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Abstract: The nature of the development of arithmetic performance has long been intensively studied,
and available scientific evidence can be evaluated and synthesized in light of Nelson and Narens’
model of metacognition. According to the Nelson–Narens model, human cognition can be split
into two or more interrelated levels. Obviously, in the case of more than two levels, cognitive
processes from at least one level can be described as both meta- and object-level processes. The
question arises whether it is possible that the very same cognitive processes are both controlled and
controlling. The feasibility of owning the same cognitive processes—which are considered the same
from an external point of view of assessment—as both meta- and object-level processes within the
same individual opens the possibility of investigating the transition from meta-level to object-level.
Modeling cognitive development by means of a series of such transitions calls forth an understanding
of possible developmental phases in a given domain of learning. The developmental phases of
arithmetic performance are described as a series of transitions from arithmetical facts to strategies
of arithmetic word problem solving. For school learning and instruction, the role of metacognitive
scaffolding as a powerful educational approach is emphasized.

Keywords: metacognition; arithmetic; cognitive development; word problems

1. Introduction

Metacognition has long been recognized as a powerful term describing higher-level
processes of intelligent human behavior. Starting from the theories and empirical results of
metamemory, different metacognitive processes were described (Flavell 1979), and their
theoretical and educational relevance proved to be highly visible.

Several investigations revealed straightforward relations between measures of metacog-
nition and other domains, such as in Veenman et al.’s (1997) study, where intelligence,
metacognitive skills, and academic achievement were involved in a university student
sample. Nevertheless, other research found no direct or strong connections between in-
telligence and metacognition (Veenman and Elshout 1999). The Janus-faced connection
between different aspects of metacognition and intelligence (Veenman et al. 2004) was
longitudinally investigated by van der Stel and Veenman (2014), and one of their interesting
findings suggested that metacognition has a relevant contribution to learning performance,
and this contribution is partly independent of intelligence. Furthermore, it seems that the
development of metacognition in young adolescents involves a shift from domain-specific
to domain-general components, while the overall development seems to terminate. In these
investigations, the measures of metacognition varied, and the interpretation of the relation
between the different psychological constructs required careful consideration of the actual
measures and devices used.

Nevertheless, the theoretical obscureness of the early models of metacognition led to a
fragmentation of metacognition research (see e.g., Flavell 2004; Schneider 2008), while from
the aspect of educational relevance, questions raised by practitioners about the practical
relevance of metacognition in classroom settings have to some extent left unanswered. The
ironic question of “Is it still worth knowing that 5 + 2 is 7, even if I could neither plan nor
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monitor the process of calculation?” could have been followed by more practical ones like
“Is it worth consciously knowing the usual strategic steps of mathematical word problem
solving even though the arithmetic skills do not allow the numerical data to be easily
handled?” A kind of dichotomy seemed to be formed among in-service teachers about
the relative weight and importance of metacognitive and non-metacognitive processes
in the field of arithmetic. This ill-defined dichotomy may have led to confrontations
between two camps (similarly to the struggle between the camps of the “mechanistic”
and “realistic” approaches, see (Koninklijke Nederlandse Akademie van Wetenschappe
2009)), while theory development seemed not to make it obvious how both metacognitive
and non-metacognitive processes play their important and dynamically changing role in
the development of arithmetic skills. This essay attempts to reveal some relevant aspects
of the balance between metacognitive and non-metacognitive processes in arithmetic
performance, thus contributing to better education in the near future.

2. Theoretical Advancements and Empirical Results from the Last Decades

From the very early appearance of the term “metacognition” until the milestone article
by Nelson (1996), most of the theoretical foci revolved around the possible dichotomies
according to which the components of metacognition can be arranged and discussed.

2.1. Classical Taxonomies of Metacognition and the Nelson-Narens-Model

From early papers on metacognition that were primarily focusing on metamemory
(Flavell 1979; Brown 1978), the need for categorizing different mental processes or structures
that might be labeled as metacognitive has been put on researchers’ agenda. One of these at-
tempts and efforts was the well-known dichotomy of declarative versus procedural, which
seemed to be applicable to metacognitive processes as well. Kluwe (1987) created such a
description of metacognitive knowledge components where declarative metaknowledge
refers to beliefs or factual knowledge about one’s own knowledge or about knowledge
in general. While procedural metaknowledge refers to controlling and regulation pro-
cesses. A special kind of declarative meta-knowing is called meta-strategic knowledge by
Kuhn (2000). The declarative–procedural dichotomy is similar to that coined by Paris and
Winograd (1990) in which self-appraisal and self-management are differentiated.

Schneider (2008) summarized the available evidence on the different developmental
pathways of declarative and procedural metacognition. Whereas declarative metacog-
nition shows a straightforward developmental trajectory (due to the development of
meta-strategic knowledge (see Kuhn 2000), components of procedural metacognition, i.e.,
the actual monitoring and control processes, do not show such clear-cut patterns.

Nelson’s (1996; see also Nelson and Narens 1994) seminal paper opened the perspec-
tive of talking about metacognition as one level of human cognition—while the other, the
non-metacognitive level was labeled as object-level. The two types of information flow
between the two levels were called controlling and monitoring. This article simplified
the previous taxonomies of cognition and metacognition (see e.g., Darling et al. 1998)
while opening new debates with three truly remarkable concerns: (1) The possibility and
feasibility of more than one meta-level; (2) The issue of consciousness as necessary and/or
sufficient condition for metacognition, and (3) The mind–brain correlates of metacognitive
processes. As for the latter, the decisive role of the lateral prefrontal cortex has proven
to be evidenced (Fleming and Dolan 2012). Moreover, Hikosaka and Isoda (2010) found
that the lateral prefrontal cortex has a leading role in behavior switch. In Section 2.3,
both the multi-level issue and the problem of consciousness at the meta-level will be
briefly discussed.

