiltonian vector field (4.2) of π∗
2φ induces the evolution

equation

ġ1 = −g1∇φ(g2), ġ2 = 0 whose solution is
(g1(t), g2(t)) = (g1(0) exp(−t∇φ(g2(0))), g2(0)), (4.13)

and the quasi-Hamiltonian vector field of π∗
1φ induces the evolution equation

ġ1 = 0, ġ2 = g2∇φ(g1) whose solution is
(g1(t), g2(t)) = (g1(0), g2(0) exp(t∇φ(g1(0))). (4.14)

Proof. Consider, for example, H = π∗
1φ. Then, ∇2H = ∇′

2H = 0 and ∇1H =
∇′

1H = π∗
1∇φ. In this case, simply by collecting terms,

2{F ,H} = 2〈∇′
2F , π∗

1∇φ〉 + 〈∇′
1F − ∇1F , π∗

1∇φ〉, (4.15)

and the second term vanishes on account of the relations

∇1F(g1, g2) = g1∇′
1F(g1, g2)g−1

1 , g−1
1 ∇φ(g1)g1 = ∇φ(g1), (4.16)

and the G-invariance of 〈−,−〉. The rest of the statement is verified by
straightforward inspection. �

We see from Proposition 4.1 that the ring π∗
2C∞(G)G forms an Abelian

Poisson algebra, and g2 as well as g̃1 := g1g2g
−1
1 are constant along all of the

corresponding integral curves (4.13). This shows that the functional dimen-
sion of the joint constants of motion for the evolution equations in (4.13) is
dim(D) − rank(G). In conclusion, the family of Hamiltonians π∗

2C∞(G)G, of
functional dimension rank(G), behaves basically in the same way as a degen-
erate integrable system on a symplectic manifold. Quite similar observations
apply to the Poisson algebra π∗

1C∞(G)G. We merely note that the relevant
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constants of motion are now provided by arbitrary smooth functions of g1 and
g̃2 := g2g1g

−1
2 .

Mimicking the reduction procedure of Sect. 2, we introduce the subman-
ifolds

Dreg := {(g1, g2) ∈ D | g1 ∈ Greg},

Dreg
0 := {(Q, g) ∈ D | Q ∈ Greg

0 }, (4.17)

and

D′reg := {(g1, g2) ∈ D | g2 ∈ Greg},

D′reg
0 := {(g,Q) ∈ D | Q ∈ Greg

0 }. (4.18)

Using the normalizer N (2.17), restriction of functions engenders the isomor-
phisms

C∞(Dreg)G ⇐⇒ C∞(Dreg
0 )N (4.19)

and

C∞(D′reg)G ⇐⇒ C∞(D′reg
0 )N. (4.20)

We next point out that the bracket (4.9) simplifies considerably for in-
variant functions.

Proposition 4.2. If F ,H ∈ C∞(D)G, then formula (4.9) can be rewritten as

2{F ,H} = 〈∇1H,∇2F + ∇′
2F〉 − 〈∇1F ,∇2H + ∇′

2H〉
+〈∇2H,∇′

2F〉 − 〈∇′
2H,∇2F〉, (4.21)

and alternatively also as

2{F ,H} = 〈∇2F ,∇1H + ∇′
1H〉 − 〈∇2H,∇1F + ∇′

1F〉
+〈∇1F ,∇′

1H〉 − 〈∇′
1F ,∇1H〉. (4.22)

Proof. The derivatives of the G-invariant functions F and H satisfy

∇1F − ∇′
1F + ∇2F − ∇′

2F = 0 and ∇1H − ∇′
1H + ∇2H − ∇′

2H = 0.

(4.23)

Formula (4.21) results from (4.9) by elimination of ∇′
1F and ∇′

1H via these
relations, and (4.22) results by doing the same to ∇′

2F and ∇′
2H. �

Formulae (4.21) and (4.22) are also valid for invariant functions on any
open G-invariant submanifold of D. This simple remark is applied below. Any
function F ∈ C∞(Dreg

0 ) has the G0-valued derivative ∇1F and the G-valued
derivatives ∇2F and ∇′

2F , which are defined in the natural manner. For func-
tions on D′reg

0 , the roles of the subscripts 1 and 2 are exchanged.

