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Abstract: The detection and analysis of protein complexes is essential for understanding the func-
tional mechanism and cellular integrity. Recently, several techniques for detecting and analysing
protein complexes from Protein–Protein Interaction (PPI) dataset have been developed. Most of
those techniques are inefficient in terms of detecting, overlapping complexes, exclusion of attach-
ment protein in complex core, inability to detect inherent structures of underlying complexes, have
high false-positive rates and an enrichment analysis. To address these limitations, we introduce a
special structural-based weighted network approach for the analysis of protein complexes based on a
Weighted Edge, Core-Attachment and Local Modularity structures (WECALM). Experimental results
indicate that WECALM performs relatively better than existing algorithms in terms of accuracy,
computational time, and p-value. A functional enrichment analysis also shows that WECALM is
able to identify a large number of biologically significant protein complexes. Overall, WECALM
outperforms other approaches by striking a better balance of accuracy and efficiency in the detection
of protein complexes.

Keywords: protein complexes; core-attachment; local modularity structure; weighted PPI network

1. Introduction

The detection of protein complexes in Protein–Protein Interaction (PPI) networks is an
essential task in system biology for deciphering the cellular organization and functional
mechanism. Protein complexes perform the majority of a cell’s functional actions [1–3].
As a result, detecting protein complexes is a critical research topic in systems biology.
Understanding biological processes is also important in a variety of cytoplasmic systems
and helps in the diagnosis of complex diseases [4–6].

Though there are numerous laboratory techniques for detecting protein complexes,
most of them tend to be expensive and time-consuming. This has led to the use of compu-
tational methods as an efficient approach to detect protein complexes [7]. Computational
methods for protein complex detection are generally classified into two broad classes
depending on the information required during the complex detection procedure [8]. The
first class is known as a topology-based approach, which just uses PPI network topological
information to detect protein complexes. The second class uses both topological and bio-
logical data to detect protein complexes such as DPC [9], GMFTP [10], and IPC-BSS [11].
Recently, a number of topology-based approaches have been developed to detect protein
complexes. For example, there is k-cliques or cliques-based method such as CMC [12] and
CFinder [13]; Sub-network density-based methods such as MCL [14–16], DPClus [17,18],
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and SPICi [19]; modularity-based method such as CALM [20] and ClusterONE [21]; core-
attachment structure-based methods such as COACH [22]and Core [23] and rank and
spoke-based methods such as ProRank+ [24].

Nevertheless, these topological-based methods do not identify the state and structure
of protein complexes in a PPI network. For instance, CFinder [13], detects protein complexes
based on the clique percolation method (CPM) [25], an approach which is computationally
expensive when handling large-scale PPI networks due to the NP-complete problem that
requires protein complex to be k-clique [26,27]. Related studies have also applied a sub-
network density-based approach such as Markov Clustering (MCL) [15,16], and tend to
detect protein complexes based on the interaction of proteins within a sub-network (protein
complex) in a random walks fashion [7,8,28,29]. Moreover, a heuristic network clustering
technique such as SPICi [19], has shown to be efficient for detecting protein complexes
based on the local density and support measure. However, this technique is often unreliable
when it comes to the detection of protein complexes with overlapping structures especially
with high functional similarity. This has led to the development of DPClus [17] as an
efficient method for detecting overlapping protein complexes such as these. However,
methods such as ClusterONE that utilize MMR for overlapping complex detection tend to
miss some attachment proteins, which could result in false positives for protein complex
detection [18,20]. Filtering methods such as ProRank+ [24]and PEWCC [30] have been
adopted to increase the reliability of PPI networks. Recently modularity-based clustering
techniques such as PCR-FR [31], CALM [20], ClusterONE [21] and EPOF [32] have been
proposed for detecting protein complexes in densely and sparsely connected network
structures [13,33–38]. Generally, the core of a protein complex is frequently a dense sub-
network with attachment proteins that are closely linked to the complex’s core proteins
which help these proteins perform auxiliary functions [22]. Protein complexes have an
inherent organization and a common architecture [39,40]. Several techniques for identifying
protein complex cores based on core-attachment structure have been investigated to this
point, including COACH [22], and Core [23].

Another popular technique that has been used in the detection of protein complex
cores is the co-attachment method which is often based on the network core-network
structure [41–43]. Generally, this technique has two steps: namely, the identification of
the complex core as a dense sub-network or maximal clique and then the characterization
of the core of the protein complex. Although these two steps have been widely adopted
in the detection of the protein complexes they tend to be inefficient when attempting
to characterize the protein complex core of a dense sub-network [44]. Moreover, the
majority of the core-attachment-based methods are based on the selection of proteins
whose neighbors interact with more than half of the protein in the complex core in the
sparse PPI networks [22]. However, this may result in high false-positive interactions
and lead to the inaccurate detection of protein complexes [45–47]. The core-attachment
structure is still being investigated; no studies have provided a clear distinction between
overlapping proteins, core proteins, and peripheral proteins in terms of the weighted
network structure [41]. The majority of studies simply focus on a few structural concepts
of these protein complexes [20,45–49].

Recently, method such as CALM has shown to be more efficient in the detection of
overlapping protein complexes on large-scale PPI networks. However, this method only fo-
cuses on the detection of overlapping protein complexes and tends to ignore local attachment
proteins to the complex core, as well as it does not consider the common neighborhood and
high-order common neighborhood similarity measures when calculating the initial weight of
the PPN. All those factors influence the reliability of the PPN and detection of the protein
complexes which may result in false positive prediction. To address these limitations, we
propose a special structural-based weighted network approach called the Weighted Edge
algorithm, Core-Attachment, and Local Modularity (WECALM) for protein complex analysis.
By our WECALM approach, our contributions are: First, we introduce a high-order similarity
measure based on the Jaccard measure to compute the edge weights, which ensures the
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reliability of the PPI network. Second, we extend protein complex identification by using
a weighted connectivity algorithm to discriminate and detect local attachment proteins to
complex cores. Third, we extend the detection of protein complexes using the structural simi-
larity measure concept. Fourth, we perform functional enrichment analysis by calculating
the p-value of the detected complexes to validate their associated functions.

This paper is organized as follows. In Section 2, we provide a preliminary overview of
our approach. In Section 3, we give a detailed computational description of our approach to
the detection of protein complexes. In Section 4, we describe our experimental PPI datasets
and evaluation criteria of our proposed approach. In Section 5, we present the experimental
results and discuss them. Lastly, in Section 6, we draw some conclusions and outline our
future research plans.

2. Preliminaries

In this section, we introduce some fundamental concepts. Generally, the PPI network
can be represented as an undirected unweighted, or weighted graph denoted by G = (V, E)
where V are set of nodes denoting the proteins and E are set of edges corresponding to the
interaction between pair of proteins. In our approach, we consider the PPI network to be an
undirected edge-weighted graph given by G = (V, E, W), where W denotes the weight on
the edge representing the confidence score in the range (0, 1] and function W : E −→ R+

quantifies the affinity of the interaction between each pair of nodes or proteins ( i.e., edge
mapping in E). For node v, N(v) denotes the set of all neighboring nodes of v. The nodes
(proteins) of the PPI graph model can be classified into four major classes with respect
to protein complexes (groups of two or more proteins that are physically linked together
through non-covalent interactions) according to [21,50,51] (see also Figures 1 and 2). The
first class is core nodes: a node is considered to be a core node in the complex if: it shows
a high degree of physical interaction; it has a relatively high weighted degree of direct
physical interaction among themselves within the complex and less interaction with nodes
outside the complex; the set of core nodes unique in each complex. The second classification
is peripheral node, a node is considered to be a peripheral node to a complex if: it has a close
interaction with the complex core; it is stable and directly interacts with the complex core.
The third classification is overlapping nodes; a protein is considered to be an overlapping
protein to a complex if: it has a higher degree and acts as a betweenness node than the
neighborhood nodes; it interacts closely to the complex core; it belongs to more than one
complex. The remaining proteins are classified as interspersed nodes, which is probably just
noise in the PPI network.

Figure 1. A general structure of a PPI network comprised of two complexes, overlapping proteins,
and peripheral and interspersed proteins.
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Figure 2. A simple graph representation of the PPI network structure is shown in Figure 1. From
the network, v represents the nodes or proteins and w represents the weight of edges or the confi-
dence score.

3. Methods

In this section, we will describe seven main steps of our proposed WECALM algo-
rithm these include: building a weighted PPI network; identifying overlapping structures;
identifying seed proteins; identifying local modularity structures; identifying complex core
structures; detecting attachment proteins to the complex core and protein core attachment
and protein complex formation.