2.2. System 1 and System 2

It is fairly obvious how relevant the connection between research using the terms
System 1 and System 2 for our endeavor on the levels of human cognition can be. The
terms originate in Stanovich and West’s (2000) oeuvre, and while the term System 1 depicts
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automatic, largely unconscious, and effortless processes, the term System 2 refers to more
controlled, explicit, and demanding processes constrained by the limits of cognitive capacity.
Thompson (2009) explicitly linked these two concepts to metacognition theory in a way
that System 1 is basically a smooth-running system until a metacognitive process named
“feeling of rightness” triggers System 2. The logic behind this assumption is of a brain-
capacity-constraint nature, and the feeling of rightness, i.e., the feeling that things are on
their right way, assumes metacognitive monitoring processes. Although a strong critique of
each two-level and dichotomized model was expressed by Keren and Schul (2009), both the
Nelson–Narens model of metacognition and the System 1 and 2 duet found their fruitful
educational applications in basic skills instruction, for which we also intend to provide
further insights.

2.3. More than Two Systems in Human Cognition

The possibility of more than one meta-level was explicitly described by Nelson and
Narens (1994). There is a starting level that acts as an object-level only (L0) and L1, L2,
LN would ensign the several (N) possible meta-levels built on it. Independently of the
actual number of Ls, it is their relative position that counts, e.g., Lj−1 is the object-level of
Lj. Theoretically, one can describe as many meta-levels as desired. As Nelson (1996, p. 105)
claimed, “Any lower-level cognition can itself be the subject of a higher-level cognition”,
and lower-level and higher-level cognition can occur simultaneously.

However, as Levinsson (2008) argued, the problem with the endless number of possible
levels is that humans seem to have limitations or endpoints in their reasoning. Having seen
the grotesque wording by James Joyce, people would usually get along with only two or
three levels.

What, reduced to their simplest reciprocal form, were Bloom’s

thoughts about Stephen’s thoughts about Bloom and about Stephen’s

thoughts about Bloom’s thoughts about Stephen?

—James Joyce, Ulysses

As Schatteles (2014) analyzed, unraveling the meaning of this awkwardly complex
sentence may require a series of step-by-step sentences which gradually unfold the meaning
of the original sentence.

One further aspect that was formulated as a debate in Nelson’s (1996) article is the
issue of consciousness in (relation to) metacognition. The control processes at the meta-
level do not necessarily involve conscious processes (Levinsson 2008; Veenman et al. 2006;
Timmermans et al. 2012). Nonetheless, the possible existence of non-conscious meta-levels
would strengthen the assumption that the existence of more than one meta-level is feasible.

A similar description of more than two possible levels of cognition appeared in the dis-
course community of consciousness studies. Schooler (2002) suggested three levels of mental
processes to be distinguished: unconscious, conscious, and meta-conscious processes. The
latter involves a kind of re-representation of conscious processes. Since the relation between
metacognition and consciousness is still an ongoing debate (Rosenthal 2012), Schooler’s model
is considered as opening the door to multi-level and multi-dimensional models.

The questions may arise whether the levels (independently of their numbers) are
different mental representations within the individual and/or whether the levels can be
objectively described. This dilemma is similar to the one explicated by Rosenthal (1998)
about first-person versus third-person consciousness. From an educational point of, we
would go in the direction of a third-person, objective description of the possible levels of
cognition, nonetheless allowing the assumption that object-level processes for one person
can be meta-level processes for another and vice versa.

With the involvement of the conscious versus non-conscious debate, an extension of
the original one-dimensional, two-level model of metacognition became viable. Fleming
et al. (2012) extended the Nelson–Narens model of metacognition in a way that the object-
versus meta-level distinction is one out of three dimensions, and consciousness and the
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observable behavior form two additional dimensions. In this three-dimensional model,
metacognition may have several facets, and empirical investigations are invited to test
whether the three dimensions are independent of each other.

3. Two Educationally Relevant Dilemmas Concerning the Metacognitive and
Non-Metacognitive Processes of Arithmetic Performance

With the introduction of the term “metacognition”, an immediate and necessary
dichotomy of metacognitive versus non-metacognitive components appeared. With more or
less precision, researchers (e.g., Zohar and David 2009; Tanner 2012) collected and described
the psychological processes that may (or even should) be labeled as metacognitive. In
the field of arithmetic performance, researchers usually call these metacognitive processes
strategies (Campbell and Xue 2001; Park and Brannon 2014; Cragg et al. 2017), or sometimes
other labels are used, such as conceptual understanding (Gilmore and Bryant 2008; Gilmore
and Papadatou-Pastou 2009). Two serious questions arose that certainly have educational
relevance, and there is a scarcity of empirical studies in order to find definite answers. The
first question concerned whether the very same performance from two individuals may be
due to very different underlying processes, i.e., solving the same problem with or without
metacognitive processes such as planning or monitoring. The second question concerned
the measurable difference between the metacognitive processes currently used and the
metacognitive processes potentially available to the same person.