Theorem 4.3. First, let F,H ∈ C∞(Dreg
0 )N be the restrictions of F ,H ∈

C∞(Dreg)G, respectively. Then, the definition

{F,H}red(Q, g) := {F ,H}(Q, g), ∀(Q, g) ∈ Dreg
0 , (4.24)

leads to the formula

{F,H}red(Q, g) = 〈∇1H,∇2F 〉 − 〈∇1F,∇2H〉



Vol. 24 (2023) Poisson Reductions of Master Integrable 1861

+〈∇′
2F,R(Q)∇′

2H〉 − 〈∇2F,R(Q)∇2H〉. (4.25)

Second, let F,H ∈ C∞(D′reg
0 )N be the restrictions of F ,H ∈ C∞(D′reg)G,

respectively. Then, the definition

{F,H}′
red(g,Q) := {F ,H}(g,Q), ∀(g,Q) ∈ D′reg

0 , (4.26)

gives

{F,H}′
red(g,Q) = 〈∇2F,∇1H〉 − 〈∇2H,∇1F 〉

+〈∇1F,R(Q)∇1H〉 − 〈∇′
1F,R(Q)∇′

1H〉. (4.27)

Here, R(Q) is given by (2.22), and the derivatives are taken at (Q, g) and at
(g,Q), respectively.

Proof. By taking advantage of the identity (4.23) at (Q, g) ∈ Dreg
0 (4.17), we

can express the derivatives of F in terms of the derivatives of F as follows:

∇2F(Q, g) = ∇2F (Q, g), (∇2F (Q, g) − ∇′
2F (Q, g))0 = 0, (4.28)

∇1F(Q, g) = ∇1F (Q, g) − (R(Q) +
1
2
id) (∇2F (Q, g) − ∇′

2F (Q, g)) .

(4.29)

By inserting this and the similar formula for the derivatives of H into (4.21),
we obtain (4.25). The details of this straightforward calculation are omitted.
The derivation of (4.27) is fully analogous and can also be obtained from the
previous case by exchange of the subscripts 1 and 2, accompanied by applying
an overall minus sign. �

Proposition 4.4. If H is the restriction of H = π∗
2φ with φ ∈ C∞(G)G, then

the reduced Poisson bracket (4.25) gives

{F,H}red(Q, g) = −〈∇1F (Q, g),∇φ(g)〉
+〈∇′

2F (Q, g) − ∇2F (Q, g),R(Q)∇φ(g)〉, (4.30)

and if H is the restriction of H = π∗
1φ with φ ∈ C∞(G)G, then the reduced

Poisson bracket (4.27) gives

{F,H}′
red(g,Q) = 〈∇2F (Q, g),∇φ(g)〉

−〈∇′
1F (Q, g) − ∇1F (Q, g),R(Q)∇φ(g)〉. (4.31)

Therefore, the reduced evolution equations associated with H can be written,
respectively, as

Q̇ = −(∇φ(g))0Q, ġ = [g,R(Q)∇φ(g)], on Dreg
0 , (4.32)

and as

Q̇ = (∇φ(g))0Q, ġ = −[g,R(Q)∇φ(g)], on D′reg
0 . (4.33)

Remark 4.5. It is easily seen that the formulae of Theorem 4.3 yield Poisson
algebra structures on C∞(Dreg

0 )G0 and, respectively, on C∞(D′reg
0 )G0 , too.

These Poisson algebras and also the evolution equations of Proposition 4.4
differ only by an overall sign (and the allocation of the labels 1 and 2). They
are converted into one another by the map (Q, g) �→ (g,Q−1). Thus, the two
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models of the reduced double that we developed carry equivalent copies of the
same system.

Remark 4.6. It is known [1] that the Poisson center of the Poisson algebra
C∞(D)G of the internally fused double D (4.3) is formed by the functions C
of the form

C(g1, g2) = h(g1g2g
−1
1 g−1

2 ), h ∈ C∞(G)G. (4.34)

By fixing the values of all these Casimir functions, one obtains a Poisson sub-
space of D/G, which is the disjoint union of a dense open symplectic manifold
and lower-dimensional symplectic strata. The restrictions of the reduced sys-
tems on generic symplectic leaves of the reduced double D/G are expected to
be integrable in the degenerate sense. They inherit a large set of integrals of
motion from the unreduced master system, and the same counting arguments
work as for the spin Sutherland models of Sect. 2.1.

Remark 4.7. The investigations reported in [16,18] are equivalent to studying
particular Poisson subspaces of D/G for G = SU(n). They can be obtained
by fixing the values of the functions h in (4.34) so that they define a minimal
conjugacy class in G, of dimension 2(n−1). The Poisson subspaces in question
were shown to be smooth symplectic manifolds, and the reduced integrable
system was interpreted as a compactified trigonometric Ruijsenaars–Schneider
model.