3.1. Building Weighted PPI Network

In general, PPI networks obtained through various experimental techniques are typi-
cally noisy and many interactions are presumed to be false positives [52,53]. As a result, we
should reduce the rate of false positives. To address this challenge topological properties
of PPI networks have been proposed to develop preprocessing strategies for evaluat-
ing and eliminating potential false positives [54–58]. According to some experimental
findings [59–61], neighbor information-based methods are used to evaluate PPI with high
confidence scores and are typically more reliable than other methods. Thus, in this study to
build a reliable weighted PPI network, we shall use Jaccard’s coefficient similarity (Js) [62]
to compute the proteins interaction scores. Hence, the similarity between two neighboring
proteins v and u is defined by

Js(v, u) =
|N(v) ∩ N(u)|
|N(v) ∪ (u)| =

|CN(v, u)|
|N(v) ∪ N(u)| , (1)

where 0 ≤ Js(v, u) ≤ 1, I is the interaction between proteins v and u, CN(v, u) repre-
sents the set of common neighbors proteins v and u. |N(v) ∩ N(u)| represents number of
common neighbors of proteins v and u. |N(v) ∪ N(u)| represents the union set of all the
different neighboring proteins of v and u. Thus, with Equation (1), we can calculate weight
between two neighbouring proteins v and u by

w(v, u) =

{
1 i f |CN(u, v)| ≤ 1
0 otherwise

(2)

Based on our computation the similarity of two adjacent proteins will be higher if
the two proteins share more common neighbors. On this basis, we propose a high-order



Appl. Sci. 2023, 13, 6388 5 of 29

similarity metric based on Jaccard’s coefficient between proteins v and u to calculate the
connectivity between the adjacent proteins v and u in the common neighbor. Now we will
define the common neighbors’ support using the formula

ρ(v, u) = Js(v, u) ∑
u∈CN(v,u)

w(v, u), (3)

where ρ is the common neighbor support of the weighted edge(v, u) and w is the weight
of the edge between protein v and u stated in the preliminary in Section 2. Thus, with
Equations (2) and (3), we can define high-order similarity score by the formula

φ(v, u) =
Js(v, u) + ρ(v, u)

1 + ρ(v, u)
, (4)

where φ(v, u) is the high-order similarity score for the common neighbor of two adjacent
proteins and it takes the values in the range [0, 1). For the rest of the paper, φ defines the
edge weights W.

3.2. Identifying Overlapping Structures

To identify the overlapping structure, let v ∈ V, N(v) = {u|u ∈ V, (v, u) ∈ E} be set
of neighbour protein v and deg(v) = |N(v)| be the number of neighbours of protein v.
Given protein v ∈ V we can define the neighborhood network GNV = (Vv, Ev) as sub-
network of protein v and its direct neighbours interacting in network G. Hence Vv = {v} ∪
{u|u ∈ V, (v, u) ∈ E} and Ev =

{
(ui, uj)

∣∣(ui, uj) ∈ E, ui, uj ∈ Vv
}

. Thus, the weighted
degree average of a local neighborhood sub-network GNV is defined by the equation

Avg(deg(GNV )) =
∑

u∈Vv

deg(u)

|Vv|
, (5)

To calculate the global importance of a protein v, we calculate the shortest paths
between all protein pairs that pass through the target proteins by defining the betweenness
of node v by

B(v) = ∑
s 6=v,t 6=v
s,t,v∈V

δs,t(v)
δs,t

, (6)

where δs,t is the number of shortest paths between protein s to t and δs,t(v) is the number of
shortest paths between protein s to t that pass through the intermediate (bridge) protein v.
Thus, using Equation (6) the average betweenness of its local neighborhood sub-network
GN v is calculated by

Avg(B(GN v) =
∑u∈V B(u)
|Vv|

, (7)

where AvgB(GNV ) is the average of B(u) for all u ∈ Vv in local neighborhood sub-
network GN v and |Vv| denotes the total number of nodes in the PPI network. Then, using
Equations (5) and (7) we defined overlapping protein structure in the PPI network by

OVP(GNV ) =
{

1 i f deg(v) ≥ Avg(deg(GNV )) ∧ B(v) > Avg(B(GNV ))),
0 otherwise

(8)
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where GN v is candidate overlapping protein complex with OVP(GNV ) = 1. To measure
the degree of overlap between sets of candidate overlapping protein complexes we calculate
the overlapping score between the two sets by

OS
(
OVP i,OVP j

)
=

∣∣OVP i ∩OVP j
∣∣

|OVP i|+
∣∣OVP j

∣∣− ∣∣OVP i ∩OVP j
∣∣ , (9)

where OS
(
OVP i,OVP j

)
is overlapping score between OVP i and OVP j ranging from

[0, 1) in which 0 indicates no overlap between the sets and 1 indicates that the sets are
identical; |OVP i| and

∣∣OVP j
∣∣ denote the sizes of sets OVP i and OVP j, respectively.∣∣OVP i ∩OVP j

∣∣ denotes the intersection of sets OVP i and OVP j. In this paper, we
identify the candidate overlapping protein complex when OS

(
OVP i,OVP j

)
≥ π, where

π is predefined overlap threshold ranging in (0, 1].

3.3. Identifying Seed Proteins

The identification of seed protein for the PPI network is essential for the detection
of protein complexes. Here, we introduce the concept of weighted degree and cluster
coefficient as a strategy for identifying the seed protein. For this, we defined the weighted
node degree by

degw(v) = ∑
u∈N(v);(v,u)∈E

w(v, u), (10)

where degw(v) is the weighted degree of the protein v and w is the edge weight stated in
the preliminary in Section 2. To determine the seed protein we consider the small world
phenomenon model [63,64] which correspond to local weighted clustering coefficient λ.
Then, we define λv of protein v as measure of its local connectivity among its immediate
neighbors and λw(v) of protein v as weighted sub-network GNV formed by Nv and their
corresponding weighted edges. Thus, we can calculate clustering coefficient of protein v by

λw(v) =
∑ui∈Vv ∑uj∈N(ui)∩Vv w(ui, uj)

|Nv| × (|Nv| − 1)
, (11)

where λw(v) is the clustering coefficient of protein v and λw(v) ∈ (0, 1]. Using Equation (11),
we can calculate the average clustering coefficient of sub-network GNV by

Avg(λw(v)) =
∑u∈Vv λw(v)
|Vv|

, (12)

where λw(v) is the average local weighted clustering coefficient of the protein v, Vv
is the number of the protein v and all its local neighbours in a sub-network. With
Equations (7) and (12), the seed protein (S) is defined as

S (v) =
{

1 i f λw(v) ≥ Avg(λw(v)) ∧ B(v) ≤ Avg(B(GNV )),
0 otherwise

. (13)

where node v is a selected seed protein if S (v) = 1.

3.4. Identifying Local Modularity Structures

To identify local modularity structures, we consider seed proteins calculated by
Equation (13) as initial nodes to generate clusters by first computing the support function,
followed by the local modularity function. Hence, using Equation (4) first, we calculate
the similarity score between a seed protein v and its immediate proteins gradually adding
the neighboring proteins with the help of the support function and the local modularity
function in order to generate cluster K as sub-network. To prioritize each neighboring
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protein u, first, we calculate the support function to measure how close the protein u is to
the cluster K using the formula

supp(u, K) =
∑u′∈K∩N(u) w(u, u′)

∑u′∈N(u) w(u, u′)
, (14)

where supp(u, K) is the support function in the range [0, 1), u /∈ K, and ∑u′∈K∩N(u) w(u, u′)
is the summation of the edge weight linking protein u to K, and ∑u′∈N(u) w(u, u′) is the total
degree weight of protein u. The above-prioritizing approach can be extended iteratively for
the neighbors of any initial cluster K. Thus, in each iteration step, according to the priority
of the neighbors, the decision to join the cluster is made by the local modularity function.

Given subnetwork K of G, we can define weights in-degree as the sum of the weight of
edges linking protein u to other proteins in K denoted by win(K) and weighted out-degree
as the sum of the weight of edges linking protein v to proteins in the rest of G − K denoted
by wout(K). Thus, we can define win(K) and wout(K) by

win(K) = ∑
u,u′∈K

w(u,u′)∈W

w(u, u′), (15)

and

wout(K) = ∑
u′∈K,u/∈K
w(u,u′)∈W

w(u, u′), (16)

where w represents the weight of the edges in sub-network K. To determine the local mod-
ularity structure in sub-network K, we defined modular uncertainty correction threshold
value η in the interval of [0, 1). Using Equations (15) and (16), we can define the local
modularity of sub-network K by

Q(η, K) =
win(K)

(win(K) + wout(K) + η · |VK|)α , (17)

where Q(η, K) takes a value (0, 1); |VK| is total number of proteins in K, η is predefined
modular uncertainty correction parameter in the range of (0, 1], α is the ratio of the internal
interaction to the total interaction in the community. We set α = 1.0 in order to detect
high win(K) and a low wout(K) which makes it efficient in the detection of local modularity
structure. A neighboring node is added to K, if extending K by the given node, the value of
the local modularity function would increase.

3.5. Identifying Complex Core Structure

To detect the complex core, let v ∈ V, N(v) be the set of all immediate neighbor
proteins, and the structural neighborhood of protein v is given by Ns(v) = {v} ∪ N(v), in
which Ns(v) entails protein v and its direct neighbors. Now, we can calculate the structural
similarity between two neighboring proteins v and w by

SS(v, w) =
|Ns(v)| ∩ |Ns(w)|√
|Ns(v)| |Ns(w)|

, (18)

where SS(v, w) structural similarity is in the range of (0, 1]. Here, high SS(v, w) between
two proteins indicates that the two proteins shared a similar neighborhood structure.
Moreover, the structural similarity is symmetric as SS(v, w) = S(w, v). Based on SS(v, w)
we mine a sub-network in the neighborhood network GNV , which we refer to preliminary
complex core. We introduce ω as the default threshold value to compute the optimal
structural similarity score between seed protein, v, and each neighbor w ∈ N(v) from
the identified preliminary protein complex Cp(v). Hence, using Equation (18) given the
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preliminary complex Cp(v), and structural similarly threshold ω, we can calculate the
preliminary complex core of protein v by

Core(ω, Cp(v)) = {w ∈ Cp(v) : SS(v, w) ≥ ω} (19)

where Core(ω, Cp(v)) is the preliminary complex core; ω is a default threshold value in
ranging from (0, 1]; Cp(v) denotes the preliminary complex of protein v. Note that protein
v is included in the Core(ω, CP(v)).