3.1. The Balance between Metacognitive and Non-Metacognitive Processes of
Arithmetic Performance

The same level of performance may be reached in very different ways. For example,
in the field of reading, the compensatory-encoding model (Walczyk 1995) claims that
compensatory mechanisms—which are metacognitive skills such as slowing reading rate
and re-reading parts of the text—enable the reader to compensate for subcomponent
inefficiencies (Afflerbach et al. 2008). Although the terminology may vary, a kind of
balance between metacognitive and non-metacognitive components can be described in
different models of reading comprehension. In the field of arithmetic skills, fairly different
calculation strategies have been identified even among kindergarten children (Zur and
Gelman 2004) resulting in the same or similar performance. In a study by Csíkos (2016),
elementary students’ three-digit mental calculation performance proved to be of the same
level in two schools; however, their reported strategy use differed quite remarkably.

As a corollary of the question of individual differences in the balance between metacog-
nitive and non-metacognitive processes, there emerged the idea of possible developmental
transformations in this balance. Leahey and Harris (1993) questioned the earlier theories
of a more or less straightforward developmental trend where metacognition plays its in-
creasingly important role in human capabilities. “What happens during the transition from
conscious thought to intuition is contentious” (pp. 284–85). They had developed some
arguments on the apparent contradiction between the increasing availability of mental
resources and the limited or seemingly unchanging capacity of attention and memory.

From an educational point of view, the essence of the debate is summarized as “what
had formerly required conscious thought becomes intuitive, and an important question
concerns what happened to the rules followed consciously by the novice...” (Leahey and
Harris 1993, p. 284). This paradigm can be nicely illustrated with everyday situations.
For instance, the novice driver may learn and be potentially aware of the MSM rule
(mirror, signal, maneuver), and while later they can follow this sequence very well and
automatically, it would be strange to still quote or murmur the acronym once learnt.
However, in difficult situations or while being exhausted behind the wheel, the expert
learners may still be capable of recalling and following this sequence, since it has remained
potentially available to them. From a distant observer’s point of view, when a car starts
smoothly from a parking lot, it is not easy to judge whether the driver needed some
conscious (and metacognitive) support or not.
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If the same level of performance can be reached with or without metacognitive pro-
cesses as well, could it be possible that performance attained without metacognitive pro-
cesses indicates a kind of new developmental level? This debate seems to be controversial
since intuitively the appearance of metacognitive processes may indicate a higher develop-
mental level. This thought has already been addressed in the literature, e.g., Sternberg (1998,
p. 129) claims that, “when functioning is automatic, metacognitive activity can actually
hamper functioning”. A precursor to this idea was expressed in his seminal Triarchic mind
book (Sternberg 1985, p. 62): “It would be very difficult to speak intelligently if we had to
consciously struggle to come up with every word.” Obviously, fluent speakers, professional
drivers, and musicians can fluently speak, drive, or play without time-consuming decision
and monitoring processes. As Polanyi (1958) reasoned, the pianist would surely make a
mistake if he or she tried to be aware of all aspects of the actual piano playing.

3.2. Difference between Actual and Potential Metacognitive Processes of Arithmetic Performance

Now we address the problem of making distinction between the currently or actually
used metacognitive processes, and the potentially available metacognitive processes. The
dilemma can be articulated as follows. By all means, possessing a repertory of strategies can
support human problem solving in many domains. However, the individual preferences
and the task characteristics may hinder or facilitate the use of those strategies. Do we want
to observe or improve a strategy as a function of task and individual characteristics, or are
we just content to know about the potential availability of that strategy? A similar idea
was raised in intelligence research by Danthiir et al. (2005) when addressing the issue of
measuring mental speed. Investigations usually attempt to measure mental speed as a kind
of typical behavior (as opposed to the potentially available maximum behavior). The analog
version of maximum behavior may be the repertory of potentially available metacognitive
resources, and the actually used metacognitive processes may be the analogue of the typical
behavior. Sun et al. (2021, p. 12) have already addressed the problem of whether researchers
measure the actual or the potential level of metacognition in the field of foreign language
learning: “we measured EFL learners’ metacognitive experiences after they finished a
writing task, but students’ metacognitive experiences are dynamic during the writing
process”. As Pintrich et al. (2000) emphasized, construct validity of the measures of
metacognition depends not only on the empirical evidence a test may provide but on the
potential consequences of the interpretation of the test data.

In the field of arithmetic performance, for the average adult, simply mentioning the
addition 5 + 2 will yield an answer (pronounced out loud or not) without actually asking them
for the results. They probably possess the result as a number fact that can be easily retrieved.
Therefore, we can hardly imagine that adults can honestly report on their mental calculation
strategies while attaining the result of such an easy task. Yet we do not think that the lack of
strategy use made them struggle, and of course, we do not claim that kindergarten children
solving the very same addition task by using their fingers and counting aloud from five to
seven are more proficient. However, they did exhibit a rich repertory of strategic processes
in this case. “Metacognition . . . is not likely to be . . . a separate ability that once acquired
can then be universally applied to different types of mental activity. Instead, metacognition
is more likely to develop in tandem with the more basic cognitive abilities and conceptual
understanding in each domain” (Estes 1998, p. 1346).

In Nakakoji and Wilson’s (2020, p. 12) research among university students and aca-
demics, many surprising findings were yielded: “Also unexpectedly, neither students nor
academics mentioned metacognition in the interviews.” However, for the researchers it was
evident that metacognitive strategies were employed. According to Nakakoji and Wilson’s
conclusion, the participants may not have been aware of their strategy use. In EFL-learning
situations, similar lack of metacognitive strategies was detected by Zhang et al. (2021). This
may be due to the inappropriateness of the think-aloud protocol or the questionnaire they
applied, or there were really no strategic processes potentially reportable. Similarly, a re-
view of studies with gifted children (Alexander et al. 1995) concluded that albeit declarative
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metacognition seems to develop with age, the development of procedural components of
metacognition shows intricate trend lines.

