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Abstract We revisit the interpretation of the cylindrically symmetric, static vacuum Levi-Civita metric, known in either Weyl,
Einstein–Rosen, or Kasner-like coordinates. The Komar mass density of the infinite axis source arises through a suitable compacti-
fication procedure. The Komar mass density μK calculated in Einstein–Rosen coordinates, when employed as the metric parameter,
leads to a number of advantages. It eliminates double coverages of the parameter space, vanishes in flat spacetime and when small,
it corresponds to the mass density of an infinite string. After a comprehensive analysis of the local and global geometry, we proceed
with the physical interpretation of the Levi-Civita spacetime. First we show that the Newtonian gravitational force is attractive and its
magnitude increases monotonically with all positive μK , asymptoting to the inverse of the proper distance in the radial direction. Sec-
ond, we reveal that the tidal force between nearby geodesics (hence gravity in the Einsteinian sense) attains a maximum at μK = 1/2
and then decreases asymptotically to zero. Hence, from a physical point of view the Komar mass density of the Levi-Civita spacetime
encompasses two contributions: Newtonian gravity and acceleration effects. An increase in μK strengthens Newtonian gravity but
also drags the field lines increasingly parallel, eventually transforming Newtonian gravity through the equivalence principle into a
pure acceleration field and the Levi-Civita spacetime into a flat Rindler-like spacetime. In a geometric picture the increase of μK

from zero to ∞ deforms the planar sections of the spacetime into ever deepening funnels, eventually degenerating into cylindrical
topology in an appropriately chosen embedding.

1 Introduction

Gravitational waves were predicted in the early days of general relativity, as wavelike perturbations of flat spacetime propagating
with the speed of light [1], but only in recent years they were detected (see the catalog of 90 gravitational waves [2] by the LIGO
Scientific, Virgo and KAGRA Collaborations). As the existence of spherically symmetric gravitational waves in vacuum is forbidden
by the Jebsen–Birkhoff theorem, the next simplest geometry for discussing gravitational waves would be cylindrically symmetric.
Cylindrical symmetry also provides a simple setup for discussing both mathematical and physical aspects of spacetimes with
extended sources, like cosmic strings [3, 4] or cosmic filaments of galaxies and dark matter extending across hundreds of millions
of light years [5]. Investigating cylindrically symmetric configurations is also a suitable precursor to the study of axial symmetry.

Unlike in the spherically symmetric case, the cylindrically symmetric vacuum is not unique. The Einstein–Rosen cylindrically
symmetric vacuum solutions include wavelike behaviors, allowing for both standing wave and approximate progressive wave
solutions, discovered analytically in the very early days of general relativity by Einstein and Rosen [6]. Later both solitonic waves
[7] and impulsive wave solutions [8, 9] were identified in this class.

The canonical quantization of cylindrically symmetric gravitational waves by Kuchař was the earliest example of the midisuper-
space approach [10], which encompasses a much richer structure than previous minisuperspace quantizations of the Friedmann and
mixmaster universes (by DeWitt [11] and Misner [12–14], respectively). Due to a fair compromise between the simplicity induced
by degrees of freedom frozen by symmetry assumptions on the one hand and the full complexity of the gravitational degrees of
freedom on the other hand, cylindrical gravitational waves provide an ideal testbed for comparing quantization approaches.

In a strong field a fast changing gravitational wave can be separated from a slowly changing background in the geometrical optics
(high frequency) approximation, as discussed thoroughly by Isaacson [15, 16]. The key concept here is that the curvature radius of
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the background ought to be much larger than the wavelength. A cylindrically symmetric, static background on which the cylindrical
gravitational waves propagate, could be the Levi-Civita spacetime [17], the static limit of the Einstein–Rosen class.

This static vacuum solution was derived by Levi-Civita in 1919 [17], with the intent to characterize the gravitational vacuum
outside a cylindrically symmetric source. Generalizations of the static Levi-Civita solution beyond vacuum are also known. The
exterior of a radiating cylinder was discussed in Ref. [18]. This radiating Levi-Civita spacetime contains a null dust, in this sense
being similar to the spherically symmetric Vaidya metric. Electrovacuum generalisations also emerged, including the inclusion of
axial or longitudinal magnetic fields by Bonnor [19] and radial electric field by Raychaudhuri [20].

The Levi-Civita static and Einstein–Rosen wavelike solutions with their possible sources have been studied in Refs. [21–24].
However, even for the static vacuum case certain aspects related to its physical interpretation remain elusive. It is the purpose of this
paper to revisit the static Levi-Civita spacetime, sheding light on these key properties, both from geometric and physical viewpoints.