3.6. Detection of Attachment Proteins to Complex Core

Generally, attachment proteins exist in two forms, namely overlapping and peripheral
protein attachments [65]. Therefore, to identify protein attachment to the complex core, con-
sider the identified preliminary protein complex denoted by Cp(v), the preliminary complex
core as a sub-network represented by Core(ω, Cp(v)) = (Vc, Ec) and the set CAP(Cp(v))
of candidate attachment proteins as a subset of the neighbors of Core(ω, Cp(v)). Here,
our two main objectives are: first, to find a subset CAP(Cp(v)) ⊆ V in PPI network in
which each protein p ∈ CAP(Cp(v)) is a candidate attachment protein with identified
preliminary protein complex CP(v), and secondly, to predict the category of each protein in
CAP(Cp(v)).

To achieve the two objectives we set two basic conditions, namely: (1) The attached
proteins must interact with the complex cores directly; (2) The attached proteins must
be connected to at least two core proteins via complex cores since protein complexes are
made of two or more complexes [66]. Therefore, if protein p fulfils the conditions as be-
longing to the neighborhood of Core(ω, CP(v)) with |N(p)

⋂
Vc| ≥ 2, then it is selected for

CAP(Cp(v)). Below we provide a detailed description of the calculation of the overlapping
and peripheral protein attachment to the complex core.

3.6.1. Overlapping Attachment Proteins

To identify overlapping protein attachment let CAP(CP(v)) attached from preliminary
complex protein CP(v) and OVP(CP(v)) be the set of candidate overlapping proteins
attached to the preliminary complex protein CP(v). We can define weighted candidate
protein for a candidate overlapping attachment protein p ∈ OVP(CP(v)) interacting with
proteins in complex core Core(ω, CP(v)) by

dw(p, Core(ω, CP(v)) = ∑
t∈Vc

w(p, t), (20)

Next, we calculate the average weight of interaction for all candidate core protein p
within complex core Core(ω, CP(v)) by the formula

Avg(dw(OVP(CP(v))) =

∑
p∈OVP(CP(v)

dw(p, Core(ω, CP(v))

|OVP(CP(v)|
(21)

Using Equations (20) and (21), we defined the score of the candidate overlapping
protein attachment to the complex core CP(v) by

OVP(p, Core(CP(v)) =

{
1 i f dw(p, Core(ω, CP(v)) ≥ Avg(dw(OVP(CP(v)))),
0 otherwise

(22)

Then, the set OVP(Core(CP(v)) denotes the set of local overlapping attachment
proteins p for which OVP(p, Core(CP(v)) = 1.

3.6.2. Peripheral Attachment Protein

Here, we consider the set of candidate peripheral proteins PP(CP(v)) obtained by
the difference of CAP(CP(v))−OVP(Core(CP(v)). Given the weight of the connectiv-
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ity of proteins p ∈ PP(CP(v)) with respect to the complex core as dw(p, Core(ω, CP(v)),
we define the average weight of interactions of all candidate peripheral proteins with
Core(ω, CP(v)) by

Avg(dw(PP(CP(v))) =

∑
p∈PP(CP(v)

dw(p, Core(ω, CP(v))

|PP(CP(v)|
(23)

Hence, using Equation (23), we define the score of peripheral attachment protein by

PP(p, Core(CP(v)) =

{
1 i f dw(p, Core(ω, CP(v)) ≥ Avg(dw(PP(CP(v)))),
0 otherwise

(24)

Then the set PP(Core(CP(v)) denotes the set of local peripheral attachment proteins
p for which PP(p, Core(CP(v)) = 1.

3.7. Protein Core Attachment and Protein Complex Formation

To detect protein complex formation, we first compute the core-attachment proteins
by aggregating the overlapped and peripheral protein scores to generate the overall set of
attachment proteins in the complex core defined by the formula

A(Core(CP(v)) = OVP(Core(CP(v)) ∪ PP(Core(CP(v)), (25)

where A(Core(CP(v)) is the overall local attachment proteins to the complex core
Core(CP(v)). Next, the protein complex formation is computed by merging sets of pre-
liminary complex cores (see Equation (19)) and the set of detected candidate attachment
proteins (see Equation (25)). Hence, using Equations (22) and (25) we defined the score of
final protein complex formation by

CP(v) =

{
1 i f |OVP(Core(CP(v))| ≥ 2∧ |Core(ω, CP(v))| > 3 |A(Core(CP(v))| ,
0 otherwise

(26)

Therefore, we define the set of distinct protein complexes using the formula

CP(v) = Core(ω, CP(v)) ∪A(Core(CP(v))), (27)

where the protein complexes above are defined only if CP(v) = 1.

4. Datasets and Evaluation Criteria

In this section, we will provide a general description of the experimental PPI datasets
and evaluation criteria used to validate and compare the performance of our WECALM
approach.

4.1. Experimental PPI Datasets

In our study, the three freely accessible PPI networks extracted from S.cerevisiae were
used for simulation. They were the DIP [67] database that documents experimentally
determined Protein–Protein interactions, BioGRID [68] database of physical and genetic
interactions, and the Yeast database [17,69]. A brief description of the dataset used for
the simulation is given in Table 1. The data from Human [69] was used to build Human
PPI networks.
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Table 1. The general details of PPI networks used for the simulation.

Datasets Number of Protein Number of Edges Network Density

BioGRID 5640 59,748 3.16× 10−6

DIP 4930 17,202 1.42× 10−3

Human 15,459 144,687 1.21× 10−3

Yeast 6194 74,826 3.90× 10−3

For complex simulation data, we used the yeast reference datasets CYC2008 [70] and
NewMIPS [71,71] for complex simulation studies. For human complexes, we used data
from the CORUM [69] , PINdb [72], and KEGG modules [73] databases. In addition, for
functional enrichment analysis, we utilised Aloy [50] and SGD [74] for Gene Ontology.
Table 2 lists the details of the benchmark protein complexes employed in this study.

Table 2. The details of the benchmark protein complexes.

Complex
Datasets

Number of
Protein Complexes

Overlapping
Complexes

Non-Overlapping
Complexes

Protein
Coverage

Average
Size

NewMIPS 328 283 45 1171 14.93
CYC2008 236 108 128 1628 4.71
Human complexes 2289 - - 6206 8.57
Yeast complexes 1045 - - 2773 8.92

4.2. Evaluation Criteria

We compared the identified protein complexes with the reference complexes to deter-
mine how well the algorithms identify protein complexes. To make comprehensive and
detailed comparisons, we utilized a wide range of evaluation metrics such as recall, preci-
sion, F-measure, coverage rate, and others, as suggested by related studies [20,22,23,75]. In
the subsection below, we provide a detailed description of these metrics.

4.2.1. Computation of Recall, Precision and F-Measure

To calculate evaluation metrics, we must first compute the similarity between de-
tected and reference complexes based on neighborhood affinity in order to measure their
closeness [53,76,77]. Hence, let P = {p1, p2, . . . , pk} be detected protein complexes CP(v)
and R = {r1, r2, . . . , rl} be the reference protein complexes. Here, we denote the detected
and reference proteins complexes by pi and rj respectively. Thus, neighborhood affinity
between the detected and reference protein complexes is calculated like so:

NA(pi, rj) =

∣∣N(pi) ∩ N(rj)
∣∣2

|N(pi)| |N(ri)|
, (28)

where NA(pi, rj) is the neighborhood affinity in the range of [0, 1), |N(pi)| represents
the size of detected complex, |N(rj)| represents the size of the reference complex, and
|N(pi) ∩ N(rj)| denotes the number of common proteins from the detected and reference
complexes. Here, the larger the NA(pi, rj), the closer the two complexes are. Given a
threshold κ, i f NA(pi, rj) ≥ κ, then pi is similarly matched with rj so we set κ = 0.2
according to [22,53,78]. From Equation (28) we can calculate recall, precision and F-measure.
Let NP = |{p|p ∈ P, ∃r ∈ R, NA(p, r) ≥ κ} and NR = |{r|r ∈ R, ∃p ∈ P, NA(r, p) ≥ κ}
be the number of the corrected detected and reference complexes that match at least one
real protein and detected complex, respectively. Now, we define recall and precision using
the formula



Appl. Sci. 2023, 13, 6388 11 of 29

Recall =
|{r|r ∈ R, ∃p ∈ P, NA(r, p) ≥ κ}|

|R| =
NR
|R| , (29)

and

Precision =
|{p|p ∈ P, ∃r ∈ R, NA(p, r) ≥ κ}|

|P| =
NP
|P| , (30)

In general, a smaller protein complex has a higher precision, and a larger protein
complex has a higher recall hence the two metrics often have an inverse relationship. Since
the F-measure is the harmonic mean of recall and precision using Equations (29) and (30),
we can define the F1-measure by

F1−measure =
2× Precision× Recall
|Precision + Recall| , (31)

4.2.2. Coverage Rate

To evaluate the performance of our proposed WECALM algorithms and peer methods
it is necessary to determine the number of potentially covered proteins in the reference
complexes by a computation of the coverage rate (CR) [75,77,79]. To calculate the coverage
rate, let P and R be the sets of detected and reference protein complexes, respectively.
Hence we can represent the matrix of the detected complexes and the reference complexes
|R| × |P| by M, where each component of the matrix max{Mij} is the maximum number of
proteins sharing a similar function relationship between the ith and jth reference complex
and detected complex respectively. Now we defined coverage rate by

CR =
∑
|R|
i=1 max{Mij}

∑
|R|
i=1 Ni

, (32)

where CR is the coverage rate and Ni denotes the number of proteins in the ith refer-
ence complex.