Consequently, several kinds of measures of metacognition can be defined according to
individual characteristics (like age) and task characteristics (like the number of digits of the
addends). Furthermore, there is another crucial factor influencing the actual strategy use:
the context in which the individual encounters the task—whether it is a stressful situation
or just a mental calculation for fun. All these factors influence whether metacognitive
processes (if available at all) may or should play their role in arithmetic or other kinds
of performance. These factors will be again discussed in Sections 4.1 and 4.2 as the three
main aspects of adaptive expertise. Furthermore, the several possible types of measures
of metacognition can be arranged whether they intend to measure the actual or the poten-
tial availability of metacognitive processes, or whether they assess (verbally) reportable
metacognitive components or those that can be observed by an external viewpoint. The cur-
rently available measures of metacognition address one or more metacognitive components,
but none of them can be considered as the ultimate or complete measure of metacognition.

Some widely accepted and used measures of metacognition like MAI (Schraw and
Dennison 1994), MARSI (Mokhtari and Reichard 2002), and the several questionnaires of
epistemological beliefs (e.g., Schraw et al. 2002) seem to measure a kind of static, poten-
tially available repertory of metacognitive components. Other measures could grab the
currently working components of metacognition. Of course, the actually used components
cannot really be measured by questionnaires, but observations, think-aloud protocols, and
eye-tracking (Paulus et al. 2013) may reveal them. On the other hand, as Kavousi et al.
(2020, p. 711) claim, “metacognition cannot be measured directly through observation”.
Convergent findings from both online and offline measures can be used to detect both the
actually used and the potentially available metacognitive components!

Azevedo et al.’s (2010) study represents six potential trends in the timeline changes of
self-regulated learning activities. Albeit the authors acknowledge that it is exceptionally
difficult to capture self-regulated learning activities in a hypermedia environment, they
dare judge the potential frequency of possible trend lines. One of these trend lines is of
inverted U-shape (the authors judge its observable empirical frequency low) when an
initially low state of self-regulated activities increases and then returns to the original
level. Independently of the age and task characteristics, this inverted U-shaped line may
demonstrate how strategy use occurs in a wide range of novel learning situations, including
for instance arithmetic calculations.

4. Educationally Relevant Answers in the Field of Arithmetic Performance
4.1. (At Least) Three Levels of Components in Arithmetic Performance

As visualized in Figure 1, we propose a model consisting of three developmental
phases with two levels of mental processes. This way we intend to keep and apply the
traditional Nelsonian two-level model of metacognition while putting forward a develop-
mental model of arithmetic performance that involves and integrates the currently available
empirical findings. We may claim that this model is plausible or at least possible; however,
it does not necessarily follow from the already existing research results. However, we do
think that this model may be informative and illuminating in the context of teaching and
learning mathematics and other school-related domains.
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Figure 1. A tentative model of the development of arithmetic performance in the light of the Nelson–
Narens model of metacognition.

According to the model, in the first phase of development, it is the number facts
(e.g., results of simple one-digit additions) that comprise the object level, and the fledgling
arithmetic strategies are on the meta-level of processing. The object level is characterized
by automatic, effortless functioning. Logan (1988) claims that when describing automatic
processes, it is wise not to refer to them as counterparts to non-automatic processes (such as
unconscious vs conscious, effortless vs effortful, etc.), but it is worth providing quantitative
properties of automatic functioning in terms of, for instance, reaction time or flawlessness
(e.g., error-free execution of operations).

Hudson et al. (2018) and Zur and Gelman (2004) examined kindergarten children’s
addition skills with special emphasis on their strategy use. In this first phase of arithmetic
performance development, the automatization of simple number facts and the diversifica-
tion of a repertory of counting strategies are observable. Fact retrieval is associated with
different brain regions than calculation strategies (Zarnhofer et al. 2013). Furthermore, fact
retrieval requires stable verbal representations as well (Berteletti et al. 2014), and in the
brains of children with mathematical disabilities, the activity of the verbal regions was
found not to be reliable.

During the first years of elementary schooling, students’ arithmetic skill develops, and
this development is the result of a balanced use of metacognitive and non-metacognitive
processes. (Here the term metacognitive and non-metacognitive is used in the sense of
their position in the first developmental phase.) In the second phase, the more or less
automatized arithmetic skill is put to another challenge; it must be used not only in pure
numeric tasks but in word problems as well. Even the very first, usually routine-like
word problems enforce students to learn new strategies, which are about the expected
use of their arithmetic skills in a new context. As Csíkos and Szitányi (2020) pointed out,
several textbooks provide linearly sequential steps or algorithms on how to solve routine
word problems.

During several months or years, and due to the obedient adherence to the rules (both
classroom rituals and the required word problem solving steps, see this idea from Brousseau
in D’Amore and Martini 1999), the majority of students become proficient in (routine) word
problem solving (Lee et al. 2011). However, as seen from many empirical studies, this
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new phase of automatization causes serious problems when realistic word problems are
administered (see, e.g., Verschaffel et al. 2010).