The Levi-Civita metric was discovered and has been often discussed in the Weyl form, suitable for static and axially symmetric
scenarios. While a small positive metric parameter λ has the convenient interpretation of the linear mass density along the symmetry
axis of the cylinder (it agrees with it in a first order expansion in λ [21]), the interpretation seems to break down at λ = 1/4,
above which the Kretschmann scalar decreases with increasing λ [25, 26]. Furthermore, there is no unique flat spacetime limit, the
Levi-Civita spacetime becoming flat for the quartet of values λ = 0, 1/2 and λ → ±∞ [24]. Clearly, the metric parameter λ lacks
a crystal clear physical meaning, being by far no proper analogue for the mass parameter of the Schwarzschild spacetime.

Einstein–Rosen waves are naturally described in another coordinate system, suitable for cylindrical symmetry. This is the par-
ticular nonrotating limit of the Jordan–Ehlers–Kundt–Kompaneets coordinates [27]. The Weyl and Einstein–Rosen metric forms
are related through the analytical continuation t → i ẑ, z → i t̂ (with t and z the temporal and axial Einstein–Rosen coordinates,
their Weyl counterparts carrying a hat), generating an axially symmetric stationary metric in the Weyl form from a cylindrically
symmetric metric. The Levi-Civita spacetime, being both static and cylindrically symmetric, in addition allows for a real coordinate
transformation between these two forms [21, 22].

In Sect. 2 we summarize the preliminaries necessary for our discussion. We start from the Einstein–Rosen form (also known as
canonical, derived in Appendix 1 from a more general standard form) of a cylindrically symmetric metric with vorticity-free Killing
vectors and orthogonally transitive group action, to specify the metric functions leading to the Levi-Civita metric. We present the
transformation between its Weyl and Einstein–Rosen forms explicitly, as we were unable to locate it elsewhere in the literature.
The Levi-Civita metric in the Einstein–Rosen form closely mimics the properties established in Weyl coordinates. For a quartet
of values of the metric parameter σ = 0, 1, and ±∞ the curvature disappears. For small negative values of the parameter σ the
interpretation of a (Newtonian) gravitational field generated by a homogeneous cylinder holds. For other values however, it breaks
down, including a range of parameter values with repulsive gravity. For both the Weyl and the Einstein–Rosen forms the properties
of the respective parameters suggest a double coverage of the available configurations. At the end of Sect. 2, preparing for the next
section, we summarize the essentials of the Komar superpotential and charges.

Section 3 contains a rigorous derivation of the Komar mass density μK of the Levi-Civita spacetime in the Einstein–Rosen
coordinates. This is achieved despite the infinite source along the axis, through a compactification and subsequent blowing up of
the compactification radius. Next we propose μK as yet another parameter of the Levi-Civita metric, which has the advantage to
eliminate the double coverage encountered before. The metric is flat for μK = 0 and the Komar mass density has the interpretation
of linear mass density on the symmetry axis up to μK = 1. At μK → ∞ the metric is flat again, this time in uniformly accelerated
Rindler coordinates. As with increasing μK the Levi-Civita metric approaches the Rindler limit, we conjecture that beside mass
and Newtonian gravitational energy, the Komar mass density also encompasses acceleration contributions. We illustrate this point
in Appendix 2 showing that the Rindler metric also generates a nonvanishing Komar mass density. At the end of the section we
discuss the C-energy [22, 27] of the Levi-Civita metric, showing that it increases monotonically with μK ≥ 0. When reexpressing
it in terms of the Komar mass density calculated in the Weyl coordinates, (μK )Weyl = λ, this property is lost, supporting the claim
that μK is the best available metric parameter.

In Sect. 4 we analyze the behaviour of the curvature invariants parametrized by the Komar mass density, in terms of the proper
radial distance. We find a maximum of the Kretschmann scalar K at μK = 1 and the rest of the scalars expressed in terms of K
and μK alone. The increase and subsequent decrease of the Kretschmann curvature with μK is counterintuitive, undermining the
interpretation of μK as mass density for μK > 1. Despite the metric apparently diverging for μK → ∞, the curvature invariants
vanish there (which comes as no surprise as μK → ∞ corresponds to λ = 1/2, where the Levi-Civita spacetime is known to be
flat). This emerging flatness is manifest in the well-known Kasner-like coordinate system [24], which is regular for both flat limits
and explores a redefined time together with the proper radial distance as new coordinates. We rewrite the Kasner parameters in terms
of the Komar mass density. For μK → ∞ the metric emerges flat in accelerated Rindler coordinates.