4.2.3. Maximum Matching Ratio

The maximum match ratio, or MMR, is a metric based on the maximum one-to-
one mapping between the detected and reference complexes. MMR directly penalizes a
reference complex that has been split into two or more parts in the detected set because
only one of these parts is permitted to match the correct reference complex. MMR offers a
natural, simple method for comparing detected complexes to reference complexes [20,80].
We compute the MMR using a weighted edge between the detected and the reference
complexes calculated based on the neighborhood affinity score defined in Equation (28).
That is, the maximum match ratio is

MMR =
∑
|R|
i=1 maxn

j=1 NA{pi, rj}

∑
|R|
i=1 Ni

, (33)

where NA{pi, rj} is the neighborhood affinity score; R is the number of the reference
complexes, n is the number of detected complexes; j is a member of the detected complexes;
Ni is the number of proteins in the ith reference complex; rj is the jth reference complex and
pi is the ith detected complex.
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4.2.4. Separation and ACC

To avoid the case where proteins of a reference complex are matched with several
detected protein complexes we used Separation (Sep) to calculate a one-to-one correspon-
dence between detected protein complexes and reference protein complexes [20]. Here, we
defined Separation by

Seppi =
∑
|R|
i=1 ∑m

j=1 Sepij

|R| , Seprj =
∑m

j=1 ∑
|R|
i=1 Sepij

m
, Sep =

√
Seppi × Seprj , (34)

where Sepij =
(tij)

2

∑
|R|
i=1 tij∗∑m

j=1 tij
, |R| is the number of protein complexes in the reference com-

plexes, m is the number of proteins in detected complexes,tij denotes the degree of intersec-
tion between the ith reference complex and the jth detected complex, and Ni is the number
of proteins within the ith reference complex. To quantify the quality of detected protein
complexes, we compute the geometric means of sensitivity and the positive predictive value
(PPV) to obtain the Accuracy ACC [20]. To measure ACC, we used the following formula

Sn =
∑
|R|
i=1 maxm

j=1{tij}

∑
|R|
i=1 Ni

, PPV =
∑m

i=1 max|R|j=1{tij}

∑m
j=1 ∑

|R|
i=1{tij}

, ACC =
√

Sn × PPV , (35)

4.2.5. Functional Enrichment Analysis

Even though known protein complexes are often insufficient or incomplete in
laboratory-based experiments, it is always necessary to annotate the biological function of
the detected complexes by computing the p-value and perform Gene Ontology functional
enrichment analysis as a confirmatory test of the biological significance of the detected
complexes [9,11,81]. To calculate the significance value of the biological function, we define
the p-value by

p− value = 1−
m−1

∑
i=0

(F
i )(

N−F
C−i )

(N
C)

, (36)

where m is the number of observed proteins in the functional group of the detected complex,
N is the total number of proteins in a PPI network, C is the size of the detected protein and
F represents the size of functional group. Note that in our analysis the p-value is calculated
based on the biological processes term descriptions (or ontologies) and the smaller value
the more the biological significance that protein complex has. Hence, protein complex with
a p-value < 0.01 is deemed to be biologically significant in the PPI network.

5. Results and Discussion

In this section, we will present and discuss the findings of WECALM’s performance
compared with other algorithms, followed by parametric selection, computational com-
plexity analysis, and validation with function enrichment analysis.

5.1. Performance Comparison of WECALM with Other Algorithm

In our study, it was necessary to compare the performance of our proposed WECALM
algorithm with other existing protein complex detection algorithms based on the evalu-
ation criteria stated in Section 4.2. Therefore, we compared our WECALM method with
ten recently developed complex detection algorithms namely, CFinder, MCL, COACH,
EWCA, Core, CALM, ClusterONE, GMFTP, ProRank+, and CMC. To fairly evaluate the
ten algorithms we set the optimal parameters of each algorithm based on the author’s
recommendations to obtain the results [10,20,82].
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5.1.1. Performance on NewMIPS Complexes

We compared the robustness of our proposed WECALM method to other existing
methods for detecting protein complexes. We considered the evaluation matrices described
in Section 4.2. Based on the NewMIPS complex using the BioGRID dataset (see Figure 3A),
we found that WECALM performed better in terms of recall (0.7701), F-measure (0.7252),
coverage rate (0.6743), and maximum matching ratio (0.3975). In terms of precision score
(0.7131), ProRank+ outperformed all other methods. On the NewMIPS complex using the
DIP dataset (see Figure 3B), again we observe that WECALM performed better in terms of
recall (0.7141), F-measure (0.5889) and maximum matching ratio (0.3531). ProRank+ (0.6657)
and CMC (0.5736) performed best in terms of precision and coverage rate respectively.
Though, ProRank+ and CMC in terms of precision and coverage rate WECALM performed
best in the overall composite score. Table A1 in Appendix A provides supplementary
results for performance comparison of WECALM and another algorithm on the NewMIPS
dataset using the BioGRID and DIP complexes.

Figure 3. A comparison of the performance of WECALM and other existing algorithms on NewMIPS
complexes. (A): The BioGRID dataset and (B): The DIP dataset. Evaluation matrices include; Recall,
Precision, F-measure, coverage rate (CR), and the Maximum Matching Ratio (MMR). The overall
composite score is determined by the length of the bar. The longer the bar, the better an algorithm’s
overall performance is.
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5.1.2. Performance on CYC2008 Complexes

We also compared the performance of WECALM with other algorithms based on
CYC2008 complexes using both the BioGRID and DIP datasets. Based on the CYC2008
complex using the BioGRID dataset (see Figure 4A), we see that WECALM performed better
in terms of recall (0.8291), F-measure (0.6956), CR (0.8831), and MMR (0.4825). In terms of
precision score (0.6622), ProRank+ performed better than other methods. On the DIP dataset
(see Figure 4B), again we observe that WECALM performed better in terms of recall (0.7315),
F-measure (0.6315), and maximum matching ratio (0.3866). ProRank+ (0.6924) and GMFTP
(0.6085) performed best in terms of precision and coverage rate respectively. Though,
ProRank+ and GMFTP in terms of precision and coverage rate WECALM performed best
in the overall composite score. Table A2 in Appendix A provides supplementary results for
evaluation of the performance of WECALM and another algorithm on CYC2008 complexes
using the BioGRID and DIP datasets.

Figure 4. A comparison of the performance of WECALM and other existing algorithms on CYC2008
complexes. (A): The BioGRID dataset and (B): The DIP dataset. Evaluation matrices include; Recall,
Precision, F-measure, coverage rate (CR), and the Maximum Matching Ratio (MMR). The overall
composite score is determined by the length of the bar. The longer the bar, the better an algorithm’s
overall performance is.
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WECALM’s performance was also evaluated in terms of separation and ACC. Ac-
cording to the results in Tables A1 and A2 in Appendix A, WECALM outperformed all
other methods in separation and ACC on both the NewMIPS and CYC2008 complexes
both the BioGRID and DIP datasets. A high separation measure indicates that the detected
complexes are well separated from one another, indicating good algorithm performance
while an ACC score close to 1 indicates perfect performance, meaning that the algorithm
detected all the true complexes. A low separation measure indicates that the complexes are
overlapping or clumped together, which might mean false positive complexes or inaccurate
detection of true complexes while an ACC score of less than 1 indicates that some of the
detected complexes were false positives.

5.2. Parametric Selection

Here, we shall evaluate the effects of adjusting the threshold value of π, η, and ω on the
overlapping score, local modularity score, and core structural similarity score, respectively
on the performance of the WECALM.

5.2.1. Effect of Varying π on the Performance of WECALM

The overlapping score measures the similarity between two protein complexes, and in
our simulation, we measure the degree of overlap between sets of candidate overlapping
protein complexes using Equation (9). Hence, to assess the effect of π on the performance of
the WECALM, we adjust the default threshold value, π from 0.1 to 1.0 with a 0.1 increment,
then calculate the composite score based on evaluation metrics including Recall, Precision,
F-measure, CR, and MMR. We used the BioGRID and DIP yeast PPI complexes in Table 1
and the NewMIPS and CYC2008 reference protein complexes in Table 2. Figure 5 shows
the composite score for WECALM performance at different π values on the BioGRID
and the DIP datasets. In Figure 5, we noticed that both the BioGRID (Figure 5A) and
DIP (Figure 5B) complexes on the NewMIPS the recall, MMR, and CR scores decrease
with increase in π, while the precision and F-measure score is maximum at π = 0.8 and
π = 0.4, respectively. Figure 5B. We also investigated the effect of π on the performance
of WECALM using the CYC2008 reference protein complexes. Again it can be seen that
on both the BioGRID (Figure 5C) and DIP (Figure 5D) complexes the recall, and CR scores
decrease with an increase in π, whereas the precision and F-measure score is maximum at
π = 0.80 and π = 0.40, respectively. The MMR is a maximum when π = 0.2. However, we
notice that WECALM has a higher CR score on the BioGRID complex compared to the DIP
complex. The overall performance of WECALM is best at π = 0.4 for both the BioGRID
and DIP complexes which provide insights into overlapping structural similarities and
differences between different protein complexes. Therefore, by tuning the optimal π value,
our WECALM approach can achieve good accuracy and reliable prediction results.