We end by recalling [17] that the group SL(2,Z) acts on D/G as follows.
Define the diffeomorphisms SD and TD of the double by

SD(g1, g2) = (g−1
2 , g−1

2 g1g2) and TD(g1, g2) := (g1g2, g2). (4.35)

These maps descend to maps Ŝ and T̂ of D/G that satisfy the identities

Ŝ2 = (Ŝ ◦ T̂ )3, Ŝ4 = id, (4.36)

and preserve the Poisson brackets on C∞(D/G) � C∞(D)G as well as the
level surfaces of the Casimir functions (4.34). The identities (4.36) represent
the standard defining relations of the group SL(2,Z). In the matrix realization,
they are enjoyed by the generators

S =
[

0 1
−1 0

]
, T =

[
1 0
1 1

]
. (4.37)

Notice that Ŝ maps into one another the two reduced Abelian Poisson algebras
arising from the two sets of pullback invariants. It can be interpreted as a self-
duality map that converts the ‘global position variables’ into the ‘Hamiltonians
of interest’ of the reduced systems that descend from the double. Referring to
Proposition 4.4, the ‘global position variables’ are those functions of Q that
are restrictions of pullback invariants, and the ‘Hamiltonians of interest’ are
the G-invariant functions of the Lax matrix g.
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5. Summary and Outlook

In this paper, we performed a systematic study of Poisson reductions of ‘master
integrable systems’ carried by the classical doubles of any compact (connected
and simply connected) Lie group G associated with a simple Lie algebra G.
Informally, using the terminology of matrix Lie groups, the outcome of our
analysis can be summarized as follows. The starting phase space always con-
sists of a pair of matrices, and the action of G is equivalent to simultaneous
conjugation of those two matrices by the elements of G. We proceeded by
bringing one of those matrices to a ‘diagonal’ normal form, and letting the
other matrix serve as a Lax matrix that generates commuting Hamiltonians.
The Lax matrix then satisfies reduced evolution equations of the form

L̇ = [R(X)Y (L),L], (5.1)

where Y (L) is a G-valued derivative of a G-invariant function of L, and R(X)
is a dynamical r-matrix depending on the diagonal ‘position matrix’ X. The
aligned evolution equation for X contains the Cartan subalgebra component
Y (L)0 of Y (L). The nature of the matrices L, X and R(X) and the derivative
Y (L) varies case by case, and is described in the text. This description is valid
on a dense open subset, where X satisfies a regularity condition. The matrices
X and L are subject to residual gauge transformations by the normalizer of a
fixed maximal torus of G, and we found the explicit formula for the Poisson
brackets of the corresponding invariant functions. The dynamical r-matrices
play a prominent role in the reduced Poisson brackets as well. In precise tech-
nical terms, the reduced evolution equations are given by Eqs. (2.36), (2.51),
(3.89), (3.132), (4.32) and (4.33). The reduced Poisson brackets are character-
ized by Theorems 2.1, 2.4, 3.5, 3.10 and 4.3.

We explained that the unreduced master systems possess the characteris-
tic properties of degenerate integrability. Then, we presented convincing argu-
ments indicating that these properties are inherited by the reduced systems, on
generic symplectic leaves of the reduced Poisson space. A fully rigorous proof
of integrability after reduction is hindered by the fact that the orbit space of
the G-action is not a smooth manifold. We conjecture that reduced integrabil-
ity holds on all symplectic leaves of the quotient space, generically degenerate
integrability, and only Liouville integrability on exceptional symplectic leaves.

On special symplectic leaves of the reduced Poisson spaces associated
with G = SU(n), one recovers the trigonometric Sutherland and Ruijsenaars–
Schneider models, which are known to be (only) Liouville integrable [44]. These
special cases and the changes of variables discussed around Eqs. (1.9), (2.37)
and (3.96) motivated us to call the reduced systems spin Sutherland and spin
Ruijsenaars–Schneider type models. This terminology was also used in the pa-
pers by Reshetikhin [41,42] dealing with related complex holomorphic systems.

A very interesting open problem concerns the generalization of our anal-
ysis to doubles of loop groups. The investigation of quantum Hamiltonian re-
ductions corresponding to our classical reductions appears to be a worthwhile
project for the future, too. As far as we know, such a reduction treatment is
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so far available (see, e.g., [20]) only for the spin Sutherland models descending
from T ∗G.
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Appendix A. Some Lie Theoretic Facts

We here collect a few Lie theoretic definitions and results, which are used in
the main text. For references, see, e.g., [9,26,46].

Consider a compact simple Lie algebra G, i.e., a simple real Lie algebra
whose Killing form is negative definite. Denote GC the complex simple Lie
algebra obtained as the complexification of G. (Equivalently, one may start
with a complex simple Lie algebra and then pick its compact real form.) Let
GC carry the normalized Killing form 〈−,−〉, given by

〈Z1, Z2〉 = c tr(adZ1 ◦ adZ2), Z1, Z2 ∈ GC, (A.1)

where c is some convenient, positive constant. The restriction of 〈−,−〉 to G is
the (normalized) Killing form 〈−,−〉G of G. We may regard GC also as a real
Lie algebra, in which case we denote it GC

R
. Up to an overall, positive constant,

the Killing form of GC

R
is given by the real part 〈−,−〉R of 〈−,−〉. The real

vector space GC

R
can be written as the direct sum

GC

R = G + iG, (A.2)

since every element Z ∈ GC

R
can be decomposed uniquely as

Z = X + iY, X, Y ∈ G. (A.3)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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By definition, the complex conjugation on GC