The next developmental phase can, therefore, be a new strategy learning phase when
students learn to choose the word problem strategy adaptively. Adaptation in this phase
will primarily take the characteristics of the tasks into account, but individual preferences
(e.g., visualizers versus verbalizers) and contextual variables (high-stake testing versus
classroom practice) also play their role in determining what counts as an adaptive strategy.
In order to provide the best actual performance, the balance of metacognitive and non-
metacognitive components can vary according to several factors. These factors have
been enlisted (and empirically validated) in research on adaptive expertise in elementary
mathematics (Verschaffel et al. 2007, 2009) and were proposed as general factors of adaptive
intelligence by Sternberg (2021).

The very same person may be characterized by different balances of metacognitive and
non-metacognitive processes in different tasks and in different contexts. A more challenging
task may require a higher-level (or in certain circumstances: lower level) involvement of
metacognitive processes, and an exam-like stressful situation may further influence the
involvement of metacognitive processes even for the same person and the very same
task. This kind of flexibility requires “adaptive expertise”—a term coined by Hatano and
Inagaki (1986) as an opposition to “routine expertise”, which refers to quick and accurate
functioning without much understanding (De Corte 2007).

Finally, when talking about developmental phases as depicted in Figure 1, we do
not talk about individuals’ developmental phases, but these are developmental phases of
arithmetic performance. Therefore, we cannot state that a student or an adult is at a certain
developmental phase, since depending on individual characteristics, task, and context
variables, the very same person may exhibit different performances. Individual charac-
teristics include what Sternberg et al. (2021) call meta-intelligence, i.e., the psychological
construct responsible for the allocation of mental resources and controlling that allocation.
Differently from the concept of metacognition, meta-intelligence comprises constructs that
are rather conative such as creativity and wisdom.

Since we do not talk about individual developmental phases but about the develop-
mental phases of observable performance, the question arises whether adults’ learning may
be characterized by the same balances of metacognitive and non-metacognitive components
of arithmetic performance. Zamarian et al. (2018) revealed that for enhancing arithmetic
performance, adults can also profit from repetition-based training but to a lesser extent
than young people. The difference may be attributed to children’s limited capacity of
executive function in the mind and different functioning of the brain. Adults’ brain activity
showed a more distributed pattern than those of younger individuals’ brain where the
right parietal brain structures proved to be associated with arithmetic performance. In
their most recent investigation, Grabner et al. (2022) revealed that adults primarily solve
single-digit addition tasks by simple number fact retrieval, instead of applying (however
quick or unconscious) counting procedures.

4.2. Transition between Phases of Arithmetic Performance

Figure 1 suggests transition processes between the developmental phases of arithmetic
performance during the elementary school years. Nevertheless, the arrows depicting
transitions do not intend to indicate causal relations in any directions. It is the task of future
longitudinal research to reveal the nature of developmental transitions, and how education
can help in triggering development. As for the first arrow illustrating that arithmetic
skills may become object-level components, we would like to emphasize that it is neither
the number facts nor just the fledgling arithmetic strategies that become automatic, but
arithmetic skill comprises a mixture of metacognitive and non-metacognitive processes. It
means that learners may possess very different mastery levels of arithmetic skills in the
second phase when those skills become object-level components for word problems.
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The very different balances or mixtures of metacognitive and non-metacognitive
processes in children’s arithmetic skills have been addressed in several previous studies.
According to Flavell (2004), this age group is going through striking improvement in
different areas of metacognition. How arithmetic performance may develop within the
first phase was summarized and empirically evidenced by Lemaire and Siegler (1995) who
revealed four aspects of strategy change in elementary school students’ multiplication
performance, “introduction of new strategies, shifts toward greater use of the more efficient
existing strategies, improved execution of the strategies, and more adaptive choices among
the strategies” (p. 96).

Carpenter and Moser (1984) revealed that a variety of counting strategies appear even
before receiving formal instruction on them. Their study was restricted to strategy use,
and they claim their model does not take account of children’s knowledge of number
facts. Moreover, Zur and Gelman (2004) and Pappas et al. (2003) provided evidence about
the existence of rudimentary metacognitive arithmetic strategies. Siegler (1987) found
among young children (kindergarten and 1st and 2nd grade) that in very simple addition
tasks like 5 + 2 or 4 + 1, retrieval produced faster and equally appropriate answers than
using one of the simple strategies like counting on from the larger number. In a study
comparing disabled and non-disabled children, Ostad (1997) found that disabled children
used more simple strategies and there was not much diversity in their strategy use. Their
most common strategies were counting on fingers or counting audibly. Interestingly, they
rarely used the strategy of immediate retrieval from long-term memory. In contrast, their
mathematically non-disabled peers could more and more frequently use the retrieval
strategies, allowing for the implication that possessing and recalling number facts may
indicate a higher-level of arithmetic performance in the case of very simple arithmetic tasks.
Furthermore, Canobi (2004) found that finger-based counting strategies almost disappear
during the first years of schooling.

In sum, meta-level processes of arithmetic performance become visible and develop
in tandem with object-level components, comprising a more or less automatized skill
usually labeled as arithmetic skill(s). Whether an actual process is of meta-level or object-
level depends on individual and task characteristics, and on contextual variables. When
word problems are introduced (often as early as the very first grade of formal schooling),
some children already possess smoothly functioning arithmetic skills (as a system of
metacognitive and non-metacognitive processes), while others rely more on the fledgling
arithmetic strategies.