5.2.2. Effect of Varying η on the Performance of WECALM

The local modularity structural similarity score threshold describes the similarity
between the local modular structures of protein complexes. In this study, it was also
necessary to evaluate the effect of η on the performance of WECALM. To evaluate the
WECALM performance, we measured the Recall, Precision, F-measure, CR, and MMR using
the BioGRID and DIP yeast PPI complexes (see Table 1) and the NewMIPS and CYC2008
reference protein complexes (see Table 2). To evaluate the performance of WECALM
we adjusted the η threshold value in the range of [0.1, 1.0) with a 0.1 increment and set
η > 0 and η 6= 0. In Figure 6A,B, we noticed that in the BioGRID and DIP complexes on
NewMIPS the recall, MMR, and CR scores decrease with an increase in η value, whereas
the precision and F-measure score is maximum at η = 0.8 and η = 0.4, respectively. Using
CYC2008 reference protein complexes we can see that in both BioGRID (Figure 6C) and
DIP (Figure 6D) the recall, MMR, and CR scores decrease with an increase in η, whereas the
precision and F-measure score is maximum at η = 0.80 and η = 0.40, respectively. However,
WECALM has a higher CR score on the BioGRID complex compared to the DIP complex.
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The overall performance of WECALM is best to perform at η = 0.40 for both the BioGRID
and DIP complexes and on both NewMIPS and CYC2008 reference complexes, which
provide an insight into local modularity structural similarities and differences between
different modular proteins in the protein complexes. An algorithm with optimal η is able
to identify common features or properties of protein complexes, which can give insights
into the mechanisms of cellular processes.

Figure 5. The effect of π on the performance of WECALM based on Recall, Precision, F-measure, CR,
and MMR matrices. π is the predefined overlapping threshold. (A): The performance on the BioGRID
based on NewMIPS. (B): The performance on DIP based on NewMIPS. (C): The performance on
BioGRID based on CYC2008. (D): performance on DIP based on CYC2008. The MMR and F-measure
are maximum when π = 0.2 and π = 0.4, respectively for the BioGRID on both NewMIPS and
CYC2008.

5.2.3. Effect of Varying ω on the Performance of WECALM

The core structural similarity score threshold describes the similarity between the
core structures of protein complexes. In this study, an evaluation of this parameter was
essential to ascertain whether WECALM can correctly detect the core-protein complexes,
which plays a key role in the study of the functional relationships between different protein
complexes, by comparing their core structures to see if they have similar functions. This
can provide insights into the functional roles of protein complexes in cellular processes.
Therefore, to evaluate the WECALM performance, we measure the Recall, Precision, F-
measure, CR, and MMR using the BioGRID and DIP yeast PPI complexes (see in Table 1)
and NewMIPS and CYC2008 reference protein complexes (see Table 2). To evaluate the
performance of WECALM we adjusted the ω threshold value in the range of [0.1, 1.0) with
a 0.1 increment and set ω ≥ 0. In Figure 7, we see that in both BioGRID (Figure 7A) and
DIP (Figure 7B) complexes on NewMIPS the recall, MMR, and CR scores decrease with
increase in ω, whereas the precision and F-measure score are maximum at ω = 0.8 and
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ω = 0.4, respectively. At the same time, we evaluated the effect of ω on the performance of
WECALM using the CYC2008 reference protein complexes. Again we notice that in both
the BioGRID (Figure 7C) and DIP (Figure 7D) the recall, MMR, and CR scores decrease
with increase in ω, while the precision and F-measure score are maximum at ω = 0.80 and
ω = 0.40, respectively. However, WECALM has higher CR score on BioGRID complex
compared in DIP complex. Overall performance of WECALM is best at ω = 0.40 for both
the BioGRID and DIP complexes which provide an insight into core structural similarities
and differences between different protein complexes cores.

Figure 6. The effect η on the performance of WECALM based on Recall, Precision, F-measure, CR,
and MMR matrices. η is a predefined local modularity threshold. (A): performance on BioGRID
based on NewMIPS. (B): performance on DIP based on NewMIPS. (C): performance on BioGRID
based on CYC2008. (D): performance on DIP based on CYC2008. The precision and F-measure is
maximum when η = 0.8 and η = 0.4 respectively on both the NewMIPS and CYC2008.

5.3. Computational Complexity Analysis

In this study, it was also crucial to perform computational complexity analysis to
assess the efficiency of WECALM relative to other algorithms in terms of the time required
to detect the total number of protein complexes in standard complexes. To compare the
computational complexity of each algorithm for simplicity we ran each program with its
default settings. We then compared the time taken to detect the total number of detected
protein complexes and matrices including the F-measure, CR, MMR, Sep, and ACC. In this
analysis, we used reference Human and Yeast reference complexes (see Table 2).
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Figure 7. The effect of ω on the performance of WECALM based on Recall, Precision, F-measure, CR,
and MMR matrices. is a predefined core structural similarity threshold. (A): The performance on
BioGRID based on NewMIPS. (B): The performance on DIP based on NewMIPS. (C): The performance
on BioGRID based on CYC2008. (D): The performance on DIP based on CYC2008. The precision and
F-measure are maximum when ω = 0.8 and ω = 0.4, respectively, on both NewMIPS and CYC2008.

To compare the computational complexity of each algorithm we set the parameters of
the other eight algorithms based on the authors’ recommendations while for our proposed
WECALM we set ω, π, and η at the default values obtained from the experimental results
given in Section 5.2. We discovered in Table 3 that WECALM and EWCA had low com-
putational complexity, indicating good efficiency in detecting the total amount of protein
complexes in Human standard complexes. Furthermore, when compared to other algo-
rithms, WECALM had the highest MMR, Sep, and ACC scores, demonstrating a balance
between accuracy and efficiency. On standard yeast complexes, a similar performance trend
was seen, with WECALM and EWCA having the lowest time computational complexity.
However, we found that WECALM detected more protein complexes with a better perfor-
mance efficiency than other algorithms, making it the overall best-performing algorithm
for the detection of protein complexes on both Human and Yeast standard complexes.

5.4. Function Enrichment Analysis

We investigated the biological significance of our detected protein complexes to con-
firm the effectiveness of our WECALM approach because the reference complexes were
incomplete. Each identified complex has a p-value calculated by Equation (36) for enrich-
ment analysis. A complex is considered biologically significant if its p-value is less than
p ≤ 10−2 after being detected using a wide range of methods. A complex with a lower
p-value has a statistically significantly greater biological significance. Using SGD’s GO Term
Finder web service [83], we validated the functional relationships and cellular mechanism
of the detected complexes based on biological process terms. In this case, the smallest
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p-value across all gene ontology terms represents the functional homogeneity of each
identification complex. We also evaluated the protein complexes identified by WECALM
and calculated the p-value of protein complexes identified by MCL, COACH, Core, CALM,
EWCA, CFinfer, Core, CALM, GMFTP, ClusterONE, CMC, and ProRank+ whose sizes
were ≥ 3 Table 4 shows the p-value test results for MCL, COACH, Core, CALM, EWCA,
CFinfer, GMFTP, ClusterONE, CMC, ProRank+, and WECALM. To compare the biological
significance of protein complexes identified by different algorithms, we computed the
number of detected complexes, the total number of detected complexes, and the percentage
of detected complexes in different p-value ranges. We discovered on the one hand that the
majority of algorithms only consider the percentage of detected complexes. The p-values of
identified protein complexes, on the other hand, are proportional to their size [22,23,84,85].

Table 3. An evaluation of computational complexity and accuracy of WECALM and other algorithms.