Recently Ref. [28] presented a new cylindrically symmetric vacuum spacetime, claiming that the axis is a null geodesically
incomplete soft singularity both in the sense of Królak [29] and of Tipler [30]. The C-energy density measured by an observer was
also computed, the algebraic type shown to be Petrov type D and the geodesic deviation of timelike geodesics synchronized by the
proper time. In Appendix 3 we prove that the metric of Ref. [28] is nothing but the particular case of the Levi-Civita metric for
μK = 1. By taking the particular case of the curvature invariants we correct the respective expressions of Ref. [28]. Then in the last
subsection of Sect. 4. we analyse the nature of the singularity on the symmetry axis and prove that the radial null geodesics in the
Levi-Civita spacetime obey both the Królak and the Tipler strong singularity conditions, irrespective of the value of μK (hence we
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disprove the claim of Ref. [28], according to which the singularity on the axis ought to be soft). The technicalities of the proof are
deferred to Appendix 4.

In Sect. 5. we proceed with the physical interpretation of the Levi-Civita spacetime for generic Komar mass densities by considering
the acceleration necessary to keep a stationary observer in orbit at fixed proper distance from the axis. We show that for positive μK

the gravitational acceleration is attractive and increases monotonically with μK , asymptoting to a constant value. Hence, despite
increasing μK , Newtonian gravitational attraction cannot increase above a certain limit. Then, we study the magnitude of the tidal
forces, showing that the geodesic deviation also exhibits a maximum, this time at μK = 1/2.

We summarize the geometric and physical characterization of the Levi-Civita metric in the discussion presented as Sect. 6.
Throughout the paper we use units G = 1 = c.

2 Preliminaries

In this section we summarize the main ingredients necessary for a subsequent thorough investigation of the Levi-Civita spacetime.

2.1 Einstein–Rosen and Weyl forms of the Levi-Civita spacetime

The Einstein–Rosen, or canonical form of the line element of a generic vacuum cylindrically symmetric spacetime with vorticity-free
Killing vectors and orthogonally transitive group action (dubbed as whole-cylinder symmetry by Thorne [22]), is (for a derivation
see Appendix 1)

ds2 = e2(K−U )
(−dt2 + dr2) + e−2Ur2dϕ2 + e2Udz2, (1)

with K and U functions of the coordinates (t, r). Here all coordinates are dimensionless. For K = 0 = U or K = U = ln r the line
element (1) degenerates into the flat metric.

These symmetries and the vacuum condition do not guarantee a unique solution of the Einstein equations. Indeed, they allow for
various type of Einstein–Rosen waves [6] beside the static Levi-Civita solution. The latter emerges for1

U = σ ln r, K = σ 2 ln r, (2)

giving

ds2 = r2σ(σ−1)
(−dt2 + dr2) + r2(1−σ)dϕ2 + r2σ dz2, (3)

with a dimensionless constant σ ∈ R.
Levi-Civita considered a different line element in the axially symmetric and static Weyl form:

ds2 = −̂r4λd̂t2 + r̂4λ(2λ−1)
(

d̂r2 + d̂z2) + r̂2(1−2λ)dϕ̂2, (4)

with a dimensionless λ ∈ R. Both metrics (3) and (4) are static and cylindrically symmetric, hence they ought to be related. Indeed,
they transform into each other through the analytical continuation t → i ẑ, z → i t̂ [32].

An explicit coordinate transformation

t = (σ − 1)−2p0 t̂,

r = (σ − 1)2/
(

σ 2−σ+1
)

r̂1/(σ−1)2
,

ϕ = (σ − 1)−2p+ ϕ̂,

z = (σ − 1)−2p− ẑ, (5)

with

p0 = σ(σ − 1)

σ 2−σ +1
, p+ = 1 − σ

σ 2−σ +1
, p− = σ

σ 2−σ +1
(6)

can also be constructed, where

σ = 2λ

2λ − 1
. (7)

The coordinate transformation (singular for σ = 1 or λ = 1/2) is obtained by transforming both metrics into a Kasner-like form. In
the case of a small parameter λ ≈ −σ/2 (thus σ also small), (5) is close to the identity transformation and reduces to it for σ → 0.

The line elements (3) and (4) are thus locally isometric. The isometry fails to be global if both ϕ and ϕ̂ are angular coordinates
with period 2π . Indeed, if the Einstein–Rosen azimuthal angle is periodic with 2π , the period of the Weyl azimuthal coordinate
becomes 2π(σ − 1)2p+ .