R
with respect to G is the map θ

defined by

θ(X + iY ) := X − iY. (A.4)

The complex conjugation θ is an involutive automorphism of the real Lie al-
gebra GC

R
. It is a Cartan involution, since 〈−,−〉R is negative definite on its

fixed point set, G, and is positive definite on its eigensubspace with eigenvalue
−1, iG. When regarded as a map of GC to itself, θ is conjugate linear, i.e.,
θ(λZ) = λ̄θ(Z) for all λ ∈ C. Notice also from the definitions that

〈θ(Z1), θ(Z2)〉 = 〈Z1, Z2〉, ∀Z1, Z2 ∈ GC. (A.5)

We also need the real bilinear form on GC

R
provided by the imaginary part

of the complex Killing form,

〈Z1, Z2〉I := �〈Z1, Z2〉. (A.6)

As a result of (A.5), this invariant, non-degenerate, symmetric bilinear form
enjoys the equality

〈θ(Z1), θ(Z2)〉I = −〈Z1, Z2〉I, ∀Z1, Z2 ∈ GC

R . (A.7)

A crucial fact is that GC

R
can be presented as the vector space direct sum

of two isotropic subalgebras with respect to the bilinear form 〈−,−〉I:
GC

R = G + B, (A.8)

where B is a suitable ‘Borel’ subalgebra. We next recall how these subalgebras
can be described using the root space decomposition of GC. For this, let us
pick a maximal Abelian subalgebra G0 of G. Its complexification GC

0 is a Car-
tan subalgebra of GC. Then, consider the corresponding set of roots, R, and
decompose R into sets of positive and negative roots R±. Moreover, let Δ be
the associated set of simple roots. It is easily seen that the Cartan involution
θ maps any root subspace GC

α (α ∈ R) to GC
−α.

We then choose a Weyl–Chevalley basis of GC, which consists of root
vectors Eα for which 〈Eα, E−α〉 = 2/|α|2 for all α ∈ R+, and Cartan ele-
ments Hαj

:= [Eα, E−αj
] for αj ∈ Δ. The root vectors are chosen in such a

way that all structure constants are real and E−α = −θ(Eα) holds. (Then, if
α, β and (α + β) are roots, one has [Eα, Eβ ] = Nα,βEα+β and [E−α, E−β ] =
−Nα,βE−α−β ; and all structure constants are integers [46].) Using any such
basis, G is given by

G = spanR{iHαj
, (Eα − E−α), i(Eα + E−α) | αj ∈ Δ, α ∈ R+}, (A.9)

and one can take

B = spanR{Hαj
, Eα, iEα | αj ∈ Δ, α ∈ R+}. (A.10)

It is worth noting that there are as many choices for B as systems of positive
roots, but all of them are equivalent by the action of the Weyl group of the
root system.
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Next, we explain why the map ν : B → P (3.35) is a diffeomorphism. To
start, define the maps

μ1 : GC

R/G → B and μ2 : GC

R/G → P (A.11)

by

μ1 : [K] �→ ΛL(K) and μ2 : [K] �→ KKτ , (A.12)

where [K] = KG ∈ GC

R
/G, ∀K ∈ GC

R
, and we used the definitions (3.21)

and (3.32). Recall that GC

R
is diffeomorphic to B × G and to P × G by the

Iwasawa and global Cartan decompositions, respectively, and P = exp(iG) is
diffeomorphic to iG by the exponential map [26]. It follows that μ1 and μ2 are
(real analytic) diffeomorphisms with the inverses

μ−1
1 : b �→ bG, ∀b ∈ B and μ−1

2 : P �→
√

PG, ∀P ∈ P. (A.13)

Therefore, the composed map ν = μ2 ◦μ−1
1 : B → P is a diffeomorphism, with

the inverse operating as ν−1 : P �→ ΛL(
√

P ).
At the end, we present some remarks on the rings of G-invariant functions

on which our integrable systems are based. Here, the following isomorphisms
are fundamental:

C∞(G)G ←→ C∞(G0)W and C∞(G)G ←→ C∞(G0)W , (A.14)

where W is the Weyl group. These are generalizations [32,39] of the Chevalley
isomorphism theorem between G-invariant polynomials on G and W-invariant
polynomials on the Cartan subalgebra G0. The isomorphisms result from the
pertinent restrictions of functions, and they readily imply that both C∞(G)G

and C∞(G)G have functional dimension � = rank(G). By combining a theorem
of [47] on smooth invariants with the fact that the ring of G-invariant polyno-
mials on G is freely generated by � homogeneous polynomials, σ1, . . . , σ	, one
obtains that C∞(G)G consists of the functions φ of the form φ = f(σ1, . . . , σ	)
with arbitrary f ∈ C∞(R	). This gives the structure of the ring C∞(B)G, too,
by utilizing the isomorphisms

C∞(B)G ←→ C∞(P)G ←→ C∞(G)G, (A.15)

which arise from the G-equivariant diffeomorphism ν (3.35) and the exponen-
tial parametrization of P = exp(iG).