Dataset Algorithm CP(v) F-Measure CR MMR Sep ACC CPU Run
Time (s)

Human MCL 315 0.1001 0.1759 0.0105 0.1753 0.2167 5906.34
COACH 4484 o.2455 0.5408 0.0677 0.5216 0.2777 2851.05
EWCA 1979 0.4048 0.5221 0.0964 0.6081 0.5221 29.37
CFinder 449 0.1256 0.2834 0.0116 0.3912 0.2511 3896.35
GMFTP 773 0.2651 0.4193 0.0419 0.4917 0.3852 254.67
Core 576 0.1621 0.3267 0.1267 0.3573 0.2778 2853.14
CALM 1108 0.5127 0.5182 0.1394 0.6894 0.5289 198.39
ClusterONE 375 0.1026 0.3071 0.0207 0.3773 0.2975 4895.78
CMC 672 0.1251 0.2503 0.0183 0.2975 0.3313 3904.83
ProRank+ 838 0.3651 0.2856 0.0687 0.5526 0.5613 282.66
WECALM 2367 0.4255 0.5155 0.0981 0.6155 0.6219 28.45

Yeast MCL 298 0.1104 0.2761 0.0117 0.1625 0.1395 4967.47
COACH 1551 0.2083 0.5521 0.0466 0.3583 0.3117 3603.31
EWCA 936 0.4199 0.6182 0.0982 0.5904 0.5879 18.54
CFinder 351 0.1429 0.2749 0.0281 0.3453 0.4163 3432.07
GMFTP 675 0.2763 0.3129 0.0309 0.5145 0.4092 229.89
Core 402 0.2124 0.2968 0.3285 0.1517 0.3218 2543.34
CALM 732 0.4015 0.6787 0.1433 0.6261 0.6532 154.89
ClusterONE 317 0.2012 0.2767 0.0285 0.3371 0.3255 3989.92
CMC 589 0.2115 0.1975 0.0198 0.2934 0.3553 2987.63
ProRank+ 516 0.2712 0.2816 0.0487 0.5471 0.5602 251.54
WECALM 1891 0.4216 0.6394 0.0487 0.64131 0.6534 17.65

CP(v): Detected Protein Complex; CR: Coverage Rate ; MMR: Maximum Match Ratio ; Sep: Separation ; ACC:
Geometrical Mean Accuracy.

When analyzing the function enrichment of identified protein complexes, it is essential
to consider both the quantity and the proportion of the identified complexes. On the
BioGRID dataset, as shown in Table 4, WECALM detected 97.45% of the significant new
protein complexes, slightly less than ProRank+, which recorded the highest significant
score (97.59%). The size of the protein complexes identified by WECALM is typically larger
than that of other algorithms such as ProRank+, which is most likely why. WECALM
detects far more protein complexes than ProRank+. MCL, COACH, Core, CALM, EWCA,
CFinfer, GMFTP, ClusterONE, and CMC is 107, 161, 1035, 463, 1341, 269, 449, 210, 832, and
728 protein complexes in the BioGRID dataset, respectively. We also observe that WECALM
has detected a maximum of 1376 protein complexes, significantly better than ProRank+.
On the DIP dataset, WECALM detected 96.17% of significant protein complexes, compared
to ProRank+’s 93.79%, an increase of about 3%. At the same time, WECALM also identified
the most protein complexes. In the DIP dataset, there were 113, 144, 315, 603, 869, 272, 350,
235, 146, and 319 protein complexes identified by MCL COACH, Core, CALM, EWCA,
CFinfer, GMFTP, and CMC, respectively. In general, as the percentage of detected protein
complexes decreases, the proportion of significant protein complexes increases. COACH,
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CFinder, and GMFTP discovered far fewer protein complexes than WECALM. Nevertheless,
when compared to the WECALM method, they had a lower percentage of significant protein
complexes. In terms of the total number of detected protein complexes and the percentage
of detected complexes, WECALM outperformed the other methods in terms of functionality
and biological significance. According to their p-value, these protein complexes detected by
WECALM have a higher probability of being actual protein complexes.

Table 4. A function enrichment analysis of protein complexes detected on BioGRID and DIP complexes.

Dataset Algorithm CP(v) p ≤ 10−15 p ≤ 10−10 p ≤ 10−5 p ≤ 10−2 Significant
Detected CP(v)

BioGRID MCL 121 41 (33.88%) 28 (23.14%) 26 (21.49%) 12 (9.92%) 107 (88.43%)
COACH 166 76 (45.78%) 32 (19.28%) 37 (22.29%) 16 (9.64%) 161 (96.98%)
EWCA 1388 658 (47.41%) 211 (15.20%) 299 (21.54%) 173 (12.46%) 1341 (96.61%)
CFinder 352 103 (29.26%) 53 (15.10%) 78 (22.16%) 35 (9.94%) 269 (76.42%)
GMFTP 597 73 (12.23%) 59 (9.88%) 156 (26.13%) 161 (26.97%) 449 (75.21%)
Core 576 255 (44.27%) 105 (18.23%) 68 (11.81%) 35 (6.08%) 463 (80.38%)
CALM 1108 587 (52.98%) 236 (21.29%) 116 (10.47%) 96 (8.66%) 1035 (93.41%)
ClusterONE 294 107 (36.40%) 35 (11.91%) 43 (14.62%) 25 (8.50%) 210 (71.43%)
CMC 1113 125 (11.23%) 89 (7.99%) 258 (23.18%) 360 (32.34%) 832 (74.75%)
ProRank+ 746 479 (64.21%) 105 (14.08%) 97 (13.00%) 47 (6.30%) 728 (97.59%)
WECALM 1412 687 (48.65%) 217 (15.37%) 312 (22.09%) 172 (12.18%) 1388 (98.30%)

DIP MCL 142 41 (28.87%) 29 (20.42%) 17 (11.97%) 26 (18.31%) 113 (79.58%)
COACH 329 21 (6.38%) 25 (7.59%) 66 (20.06%) 32 (9.73%) 144 (43.77%)
EWCA 964 188 (19.50%) 126 (13.07%) 319 (33.09%) 236 (24.48%) 869 (90.15%)
CFinder 352 157 (44.60%) 39 (11.08%) 31 (8.81%) 45 (12.78%) 272 (77.27%)
GMFTP 548 43 (7.85%) 36 (6.57%) 105 (19.16%) 166 (30.29%) 350 (63.87%)
Core 412 131 (31.79%) 87 (21.12%) 52 (12.62%) 45 (10.922%) 315 (76.46%)
CALM 755 256 (33.91%) 127 (16.82%) 112 (14.83%) 108 (14.31%) 603 (80.53%)
ClusterONE 315 119 (37.78%) 49 (15.56%) 38 (12.06%) 29 (9.21%) 235 (74.60%)
CMC 303 3 (0.99%) 8 (2.64%) 58 (19.14%) 77 (25.41%) 146 (48.18%)
ProRank+ 338 74 (21.89%) 77 (22.78%) 125 (36.98%) 41 (12.13%) 319 (93.79%)
WECALM 1018 269 (26.42%) 187 (18.37%) 358 (35.17%) 165 (16.21%) 979 (96.17%)

CP(v): Protein Complex; p: p-value.

The WECALM detected five protein complexes with extremely low p-values using
the BioGRID and DIP complex datasets, as shown in Appendix B (see Tables A3 and A4),
to further validate the biological significance of the identified complexes. The Cluster
frequency, Genome frequency, Biological Process p-values, False Discovery Rate (FDR),
False Positive score value, and Gene Ontology term descriptions were all evaluated in our
analysis. Cluster frequency is a metric employed in the evaluation of algorithms designed
to detect protein complexes. It represents the number of times the algorithm detects a
specific complex across several replicates or runs of a similar test.

In Table A3 in Appendix B we can see that WECALM detected protein complexes with
a high cluster frequency on the BioGRID complexes. A high cluster frequency implies that
the WECALM detects a protein complex consistently throughout multiple runs, implying
a good performance. This also means that most of the detected protein complexes in the
BioGRID dataset closely match the gene ontology term and have a functional relationship
with high statistical significance. According to results in Table A4, WECALM detected
protein complexes with a high cluster frequency on the DIP complexes a clear indication of
good performance. In addition, in Table A5, we see that WECALM detected a large number
of complexes with a 100% cluster frequency. In the detection of protein complexes, a cluster
frequency of 100% means that a particular complex is detected in all runs of the test. This is
regarded as a very good indication of the findings’ robustness and repeatability, as it implies
that the complex is consistently detected by the algorithm across numerous replicates of the
same experiment. WECALM had a very low p < 10−10, indicating that the detected protein
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complexes were biologically significant and meaningful and that they were most likely the
true protein complexes, this can be used as a valuable benchmark in future research.

6. Conclusions

Advancements in biological mechanism research have led to the discovery of more
disease-associated genes. Analyzing the Protein–Protein interaction (PPI) networks of these
genes can help identify new disease-associated genes and clarify their role in specific diseases.
This study proposes a new approach called WECALM, which uses a structural-based weighted
network analysis of protein complexes using experimentally determined PPI datasets.

WECALM combines different graph mining algorithms based on protein complex
structures and local attachment proteins to predict the inherent structure of the protein
complexes in the PPI network. The approach introduces a new edge weight calculation
method based on the Jaccard similarity measure between interacting proteins in the PPI
networks, which improves the reliability of PPI networks for the accurate detection of
protein complexes. It also integrates different network structural-based algorithms to detect
overlapping structures, local modularity structures, and co-attachment structures in PPI
networks, making it more robust in detecting protein complexes with different structures
and densities than existing methods [14–16,22,23].

The study demonstrates that WECALM outperforms existing methods in terms of
accuracy, computational speed, and the ability to detect biologically significant new protein
complexes. Its biggest biological relevance could be that it helps to reduce false positive
detection of protein complexes predicted with topological-based only methods. Never-
theless, the accuracy and efficiency of protein complex detection depend on predefined
parameter tuning and the size of the PPI network. Additionally, WECALM is an in silico
method applied to PPI networks, and future research should confirm its efficiency on other
biological networks and conduct laboratory tests to validate its findings.
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Appendix A. Performance Comparison of WECALM with the Other Algorithms

Performance Comparison

Tables A1 and A2 compare the performance of WECALM with the other algorithms
based on NewMIPS and CYC2008, respectively. We list the performance score of each
method in terms of Recall, Precision, F-Measure, CR, MMR, Sep, and ACC scores in
both tables.