1 See Eq. (3) of Ref. [18] or Eqs. (4), (28), (29) of Ref. [31], with A = 0, W = r and k = 1.
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For 0 ≤ λ � 1 (thus σ ≈ −2λ in the small negative value range) the parameter λ has the interpretation of the constant mass per
unit length of a static cylinder with negligible internal pressure [22]. Indeed, the cylindrically symmetric Laplace equation

∇2φN = 1

r

d

dr

(

r
dφN

dr

)

= 0 (8)

for the Newtonian potential is solved as φN = 2m ln r (with m an integration constant and another irrelevant integration constant
dropped). Defining the mass M = ∫

V ρdV of a cylindrical volume V (containing a distributional source ρ on the axis) through the
Poisson equation ∇2φN = 4πρ leads to

M = 1

4π

∫

∂V
∇φN · dA = m

∫

dz, (9)

where dA is the outward directed normal of the boundary ∂V of the cylinder (however as ∇φN = (2m/r)er , only the cylindrical
surface contributes). Hence, the constant m is precisely the mass density along the z-axis. In the stationary, weak field and slow
motion limit g00 ≈ −1 − 2φN = −1 − 4m ln r . On the other hand, the Levi-Civita metric in Einstein–Rosen coordinates has
g00 = −r2σ(σ−1) = − exp[2σ(σ − 1) ln r ], which for small σ approximates as g00 ≈ −1 − 2σ(σ − 1) ln r ≈ −1 + 2σ ln r ≈
−1 − 4λ ln r , confirming the interpretation λ ≈ m, when small.

In deriving the solution (2) a constant of integration was supressed through the requirement to recover the Minkowski metric in
cylindrical coordinates when λ = 0 (hence σ = 0). For σ = 1 hence λ → ±∞, due to Eq. (7)] the metric is also flat (although
some of the metric coefficients diverge, other vanish). Clearly, the interpretation of λ as mass per length is unsuitable for its whole
range. In fact there is a duality in the ranges of either parameters λ or σ , corresponding to an interchange of the coordinates z and ϕ

[24]. This duality appears as an unnecessary redundancy in either of the parametrizations.
Moreover, the metric (3) diverges for σ → ±∞. In this case, however it can be transformed to the flat metric perceived by an

accelerated observer, the Rindler metric. This is exactly the flatness of the Levi-Civita metric in the Weyl form emerging for λ = 1/2
[24], see Eq. (7).

2.2 The Komar superpotential and charges

We consider a vector field ξ and corresponding 1-form ξ on a four dimensional Lorentzian spacetime M. Its Komar superpotential
2-form [33]

Uξ = ∗dξ = 1

2

(

∇ iξ j − ∇ jξ i
)√

g
(

d2x
)

i j (10)

(where g = ∣

∣det gi j
∣

∣ and
(

d2x
)

i j = 1
2εi jkldxk ∧ dxl ) is defined through the Hodge dual

∗A = 1

4
Ai jεi jkl

√
gdxk ∧ dxl (11)

of the 2-form A = dξ , with d the exterior derivative.
Then the current

Sξ = dUξ = ∇ j

(

∇ iξ j − ∇ jξ i
)√

g
(

d3x
)

i (12)

(with
(

d3x
)

i = 1
6εi jkl dx j ∧ dxk ∧ dxl ) is identically conserved. This also emerges as the Noether current of the Einstein–Hilbert

action, associated to diffeomorphism invariance [34].
When ξ is a Killing vector field (hence 0 = ∇iξ j + ∇ jξi ), from the cyclic identity of the curvature tensor the relation

Rl
i jkξl = ∇i∇ jξk (13)

emerges, which renders Sξ into

Sξ = 2Ri
jξ

j√g
(

d3x
)

i = 16π

(

T i
j − 1

2
T δij

)

ξ j√g
(

d3x
)

i . (14)

In the last step we employed the Einstein equations. Hence in vacuum the Komar superpotential of a Killing field is a closed 2-form.
If a closed set C ⊆ M encompasses all sources (including four-dimensional extended sources, two-dimensional strings, one

dimensional point sourses, singularities, topological defects), then for a closed 2-surface S ⊆ M\C the Komar charge

Qξ (S) =
∫

S
Uξ (15)

depends on the homology class of S only. Then every pair of closed 2-surfaces S and S ′ encompassing C are homologous to each
other, e.g. there is a 3-surface N ⊆ M \ C such that ∂N = S − S ′. Stokes’ theorem then gives

Qξ (S) − Qξ

(S ′) =
∫

∂N
Uξ =

∫

N
dUξ = 0, (16)
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which shows that the Komar charge is conserved. If S and S ′ are both spacelike and N timelike, this corresponds to a conservation
law in the sense that Qξ takes the same value at all times.