Let ρ : G → GL(V ) be an irreducible unitary representations of G, and �
the corresponding representation of G. Then, the character G � g �→ trρ(g) is
a G-invariant (in general complex) function on G, and P � eiX �→ trei
(X) is a
G-invariant real function on P. By taking suitable real or imaginary parts, it
should be possible to obtain � functionally independent elements of C∞(G)G

from the fundamental irreducible representations of G. In the case of G, the
real trace functions G � X �→ tr(i�(X))k, with k ≥ 2, provide convenient
invariants.



Vol. 24 (2023) Poisson Reductions of Master Integrable 1867

Appendix B. Equivalence of Two Models of the Heisenberg
Double

According to the original definition [48], the Heisenberg double of the Poisson–
Lie group G is the Poisson manifold (M, {−,−}+), where M = GC

R
and for

any F,H ∈ C∞(M)

{F,H}+ = 〈∇F, ρ∇H〉I + 〈∇′F, ρ∇′H〉I, (B.1)

with ρ := 1
2 (πG − πB) defined with the aid of the vector space direct sum

GC

R
= G+B. The corresponding symplectic form was found in [2]. An alternative

model of this Poisson space is (M, {−,−}), where M = G × B and

{F ,H}(g, b) =
〈
D′

2F , b−1(D2H)b
〉
I
− 〈

D′
1F , g−1(D1H)g

〉
I

+ 〈D1F ,D2H〉
I
− 〈D1H,D2F〉

I
(B.2)

for functions F ,H on M. The derivatives on the right-hand side are taken at
(g, b) ∈ G × B, with respect to the first and second variable, respectively. See
also Eqs. (3.8), (3.11) and (3.12) for the definitions of the derivatives.

The purpose of this appendix is to explain that the bracket (B.2) on M is
the pushforward of the standard Poisson bracket (B.1) by the diffeomorphism
m (3.25) between M and M. In particular, this proves that (M, {−,−}) is
indeed a Poisson manifold.

Lemma B.1. Using the definitions (3.21), the map m : M → M given by

m = (ΞR,ΛR) that is m(K) = (gR, bR) (B.3)

is a real analytic diffeomorphism.

Proof. For any K ∈ M , the unique Iwasawa decompositions K = bLg−1
R =

gLb−1
R (3.20) imply the equality g−1

L bL = b−1
R gR. This shows that bL ∈ B

and gL ∈ G, and thus also K, can be recovered from bR ∈ B and gR ∈ G.
Hence, the map m is injective. The surjectivity of the map m is also clear,
since by re-decomposing b−1

R gR in the other order we can construct K such
that (gR, bR) = m(K). The real analytic nature of the relevant decompositions
is well known [26]. �

Let π1 and π2 denote the obvious projections from M = G × B onto G
and B, respectively. Then, we have the identities

ΞR = π1 ◦ m, ΛR = π2 ◦ m. (B.4)

We wish to prove that

{F ,H} ◦ m = {F ◦ m,H ◦ m}+, ∀F ,H ∈ C∞(M). (B.5)

We start with two useful lemmas.

Lemma B.2. For any f ∈ C∞(G) and ϕ ∈ C∞(B), consider the functions
f ◦ ΞR and ϕ ◦ ΛR on M . Then, the derivatives of these functions obey the
identities

(∇′ϕ ◦ ΛR)(K) = −bRD′ϕ(bR)b−1
R ,
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(∇′f ◦ ΞR)(K) = −gRD′f(gR)g−1
R , (B.6)

and

(∇ϕ ◦ ΛR)(K) = −gL(D′ϕ(bR))g−1
L ,

(∇f ◦ ΞR)(K) = −bL(D′f(gR))b−1
L , (B.7)

where the decompositions K = bLg−1
R = bLg−1

R (3.20) are used.