Table A1. Performance comparison of WECALM with other algorithms on the NewMIPS Complexes.

Dataset Algorithm Recall Precision F-Measure CR MMR Sep ACC

BioGRID MCL 0.2896 0.2011 0.2374 0.2995 0.1672 0.2679 0.2167
COACH 0.7256 0.2581 0.3808 0.6322 0.2525 0.5532 0.2777
EWCA 0.7561 0.5923 0.6643 0.6497 0.3764 0.6149 0.5221
CFinder 0.5914 0.1965 0.2950 0.4402 0.2801 0.3912 0.2131
GMFTP 0.7532 0.2831 0.4115 0.5187 0.2552 0.5174 0.4522
Core 0.5619 0.1488 0.2352 0.5882 0.1437 0.4575 0.3456
CLAM 0.7352 0.6681 0.7001 0.6158 0.3145 0.6478 0.5576
ClusterONE 0.5914 0.3133 0.4096 0.5311 0.1931 0.4851 0.2951
CMC 0.5131 0.2731 0.3565 0.4954 0.3175 0.3976 0.5313
ProRank+ 0.4817 0.7131 0.5750 0.4763 0.2411 0.6276 0.5119
WECALM 0.7701 0.6853 0.7252 0.6743 0.3975 0.7765 0.6015

DIP MCL 0.5148 0.1783 0.2649 0.3271 0.1655 0.2927 0.1655
COACH 0.5731 0.5106 0.5400 0.3353 0.2006 0.3833 0.2917
EWCA 0.7012 0.4892 0.5763 0.3982 0.3094 0.6198 0.5994
CFinder 0.5762 0.2408 0.3397 0.2403 0.2128 0.3543 0.3613
GMFTP 0.6982 0.2756 0.3952 0.4044 0.2228 0.5548 0.4229
Core 0.4421 0.1746 0.2503 0.3902 0.1249 0.5439 0.4374
CLAM 0.5895 0.5213 0.5533 0.4364 0.2962 0.6625 0.5456
ClusterONE 0.4054 0.3021 0.3462 0.2417 0.2178 0.3041 0.3185
CMC 0.5932 0.4152 0.4885 0.5736 0.2499 0.3793 0.3151
ProRank+ 0.4086 0.6657 0.5064 0.2445 0.1669 0.6451 0.5567
WECALM 0.7166 0.4998 0.5889 0.4195 0.3531 0.8195 0.6317

CR: Coverage Rate ; MMR: Maximum Match Ratio; Sep: Separation ; ACC: Geometrical Mean Accuracy; bold
value indicates the best score.

Table A2. Performance comparison of WECALM with other algorithms on the CYC2008 complexes.

Dataset Algorithm Recall Precision F-Measure CR MMR Sep ACC

BioGRID MCL 0.3516 0.2268 0.2757 0.5313 0.1645 0.3831 0.2549
COACH 0.7669 0.2488 0.3757 0.8752 0.3042 0.5375 0.4117
EWCA 0.8191 0.5793 0.6786 0.8718 0.4351 0.6578 0.6035
CFinder 0.5724 0.1637 0.2546 0.6135 0.3115 0.5634 0.4215
GMFTP 0.7839 0.2914 0.4249 0.7956 0.3914 0.6192 0.4591
Core 0.5847 0.1527 0.2422 0.8058 0.2081 0.4126 0.2742
CLAM 0.6984 0.6211 0.6575 0.8583 0.3968 0.7293 0.7153
ClusterONE 0.6612 0.3487 0.4566 0.7569 0.2734 0.5162 0.3574
CMC 0.4644 0.2677 0.3396 0.7639 0.3375 0.4611 0.4375
ProRank+ 0.4153 0.6622 0.5105 0.5851 0.2462 0.6105 0.5979
WECALM 0.8291 0.5991 0.6956 0.8831 0.4825 0.7825 0.6983

DIP MCL 0.5169 0.1847 0.2722 0.4892 0.2299 0.3519 0.3125
COACH 0.5423 0.5167 0.5292 0.4879 0.2764 0.4272 0.3967
EWCA 0.7076 0.5239 0.6020 0.5806 0.3766 0.6436 0.5527
CFinder 0.5508 0.2398 0.3341 0.2788 0.3807 0.3758 0.4187
GMFTP 0.6652 0.2664 0.3804 0.6085 0.3316 0.6235 0.4136
Core 0.4618 0.1818 0.2609 0.5317 0.2433 0.3351 0.3519
CLAM 0.6465 0.4915 0.5584 0.5345 0.3221 0.6833 0.6721
ClusterONE 0.4279 0.3343 0.3754 0.3751 0.2191 0.3957 0.3519
CMC 0.4932 0.4125 0.4493 0.5755 0.2501 0.4576 0.3251
ProRank+ 0.3772 0.6924 0.4884 0.3294 0.2029 0.5929 0.5817
WECALM 0.7315 0.5556 0.6315 0.5916 0.3866 0.7596 0.6569

CR: Coverage Rate; MMR: Maximum Match Ratio; Sep: Separation ; ACC: Geometrical Mean Accuracy; bold
value indicates the best score.
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Appendix B. A Function Enrichment Analysis

Here, we provide supplementary results for a functional enrichment analysis to con-
firm the biological significance of detected complexes by WECALM on the BioGRID and
DIP complexes listed in Tables A3 and A4, respectively. Tables A3 and A4 provide a list of
the complex ID, Cluster frequency, Genome frequency, p-value (Biological process), False
Discovery Rate (FDR), False Positive score and Gene Ontology term description. Our
evaluation the selection of significant Gene Ontology term is purely based on the e Cluster
frequency, p-values and FDR values.

Appendix B.1. A Function Enrichment Analysis on BioGRID Complex

Table A3 lists significant GO Ontology terms shared by proteins in the BioGRID com-
plexes dataset. From the results we notice that the majority of detected protein complexes
match the Gene ontology term well. In addition, it can be seen that the p-value of detected
complexes is very low, which implies that the detected protein complexes have a high
statistical significance.

Table A4 lists significant GO Ontology terms shared by proteins in the DIP complexes
dataset. Similar to BioGRID complex dataset, we see in the DIP complex that most of the
detected protein complex match the Gene ontology term well. We notice that the p-value of
detected complexes is very low, which implies that the detected protein complexes have a
high statistical significance.
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Table A3. Top five protein complexes with significant low p-value detected by WECALM on BioGRID complex.

Complex ID Cluster Frequency Genome Frequency p-Value (BP) FDR FALSE Positive Gene Ontology Term

1

9 of 12 genes,75.0% 44 of 7166 genes, 0.6% 1.93× 10−16 0.0000 0.0000 positive regulation of transcription elongation by RNA polymerase II
9 of 12 genes, 75.0% 47 of 7166 genes, 0.7% 3.72× 10−16 0.0000 0.0000 regulation of transcription elongation by RNA polymerase II
9 of 12 genes,75.0% 52 of 7166 genes, 0.7% 1.00× 10−15 0.0000 0.0000 positive regulation of DNA-templated transcription, elongation
9 of 12 genes,75.0% 55 of 7166 genes, 0.8% 1.73× 10−15 0.0000 0.0000 regulation of DNA-templated transcription elongation
9 of 12 genes, 75.0% 96 of 7166 genes, 1.3% 3.47× 10−13 0.0000 0.0000 transcription elongation by RNA polymerase II

2

12 of 13 genes, 92.3% 936 of 7166 genes, 13.1% 4.40× 10−4 0.0000 0.0000 amide metabolic process
12 of 13 genes,92.3% 1348 of 7166 genes,18.8% 8.30× 10−4 0.0000 0.0000 organonitrogen compound biosynthetic process
12 of 13 genes, 92.3% 1816 of 7166 genes, 25.3% 1.18× 10−3 0.0000 0.0000 cellular nitrogen compound biosynthetic process
12 of 13 genes, 92.3% 2109 of 7166 genes, 29.4% 5.58× 10−3 0.0000 0.0000 cellular biosynthetic process
12 of 13 genes, 92.3% 2725 of 7166 genes, 38.0% 7.22× 10−3 0.0000 0.0000 cellular nitrogen compound metabolic process

3

11 of 12 genes, 91.7% 367 of 7166 genes, 5.1% 4.78× 10−10 0.0000 0.0000 rRNA processing
11 of 12 genes, 91.7% 423 of 7166 genes, 5.9% 1.98× 10−9 0.0000 0.0000 rRNA metabolic process
11 of 12 genes, 91.7% 482 of 7166 genes, 6.7% 7.29× 10−9 0.0000 0.0000 ribosome biogenesis
11 of 12 genes, 91.7% 492 of 7166 genes, 6.9% 8.94× 10−9 0.0000 0.0000 ncRNA processing
11 of 12 genes, 91.7% 2159 of 7166 genes, 30.1% 1.14× 10−3 0.0000 0.0000 gene expression

4

13 of 14 genes, 92.9% 204 of 7166 genes, 2.8% 3.84× 10−18 0.0000 0.0000 cytoplasmic translation
13 of 14 genes, 92.9% 820 of 7166 genes, 11.4% 3.38× 10−10 0.0000 0.0000 translation
13 of 14 genes, 92.9% 824 of 7166 genes, 11.5% 3.60× 10−10 0.0000 0.0000 peptide biosynthetic process
13 of 14 genes, 92.9% 841 of 7166 genes, 11.7% 4.70× 10−10 0.0000 0.0000 peptide metabolic process
13 of 14 genes, 92.9% 879 of 7166 genes, 12.3% 8.34× 10−10 0.0000 0.0000 amide biosynthetic process

5

12 of 13 genes, 92.3% 204 of 7166 genes, 2.8% 1.32× 10−16 0.0000 0.0000 ribosomal large subunit biogenesis
12 of 13 genes, 92.3% 820 of 7166 genes, 11.4% 2.78× 10−9 0.0000 0.0000 biosynthetic process
12 of 13 genes, 92.3% 824 of 7166 genes, 11.5% 2.95× 10−9 0.0000 0.0000 peptide biosynthetic process
12 of 13 genes, 92.3% 841 of 7166 genes, 11.7% 3.77× 10−9 0.0000 0.0000 ribonucleoprotein complex biogenesis
12 of 13 genes, 92.3% 879 of 7166 genes, 12.3% 6.39× 10−9 0.0000 0.0000 cellular biosynthetic process

FDR: False Discovery Rate ; BP: Biological Process; BP is significant at p-value < 10−2.
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Appendix B.2. A Function Enrichment Analysis on DIP Complex

Table A4. Top five protein complexes with significant low p-value detected by WECALM on DIP complex.