Azevedo et al.’s (2010) proposed inverted U-shaped trend line about the increase and
then decrease of self-regulation processes has been empirically evidenced by Bellon et al.
(2019). In the first developmental phase of arithmetic performance, meta-level processes
first have an increasingly important role and then retreat into the background, giving a
primary role to number facts and retrieval processes. Grabner and Smedt (2012, p. 10)
nicely described this shift: “The current findings show that the well-known behavioral shift
from effortful procedural strategies to fact retrieval strategies as a function of training is
also reflected in specific changes in brain activity”.

The observable change in the brain activity, i.e., changes in the mind–brain corre-
lates, makes the transition from the first to the second level especially interesting and
special. Spanoudis and Demetriou (2020) identified domain-specific brain networks that
are specialized regions associated with various mental processes. The development of brain
networks for domain-specific mental processes (such as quantitative reasoning, which is
the fundamental basis for arithmetic performance) takes place early. The basic range for
the development of arithmetic fundamentals is between 7 and 11 years (Peters and Smedt
2018), which is the usual period of elementary schooling.

It may sound reassuring and confirming how research results on mind development
and its brain correlates (Spanoudis and Demetriou 2020) can unite the development of
arithmetic skills and their accompanying metacognitive processes. Arithmetic operations
belong to the realm of domain-specific skills, and due to the development of the mental
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representations and their corresponding brain regions, by the age of six, most children
are ready for acquiring new representations. This does not mean that they still have to
wait for about five years until reaching the so-called “cognizance” mental representation
system where self-awareness and meta-representations provide a new level of flexibility
and adaptivity. According to Spanoudis and Demetriou, even at the second developmental
stage, there are mental processes that provide awareness about the actual, overwhelmingly
domain-specific representations.

As for the transition from the second to the third phase, a plethora of empirical studies
are available from the last four decades (e.g., De Corte and Verschaffel 1987; Rittle-Johnson
and Alibali 1999; Selter 2009; Prediger and Krägeloh 2015). During their first years of
schooling, students learn how to solve arithmetic word problems. The solution process
itself becomes more and more automated. This automatization can be observed and
documented in children even without having smooth, high-level functioning of arithmetic
skills. However, having become automated word problem solving strategies may be object-
level processes when students encounter different genres of word problems. It seems that
at least two classes of elementary word problems should be distinguished in this second
phase when talking about the role of metacognitive processes.

Routine word problems can be solved by a straightforward application of a “superfi-
cial” task solving strategy. These tasks represent a task category that requires students to
apply their arithmetic skills in the context of applying a uniform solution strategy: collect
the numerical data, find one (or more) appropriate arithmetic operations, execute those
operations, and give a numerical answer. On the other hand, the most important feature of
the realistic word problems is that they require at least one extra step in the solution process,
i.e., the appropriate mental representation of the phenomena written in the text of the word
problems, since the straightforward application of the above-mentioned superficial solution
strategy would result in failure. The difference between the word problem solution based
on appropriate mental representations and the solution based on the superficial “direct
translation” strategy was documented by Hegarty et al. (1995).

Due to the variability of the involvement of metacognitive processes in adaptive
expertise, it is not surprising that when Jacobse and Harskamp (2012) administered word
problems to grade 5 students together with the metacognitive self-regulation subscale of
the MSLQ questionnaire (Pintrich and Groot 1990), an intricate connection between the
two constructs was found. Students in their 5th grade of formal schooling can belong to
very different developmental phases of arithmetic performance; in other words, some of
them need strategic planning and monitoring while executing simple arithmetic operations,
others feel themselves confident in implementing the required steps of routine word
problem solving, while others may hesitate on whether realistic constraint should be taken
into account or should they just follow the usual superficial solution strategy. The first and
third groups may be found as active strategy users, but the second group may not show
much conscious effort in word problem solving.

In Van der Stel et al.’s (2010) study, secondary school students solved word problems.
These tasks may have required several consequent solution steps to take; therefore, students
were trained in brief sessions on how to solve these kinds of problems. The deliberate use
of different solution strategies inherently requires metacognitive skills like planning and
monitoring; thus, their results are really about the role of metacognition in word problem
solving. The connection between metacognitive skills and mathematics performance was
stronger in the 14–15 than in the 13–14-year-old group. Based on large sample empirical
results, Träff (2013) suggested a developmental model that reinforces Fuchs et al.’s (2010)
results in that working memory constraints play a significant role in the development of
arithmetic performance. Additionally, he joined the constructs of fact retrieval, multi-digit
calculation skills, and word problem solving within one research design.

Similar tentative models may be sketched for reading and writing performance as
well. For reading, the respective processes may range from phonological awareness to
adaptive reading strategy use (Paris and Hamilton 2009), while for writing, the processes
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may range from the basic geometric elements of handwriting to composing a responsive
essay. Hopefully, empirical evidence will be increasingly available about the existence
of the proposed object- and meta-level developmental stages and about the process of
transition. In reading, Wagoner (1983) used the term comprehension monitoring as covering
several conscious, metacognitive processes (involving fix-up strategies as well) related
to the comprehension of an actual text. As a matter of a debate, she contrasted two
opposing branches of empirical results: whether both good and struggling readers show
comprehension monitoring behavior or is it mainly reserved for the good readers? As
Desoete (2009) revealed, adults with comorbid difficulties in both mathematics and reading
tended to use their cognitive resources for consciously monitoring their activities that
should have otherwise been more automated in people without disabilities.