Proof. Denote F := ϕ ◦ ΛR and use the decompositions of K ∈ M defined in
(3.20). Then, for any X ∈ B and K ∈ M , we have

〈∇′F (K), X〉I =
d

dt

∣
∣∣
∣
t=0

F (KetX) =
d

dt

∣
∣∣
∣
t=0

F (gLb−1
R etX) =

d

dt

∣
∣∣
∣
t=0

ϕ(e−tXbR)

= −〈X, Dϕ(bR)〉I, (B.8)

which means that

(∇′F (K))G = −Dϕ(bR) = − (
bR(D′ϕ(bR))b−1

R

)
G , (B.9)

where the second equality reflects the relation of the left and right derivatives
of ϕ. Next, taking X ∈ G, notice from the definitions (3.21) and (3.28) that

ΛR(KetX) = ΛR(gL(e−tXbR)−1) = Dresse−tX (bR), (B.10)

and therefore

〈∇′F (K),X〉I =
d
dt

∣
∣
∣
∣
t=0

ϕ(Dresse−tX (bR)) = 〈D′ϕ(bR),−(b−1
R XbR)B〉I =

−〈bRD′ϕ(bR)b−1
R ,X〉I, (B.11)

which means that

(∇′F (K))B = − (
bR(D′ϕ(bR))b−1

R

)
B . (B.12)

The second equality in (B.11) follows from formula (3.29) of the infinitesimal
dressing action. Putting these together, we have proved the first relation in
(B.6), and the second one is derived in a similar manner. These imply the
equalities (B.7) since, for any function F on M , ∇F (K) = K∇′F (K)K−1. �

Let us recall that (G, {−,−}G) and (B, {−,−}B) are Poisson–Lie groups,
with the Poisson structures

{ϕ1, ϕ2}B(b) = 〈D′ϕ1(b), b−1(Dϕ2(b))b〉I and
{f1, f2}G(g) = −〈D′f1(g), g−1(Df2(g))g〉I. (B.13)

Based on the above definitions and the relations of the various derivatives,
the following statement is easily verified.

Lemma B.3. For arbitrary smooth functions ϕi on B and fi on G (i = 1, 2),
we have

{ϕ1 ◦ ΛR, ϕ2 ◦ ΛR}+ = {ϕ1, ϕ2}B ◦ ΛR,

{ϕ1 ◦ π2, ϕ2 ◦ π2} = {ϕ1, ϕ2}B ◦ π2, (B.14)
{f1 ◦ ΞR, f2 ◦ ΞR}+ = {f1, f2}G ◦ ΞR,

{f1 ◦ π1, f2 ◦ π1} = {f1, f2}G ◦ π1, (B.15)
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and

{fi ◦ ΞR, ϕj ◦ ΛR}+ = 〈(Dfi) ◦ ΞR, (Dϕj) ◦ ΛR〉I,
{fi ◦ π1, ϕj ◦ π2} = 〈(Dfi) ◦ π1, (Dϕj) ◦ π2〉I. (B.16)

Proof. For example, let us consider arbitrary f ∈ C∞(G) and ϕ ∈ C∞(B).
Then, due to Lemma B.2, the first term in formula (B.1) gives

〈∇f ◦ ΞR(K), ρ∇ϕ ◦ ΛR(K)〉I
=

1
2
〈bLD′f(gR)b−1

L , gLD′ϕ(bR)g−1
L 〉I =

1
2
〈g−1

L bLD′f(gR)b−1
L gL,D′ϕ(bR)〉I

=
1
2
〈b−1

R gRD′f(gR)g−1
R bR,D′ϕ(bR)〉I =

1
2
〈gRD′f(gR)g−1

R , bRD′ϕ(bR)b−1
R 〉I

=
1
2
〈Df(gR),Dϕ(bR)〉I +

1
2
〈(gRD′f(gR)g−1

R )G , (bRD′ϕ(bR)b−1
R )B〉I. (B.17)

On the other hand, the second term gives

〈∇′f ◦ ΞR(K), ρ∇′ϕ ◦ ΛR(K)〉I = 〈gRD′f(gR)g−1
R , ρ(bRD′ϕ(bR)b−1

R )〉I
=

1
2
〈Df(gR),Dϕ(bR)〉I − 1

2
〈(gRD′f(gR)g−1

R )G , (bRD′ϕ(bR)b−1
R )B〉I.

(B.18)

Combining these terms, we obtain the first identity in (B.16). The rest of the
identities follows by similar, but shorter, calculations. �

Remark B.4. Lemma B.3 says, in particular, that ΛR and ΞR are Poisson maps
from (M, {−,−}+) to B and G equipped with the Poisson structures (B.13) on
B and G, respectively. One can show that ΛL and ΞL have the same properties.
Moreover,

{ϕ1 ◦ ΛL, ϕ2 ◦ ΛR}+ = {f1 ◦ ΞL, f2 ◦ ΞR}+ = 0 (B.19)

holds for all ϕi ∈ C∞(B) and fi ∈ C∞(G). These statements follow also from
the general theory of the Heisenberg double [48,49].

Proposition B.5. The map m (B.3) is a Poisson diffeomorphism between (M,
{−,−}+) (B.1) and (M, {−,−}) (B.2), that is, the equality (B.5) holds.

Proof. Notice that the equality (B.5) follows for all smooth functions on M
if we prove it for those functions that are of the form f ◦ π1 and ϕ ◦ π2 for
arbitrary smooth functions f on G and ϕ on B. In order to see this, it is enough
to remark that the exterior derivatives of such functions span the cotangent
space to M at any point.