Complex ID Cluster Frequency Genome Frequency p-Value FDR FALSE Positive Gene Ontology Term

1

11 of 12 genes, 91.7% 125 of 7166 genes, 1.7% 9.76× 10−15 0.0000 0.0000 ribosomal large subunit biogenesis
11 of 12 genes, 91.7% 482 of 7166 genes, 6.7% 1.08× 10−10 0.0000 0.0000 ribosome biogenesis
11 of 12 genes, 91.7% 576 of 7166 genes, 8.0% 7.74× 10−10 0.0000 0.0000 ribonucleoprotein complex biogenesis
11 of 12 genes, 91.7% 1272 of 7166 genes, 17.8% 4.49× 10−6 0.0000 0.0000 cellular component biogenesis
11 of 12 genes, 91.7% 2424 of 7166 genes, 33.8% 4.55× 10−3 0.0008 0.0000 cellular component organization or biogenesis

2

3 of 4 genes, 75.0% 56 of 7166 genes, 0.8% 1.10× 10−4 0.0000 0.0000 purine ribonucleoside triphosphate metabolic process
3 of 4 genes, 75.0% 58 of 7166 genes, 0.8% 1.30× 10−4 0.0000 0.0000 purine nucleoside triphosphate metabolic process
3 of 4 genes, 75.0% 119 of 7166 genes, 1.7% 1.14× 10−3 0.0000 0.0000 nucleotide biosynthetic process
3 of 4 genes, 75.0% 121 of 7166 genes, 1.7% 1.20× 10−3 0.0000 0.0000 nucleoside phosphate biosynthetic process
3 of 4 genes, 75.0% 125 of 7166 genes, 1.7% 1.33× 10−3 0.0000 0.0000 ribonucleotide metabolic process

3

9 of 10 genes, 90.0% 20 of 7166 genes, 0.3% 9.69× 10−22 0.0000 0.0000 ATP biosynthetic process
9 of 10 genes, 90.0% 20 of 7166 genes, 0.3% 9.69× 10−22 0.0000 0.0000 proton motive force-driven ATP synthesis
9 of 10 genes, 90.0% 24 of 7166 genes, 0.3% 7.54× 10−21 0.0000 0.0000 purine nucleoside triphosphate biosynthetic process
9 of 10 genes, 90.0% 24 of 7166 genes, 0.3% 7.54× 10−21 0.0000 0.0000 purine ribonucleoside triphosphate biosynthetic process
9 of 10 genes, 90.0% 30 of 7166 genes, 0.4% 8.25× 10−20 0.0000 0.0000 ribonucleoside triphosphate biosynthetic process

4

10 of 11 genes, 90.9% 20 of 7166 genes, 0.3% 1.59× 10−24 0.0000 0.0000 proton transmembrane transport
10 of 11 genes, 90.9% 20 of 7166 genes, 0.3% 1.59× 10−24 0.0000 0.0000 purine ribonucleotide metabolic process
10 of 11 genes, 90.9% 24 of 7166 genes, 0.3% 1.69× 10−23 0.0000 0.0000 nucleotide biosynthetic process
10 of 11 genes, 90.9% 24 of 7166 genes, 0.3% 1.69× 10−23 0.0000 0.0000 nucleoside phosphate biosynthetic process
10 of 11 genes, 90.9% 30 of 7166 genes, 0.4% 2.59× 10−22 0.0000 0.0000 ribonucleotide metabolic process

5

9 of 10 genes, 90.0% 444 of 7166 genes, 6.2% 1.08× 10−8 0.0000 0.0000 intracellular protein transport
9 of 10 genes, 90.0% 449 of 7166 genes, 6.3% 1.19× 10−8 0.0000 0.0000 vesicle-mediated transport
9 of 10 genes, 90.0% 630 of 7166 genes, 8.8% 2.52× 10−7 0.0000 0.0000 protein transport
9 of 10 genes, 90.0% 651 of 7166 genes, 9.1% 3.38× 10−7 0.0000 0.0000 establishment of protein localization
9 of 10 genes, 90.0% 742 of 7166 genes, 10.4% 1.09× 10−6 0.0000 0.0000 intracellular transport

FDR: False Discovery Rate ; BP: Biological Process; BP is significant at p-value < 10−2
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Appendix B.3. Detected Protein Complexes with 100% Cluster Frequency

Table A5 lists the top 10 complexes with 100% cluster frequency detected by WECALM on the BioGRID and DIP complexes.

Table A5. Top 10 protein complexes with 100% cluster frequency detected by WECALM on the BioGRID and DIP complex datasets.

Dataset Complex ID Cluster Frequency Genome Frequency p-Value (BP) FDR FALSE Positive Gene Ontology Term

BioGRID 1 12 of 12 genes, 100.0% 122 of 7166 genes, 1.7% 9.16× 10−15 0.0000 0.0000 mRNA splicing, via spliceosome
2 42 of 42 genes, 100.0% 123 of 7166 genes, 1.7% 1.27× 10−10 0.0000 0.0000 RNA splicing,
3 10 of 10 genes, 100.0% 10 of 7166 genes, 0.1% 3.64× 10−10 0.0000 0.0000 spliceosomal tri-snRNP complex assembly
4 19 of 19 genes, 100.0% 132 of 7166 genes, 1.8% 1.49× 10−7 0.0000 0.0000 RNA splicing, via transesterification reactions
5 36 of 36 genes, 100.0% 157 of 7166 genes, 2.2% 4.55× 10−3 0.0000 0.0000 RNA splicing
6 11 of 11 genes, 100.0% 20 of 7166 genes, 0.3% 9.29× 10−21 0.0000 0.0000 spliceosomal snRNP assembly
7 10 of 10 genes, 100.0% 229 of 7166 genes, 3.2% 9.08× 10−16 0.0000 0.0000 mRNA processing
8 17 of 17 genes, 100.0% 350 of 7166 genes, 4.9% 1.08× 10−15 0.0000 0.0200 mRNA metabolic process
9 42 of 42 genes, 100.0% 347 of 7166 genes, 4.8% 1.51× 10−15 0.0000 0.0000 DNA-directed 5’-3’ RNA polymerase activity

10 23 of 23 genes, 100.0% 34 of 7166 genes, 0.5% 6.25× 10−20 0.0000 0.0000 5’-3’ RNA polymerase activity

DIP 1 19 of 19 genes, 100.0% 62 of 7166 genes, 0.9% 4.49× 10−19 0.0000 0.0000 nucleotide-excision repair
2 39 of 39 genes, 100.0% 234 of 7166 genes, 3.3% 7.76× 10−19 0.0000 0.0000 ubiquitin-dependent protein catabolic process
3 36 of 36 genes, 100.0% 240 of 7166 genes, 3.3% 9.25× 10−19 0.0000 0.0000 modification-dependent protein catabolic process
4 10 of 10 genes, 100.0% 262 of 7166 genes, 3.7% 3.40× 10−18 0.0000 0.0000 modification-dependent macromolecule catabolic process
5 14 of 14 genes, 100.0% 264 of 7166 genes, 3.7% 8.19× 10−18 0.0000 0.0000 proteolysis involved in protein catabolic process
6 13 of 13 genes, 100.0% 293 of 7166 genes, 4.1% 1.83× 10−17 0.0000 0.0000 protein catabolic process
7 15 of 15 genes, 100.0% 309 of 7166 genes, 4.3% 3.03× 10−17 0.0000 0.0000 DNA repair
8 12 of 12 genes, 100.0% 350 of 7166 genes, 4.9% 5.50× 10−17 0.0000 0.0000 cellular response to DNA damage stimulus
9 31 of 31 genes, 100.0% 407 of 7166 genes, 5.7% 1.07× 10−16 0.0000 0.0000 organonitrogen compound catabolic process

10 17 of 17 genes, 100.0% 416 of 7166 genes, 5.8% 3.64× 10−16 0.0000 0.0000 proteolysis

FDR: False Discovery Rate ; BP: Biological Process; BP is significant at p-value < 10−2.
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