Paralleling the object-level and meta-level components of mathematics set forth in
Figure 1, and the possibly analogous components of reading, the following tentative
comparisons can be given. Grapheme-to-phoneme reading is the starting object-level (see
Steffler et al. 1998), while phonological and morphological awareness are on the starting
meta-level (Tánczikné Varga et al. 2020). Decoding skills comprise the second object-level
and reading strategies (Almasi and Fullerton 2012; Afflerbach et al. 2008). Finally, adaptive
strategy use may represent the highest developmental stage (He 2008). Although the
empirical investigation of the mechanism of transitions between different developmental
stages of arithmetic performance is a great challenge in itself, the parallel study of arithmetic
and reading may bring further evidence on the effectiveness of the Nelsonian model of
metacognition, at least in terms of educational aspects.

5. Corollaries
5.1. Observing and Measuring Metacognition in Arithmetic Performance

In general, the assessment of metacognition suffered from several weaknesses and has
walked many paths. As noted by Baker and Cerro (2000), it is difficult to develop measures
of metacognition that fulfill the traditional criteria of reliability and validity. The most
frequently used questionnaires have serious limitations. First, they can only be used from
the second grade of schooling at the earliest. One of the widely accepted measures of young
children’s metacognition, the junior MAI (Sperling et al. 2002) is suitable from grade 3.
Second, the questionnaire method suffers from possibly false memory reconstruction and
the prompting effect may be detected (see Veenman 2011). The prompting effect refers to
the possibility that students often feel they have to come up with an answer, and what is
more, they should come up with the “right” answer. Consequently, having labeled the
questionnaires as an offline technique, several different online techniques appeared from
think-aloud protocols through eye-tracking to the observation of behavior.

Online and offline measures weakly correlate with each other (Jacobse and Harskamp
2012), suggesting that the lack of connection may be due not only to the different plat-
forms or means of assessment but also to the independency of two constructs measured
separately by the two kinds of devices. Since think-aloud protocols comprise a branch
of interviews, the attempt to construct interview methods that may yield the intervie-
wee’s subjective experiences with great precision is definitely welcome (Petitmengin 2006).
Think-aloud protocols grab the very moments of conscious metacognitive experiences,
since they can be used to detect sequential processes (Jausovec 1994), logfile analysis in
a computerized environment may provide additional information about metacognitive
processes (Veenman et al. 2014). Furthermore, eye-movement research may help in de-
tecting conscious, meta-level planning and monitoring activities during word problem
solving (Csíkos and Steklács 2015). Besides, we would like to emphasize the need for more
longitudinal studies, which would allow us to test the hypothetical developmental changes
depicted on Figure 1.

For teachers who would like to collect valid information about their students’ metacog-
nitive processes, open classroom discourse is a powerful method. While for some students,
any question that goes beyond the task “What is 5 + 8?” and wonders “How could you
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calculate 5 + 8” (see Ginsburg 1996) may seem to be a non-mathematical, meaningless
enquiry; for others who are in different phases of strategy change (see Lemaire and Siegler
1995 in Section 4.2) such self-referential discussions may prove to be effective.

5.2. Implications for Teaching and Learning
5.2.1. Curriculum

Campione et al. (1988) juxtaposed three important areas of school learning: reading,
writing, and mathematics. According to their analysis, fostering metacognitive components
of these three basic skills was beyond the scope of curricula. The traditional mean of
improving the traditional three Rs (Reading, wRiting, aRithmetic) was teaching more or
less automatic skills, hence letting the child believe that skill automation is an aim, not a
tool, and struggling learners receive heavier emphasis on drill-like skill practices. During
the last three decades, decision-makers, scientists, and (to an increasing extent) in-service
teachers do agree on the importance of fostering metacognition (Gourgey 1998). However,
the methods of metacognition-based trainings might carry the danger of throwing the baby
out with the bathwater, i.e., neglecting or marginalizing the massive amount of practice
needed for smooth and automatic skill functioning. In line with our model depicted in
Figure 1, and in line with recent empirical findings on the most important age range
(7 to 11 years) for the development of brain fundamentals, our suggestion for curriculum
developers is that metacognitive or strategic processes should not be labeled as target
variables and should not appear in the timeline later than skill automation. Metacognitive
processes are well needed for skill automation.

5.2.2. Teaching and Learning

A most important curricular aim of elementary mathematics education is the smooth
functioning of arithmetic skills, and arithmetic performance should be applicable in various
contexts as embedded in word problems. In order to reach these curricular goals, didactical
practices and principles have been handed down from generations to generations of teach-
ers for several centuries. Of course, the role of the massive amount of time and practice
in skill development is still unchallenged. What is new is the utilization of metacognition
theory that has emerged over a couple of decades. Now that it is evident that metacognitive
processes play their important role both in the learning process of new arithmetic strategies
and in the application of arithmetic skills in word problem solving, teaching and learning
should find the means by which teachers can support the development of their students.

Logan (1988) suggested that automaticity comes with ample practice in the same
environment. From an educational point of view, this suggestion can be supplemented by
recent developments in instructional methodology (including developments in educational
tools and in teachers’ specialized content knowledge). Can we surpass or at least enrich the
well-known practice-makes-perfect slogan? Kuhn (1995) suggested putting more emphasis
on the top-down approaches in skill development. Borrowing the term from Karmiloff–
Smith, “explicitation” may refer to learning processes in which the formerly implicit
knowledge (whether being of declarative or procedural nature) becomes explicitly available
to the mind. The study of means of such explicitation is still challenging (as we have seen
in Section 4), but the practical methods would certainly involve instructional processes that
have been extensively studied recently under the conceptual umbrella of metacognitive
scaffolding. New educational tools like PhotoMath1 can help teachers to focus on learning
targets rather than work with counting difficulties (Webel and Otten 2015). However, the
importance of quick and flawless number fact retrieval remains an important curricular
aim mainly due to the strong brain–mind correlates in this domain-specific construct.