For the types of functions that feature in Lemma B.3, using also (B.4),
we can write

{ϕ1 ◦ π2, ϕ2 ◦ π2} ◦ m = {ϕ1, ϕ2}B ◦ π2 ◦ m = {ϕ1, ϕ2}B ◦ ΛR

= {ϕ1 ◦ ΛR, ϕ2 ◦ ΛR}+ = {ϕ1 ◦ π2 ◦ m,ϕ2 ◦ π2 ◦ m}+. (B.20)

The other cases of functions are handled in exactly the same way. �
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Appendix C. On the Construction of G-invariant Constants of
Motion via Averaging

Let X be a G-manifold and V a G-invariant vector field on X,

V = (Aη)∗V, ∀η ∈ G, (C.1)

where Aη denotes the diffeomorphism of X associated with η ∈ G. The G-
invariance of the vector field is equivalent to the property that if x(t) is an
integral curve of V , then Aη(x(t)) is also an integral curve, for each η ∈ G.
Suppose now that G is compact and denote by dG the Haar measure normalized
so that the volume of G is 1. For any real function F ∈ C∞(X) define the
function FG by averaging the functions A∗

ηF over G,

FG(x) :=
∫

G

F(Aη(x))dG(η), ∀x ∈ X. (C.2)

It is clear that FG ∈ C∞(X)G. Moreover, if F is a constant of motion for the
vector field V , then FG is also a constant of motion for V . Indeed, for any
integral curve x(t)

d
dt

FG(x(t)) =
∫

G

d
dt

F(Aη(x(t))dG(η) = 0, (C.3)

since Aη(x(t)) is an integral curve for all η. In [23,53] this mechanism was
used for arguing that, generically, degenerate integrability survives Hamilton-
ian reduction. In these papers, the starting point was a Hamiltonian action
on a symplectic manifold, in which case the Hamiltonian vector fields of the
G-invariant Hamiltonians are G-invariant.

The averaging of the constants of motion is applicable to the unreduced
integrable systems of our interest if the relevant unreduced evolution vector
fields are G-invariant. This obviously holds for the two degenerate integrable
systems on T ∗G considered in Sect. 2 and is also easily checked for the unre-
duced evolution vector fields on the quasi-Poisson double D studied in Sect. 4.
We below answer the question whether this property holds for the Hamilton-
ian vector fields associated with the two sets of pullback invariants on the
Heisenberg double M.

Proposition C.1. The derivatives of any φ ∈ C∞(B)G satisfy the relations

D′φ(Dressη(b)) = ΞR(ηb)−1D′φ(b)ΞR(ηb),

Dφ(Dressη(b)) = ηDφ(b)η−1, ∀η ∈ G, b ∈ B. (C.4)

As a consequence, if (g(t), b(t)) is an integral curve of the Hamiltonian vector
field of H = π∗

2φ ∈ C∞(M)G, then Aη(g(t), b(t)) is also an integral curve (with
the G-action defined in (3.31)).

Proof. The result will follow by taking the t-derivative of the identity

φ(betX) = φ(Dressη(betX)), ∀b ∈ B, X ∈ B, t ∈ R. (C.5)

We see directly from the definitions that

Dressη(betX) = Dressη(b)DressΞR(ηb)−1(etX), (C.6)
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and therefore we get

〈D′φ(b),X〉I = 〈D′φ(Dressη(b)),
d
dt

∣
∣
∣
∣
t=0

DressΞR(ηb)−1(etX)〉I. (C.7)

Now, we have

ΞR(ηb)−1etX = DressΞR(ηb)−1(etX)ΞR(ΞR(ηb)−1etX)−1, (C.8)

and, at t = 0,

ΞR(ΞR(ηb)−1)−1 = ΞR(ηb)−1, DressΞR(ηb)−1(1B) = 1B . (C.9)

Hence, taking the derivative at t = 0 gives
d
dt

∣
∣
∣
∣
t=0

DressΞR(ηb)−1(etX) =
(
ΞR(ηb)−1XΞR(ηb)

)
B . (C.10)

So far we obtained

〈D′φ(b),X〉I = 〈D′φ(Dressη(b)),
(
ΞR(ηb)−1XΞR(ηb)

)
B〉I

= 〈ΞR(ηb)D′φ(Dressη(b))ΞR(ηb)−1,X〉I, (C.11)

which is equivalent to the equivariance property of D′φ (C.4). Regarding Dφ,
we have seen in Eq. (3.45) that for the G-invariant functions on B

Dφ(b) = bD′φ(b)b−1. (C.12)

By combining this with the transformation property of D′φ, we get

Dφ(Dressη(b)) =
(
Dressη(b)ΞR(ηb)−1b−1

)
Dφ(b)

(
Dressη(b)ΞR(ηb)−1b−1

)

= ηDφ(b)η−1, (C.13)

simply since Dressη(b)ΞR(ηb)−1b−1 = η.
Next, recall from Proposition 3.2 (Eq. (3.44)) that the integral curves of

H = π∗
2φ read

(g(t), b(t)) = (exp (tDφ(b(0))) g(0), b(0)) . (C.14)

Therefore,

Aη(g(t), b(t)) =
(
η exp (tDφ(b(0))) g(0)η−1,Dressη(b(0))

)

=
(
exp

(
tηDφ(b(0))η−1

)
ηg(0)η−1,Dressη(b(0))

)

=
(
exp (tDφ(Dressη(b(0)))) ηg(0)η−1,Dressη(b(0))

)
, (C.15)

which is the integral curve through the initial value Aη(g(0), b(0)). �

We observe from Proposition C.1 that taking the G-average of an ar-
bitrary constant of motion yields a G-invariant constant of motion for the
degenerate integrable system on the Heisenberg double whose Hamiltonians
arise from C∞(B)G. However, as we shall see below, the Hamiltonian vector
fields stemming from C∞(G)G do not have the relevant invariance property.

For any h ∈ C∞(G)G, the integral curves (g(t), b(t)) ∈ M of the Hamil-
tonian H = π∗

1h ∈ C∞(M)G can be read off from Eq. (3.53) in Proposition
3.3. The identification (g(t), b(t)) = (gR(t), bR(t)) gives

(g(t), b(t)) =
(
γ(t)g(0)γ(t)−1, β(t)−1b(0)

)
, (C.16)
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where (γ(t), β(t)) ∈ G × B is defined by

exp(it∇h(g(0))) = β(t)γ(t). (C.17)

We are going to prove the following result.

Proposition C.2. Let (g(t), b(t)) be the integral curve (C.16) of the Hamilton-
ian vector field of the pullback invariant H = π∗

1h ∈ C∞(M)G associated with
the initial value (g(0), b(0)). Then, the integral curve associated with the trans-
formed initial value

(
ηg(0)η−1,Dressη(b(0))

)
, η ∈ G, (C.18)

is given by

AΞR(ηβ(t))−1 (g(t), b(t)) , (C.19)

where β(t) is the determined by the initial value g(0) via the factorization
(C.17).

Proof. Denote by β̃, γ̃ the solution of the factorization (C.17) at the trans-
formed initial value:

exp(it∇h(ηg(0)η−1)) = β̃(t)γ̃(t). (C.20)

Since ∇h is G-equivariant, we get

β̃(t) = Dressη(β(t)) and γ̃(t) = ΞR(ηβ(t))−1γ(t)η−1. (C.21)

Therefore, the integral curve (g̃(t), b̃(t)) associated with the transformed initial
value can be written as

g̃(t) = γ̃(t)ηg(0)η−1γ̃(t)−1 = ΞR(ηβ(t))−1g(t)ΞR(ηβ(t)). (C.22)

This proves half of our claim. To prove the other half, we inspect

b̃(t) = (Dressη(β(t)))−1Dressη(b(0)). (C.23)

Now,

(Dressη(β(t)))−1 = ΞR(ηβ(t))−1β(t)−1η−1. (C.24)

Consequently,

b̃(t) = ΞR(ηβ(t))−1β(t)−1η−1Dressη(b(0))

= ΞR(ηβ(t))−1b(t)b(0)−1η−1Dressη(b(0))

=
(
DressΞR(ηβ(t))−1(b(t))

)
ΞR(ΞR(ηβ(t))−1b(t))−1b(0)−1η−1Dressη(b(0)).

(C.25)

Furthermore,

ΞR(ηβ(t))−1b(t) = (Dressηβ(t))−1ηβ(t)b(t)

= (Dressηβ(t))−1ηb(0)

= (Dressηβ(t))−1(Dressηb(0))ΞR(ηb(0))−1,

(C.26)

and hence

ΞR(ΞR(ηβ(t))−1b(t))−1 = ΞR(ηb(0))−1. (C.27)
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Plugging this back into the last line of (C.25) gives

b̃(t) =
(
DressΞR(ηβ(t))−1(b(t))

)
ΞR(ηb(0))−1(ηb(0))−1Dressη(b(0))

= DressΞR(ηβ(t))−1(b(t)), (C.28)

which finishes the proof. �

Remark C.3. Proposition C.2 shows that Aη (3.31) does not map the pertinent
integral curves (C.16) onto integral curves. At the same time, it confirms that
changing the initial value by the G-action does not effect the projection of the
integral curve to the quotient space M/G. This is equivalent to the fact that
the Hamiltonian vector field V of H = π∗

1h, for h ∈ C∞(G)G, satisfies

(Aη)∗V = V + Z, (C.29)

where the vector field Z is tangent to the G-orbits. One could find Z explicitly,
if desired.
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