Of course, teachers used metacognitive scaffolding even well before the advent of the
term scaffolding. Csíkos’ (2016) results imply that teachers do implicitly teach addition
strategies to 3rd-grade students. There were remarkable differences between students in
their strategy use according to their affiliations with the schools, implying that two different
mental calculation strategies were taught in the two participating schools. However, a
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transparent and efficient education system would require more widespread use of the best
practices, especially if those practices have been empirically tested.

Among the educational implications stressed by Träff (2013), we highlight the impor-
tance of strengthening the retrieval of arithmetic facts. However, beyond what even lay
people would suggest, i.e., mere drilling practice, he emphasized a kind of top-down direc-
tion which is embodied in using word problem solving and sharpening the approximate
number abilities by means of the mental number line. The top-down approaches suggested
by both Kuhn (2000) and Träff (2013) require teachers to possess specialized pedagogical
content knowledge (Ball et al. 2008).

Teachers are (or should be) able to solve many different kinds of word problems
almost automatically (while executing their classroom management duties), and some
minutes later they can emulate their students’ task solving processes, illustrating their
calculation processes by think-aloud sessions. The following description should be true
for teachers: “in order to become competent at monitoring their own reflective reasoning,
people must first acquire knowledge of the relevant reasoning norms, and only then are
they able to notice shortcomings in their reasoning” (Fletcher and Carruthers 2012, p. 1369).
For teachers’ professionalization and pondering towards the development of in-service
and pre-service teacher training programs, Duffy (2005) emphasized the importance of
“adaptive expertise”, a term that concisely describe what both students and teachers need
in order to perform well in a given domain (Parsons 2012).

Teachers whose questions and classroom talk follow the principle of metacognitive
scaffolding (Zimmerman 2007) use a kind of “cognitive processing language” (Hudson et al.
2018). Teachers using this kind of language support students’ strategy use in the long run,
throughout the elementary school years. Thinking aloud while solving a task is certainly
an effective way of metacognitive scaffolding already among preschoolers as revealed
by Baten et al. (2017). To acquaint students with the importance of the ability to express
their thought during math classes is also a powerful, reflective practice (Monaghan 2005)
helping students get scaffolding. Of the factors that are necessary for metacognition-based
collaboration and were studied by Goos and Galbraith (1996), mutual respect and the equal
distribution of power may be fulfilled for an open classroom discourse.

Finally, we would like to take a more nuanced approach to Reusser’s (2000, pp. II/19)
ideas, “As experienced teachers know: swotting up on number facts is fast and doable for
everyone, however, hardly productive, while learning by understanding needs time and
skillful scaffolding and mediation.” The clarification we propose is not labelling “swotting
up on number facts” as only hardly productive, since it may be proven as a temporarily
effective way of improving arithmetic performance. Furthermore, of course, both rote
learning of number facts and acquiring arithmetic skills can be time-consuming, and their
effectiveness depends on individual, task, and context variables as well. There are differ-
ences among the basic arithmetic operations in terms of the relative importance of number
fact retrieval and calculation procedures (Peters and Smedt 2018). The multiplication table
(up to at least 10 × 10) is a common tool for strengthening students’ number fact retrieval,
while teaching and practicing mental calculation strategies gets less emphasis. To the
contrary, there use to be different mental subtraction strategies taught, while number fact
retrieval takes a back seat in subtraction tasks.

As for the right understanding of what “teaching strategies” mean, Threlfall (1998, p. 6.)
warns that teaching strategies should mean providing “lots of opportunities for children to
find their own way [italicized by the author] through number challenges in an atmosphere of
invention”. Because when strategy use is too automated, as a by-result, meaningless reliance
on a given strategy may result in serious defect in development. As revealed by Allain et al.
(2005), albeit persons with Huntington’s disease performed significantly weaker in a series of
simple arithmetic word problems than control subjects did, on a task requiring the declaration
that the task was unsolvable, no significant difference was found. It does not mean that
Huntington’s disease may have some advantages regarding arithmetic strategy use, but it may
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indicate that regular classroom teaching can favor and over-automate the use of a privileged,
albeit superficial task solving strategy.

Another alerting example comes from Nunes et al.’s (1993) book in which the discourse
with a 12-year-old street vendor revealed how complex strategy he used when multiplying
35 by 10. As opposed to a strategy possibly taught in schools, i.e., multiplication by ten, it
can be done simply by putting a zero to the right of the number. In that context, the child
deliberately applied a series of steps involving additions, multiplications, and number facts
to get the result. We would not claim that the street vendor’s strategy was inferior in any
educationally relevant aspects; however, there is a clear distinction between the classroom
context and the school of Life.

The main message of the current essay is: Do not take as granted that metacognitively
rich learning and performance are necessarily good. However, do take as granted that
metacognitively rich instruction, i.e., specialized content knowledge enriched by metacog-
nitive scaffolding, seems to be the most promising way to support the development of
arithmetic performance. More briefly: teach metacognitively but dispense metacognition
in the spirit of “dosing as needed”.
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Note
1 Having written a simple addition like 5 + 2 onto a piece of paper, smart phones with PhotoMath application can immediately tell

that the result is 7. Could it cause some kind of loss in terms of quick access to mental number facts?
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