When ξ is a timelike Killing vector field, then

mK = − 1

8π
Qξ (S) = − 1

8π

∫

S
Uξ (17)

is the Komar mass of the spacetime. The integral mK is however ambigous to a constant factor, since aξ is an equally valid Killing
vector (here a ∈ R

+). The ambiguity can be removed when a preferred normalization of the timelike Killing vector is available (like
ξ · ξ → −1 at asymptotic infinity).

3 A new parametrization of the Levi-Civita metric

In this section we first introduce a mathematically sound construction for defining the Komar mass density μK for the Levi-Civita
spacetime in the Einstein–Rosen form, and will explore it as an alternative metric parameter. One of its main advantages over
the previously used parameters λ or σ is that it eliminates the double coverage appearing in either of them. The C-energy of the
spacetime provides additional support for considering μK as a natural parameter of the Levi-Civita spacetime.

3.1 Komar mass density for the Levi-Civita spacetime

The static, cylindrically symmetric Levi-Civita spacetime has a three dimensional Killing algebra with a timelike Killing vector, a
spacelike axial Killing vector and a translational Killing vector along the z-axis (which, being singular, is removed from the manifold).
In the coordinates (3) the squared length of the timelike Killing vector field ξ = a∂t (with a a constant) is ξ · ξ = −a2r2σ(σ−1).
Aside from special values of the parameter σ = 0, 1 where the metric is flat, this Killing vector field cannot be normalized either at
infinity or the axis, hence we adopt the simplest choice a = 1 (adapting the temporal Killing vector field to the coordinate time).

The singularity on the axis r = 0 extends to infinity, thus it is impossible to wrap it in a closed 2-surface, as required for the
evaluation of the Komar charge. Despite this in what follows we describe a procedure allowing for the definition of the density μK

of the Komar mass along the z-axis.
The key step is to compactify the z direction as z = lα, where l is a length scale and α an angle parameter with periodicity 2π .

The line element (3) becomes

ds2 = r2σ(σ−1)
(−dt2 + dr2) + r2(1−σ)dϕ2 + r2σ l2dα2, (18)

with
√
g = r2σ 2−2σ+1l, the Levi-Civita spacetime being recovered in the l → ∞ limit. A closed spacelike 2-surfaceS encompassing

the singular axis (now a ring) is given by constant t and r, together with 0 ≤ ϕ ≤ 2π and the compactified coordinate 0 ≤ α ≤ 2π .
The Killing 1-form ξ = −r2σ(σ−1)dt has the exterior derivative

dξ = 2σ(σ − 1)r2σ 2−2σ−1dt ∧ dr, (19)

with Hodge dual

∗dξ = −2σ(σ − 1)ldϕ ∧ dα. (20)

Therefore the Komar mass emerges as

mK = σ(σ − 1)l

4π

∫ 2π

0
dϕ

∫ 2π

0
dα = πσ(σ − 1)l, (21)

diverging for l → ∞. Nevertheless the Komar mass density μK = mK /2πl results in a finite constant

μK = σ(σ − 1)

2
= λ

(1 − 2λ)2 , (22)

independent of the length scale l. Next, we take l → ∞ to obtain the original uncompactified spacetime, with μK unaffected by
this procedure.

Note than when λ is small, μK ≈ λ holds.
As the Komar mass, the Komar mass density also depends on the choice of the timelike Killing vector. In the absence of a preferred

normalization, it is adapted to the temporal coordinate of the actual coordinate system. In particular, the timelike coordinate vector
in the Weyl form of the metric [see the first Eq. (5)] would give (μK )Weyl = λ, another Komar mass density introduced in Ref. [35].

Furthermore, as some of the coordinates may be accelerating, in principle μK could also include acceleration effects. We illustrate
this point in Appendix 2 for the Rindler metric.
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3.2 Levi-Civita spacetime parametrized by Komar mass density

The Komar mass density becomes negative in the repulsive range σ ∈ (0, 1), with a minimal value of −1/8 at σ = 1/2 (λ = −1/2).
For all other values of σ it stays positive, hence its range is μK ≥ −1/8.

For both parameter values σ = 0, 1, where the metric is flat, μK vanishes. Hence, μK is better suited for the physical interpretation
of the spacetime than λ. The Rindler limit arises for μK → ∞ (thus σ → ±∞ or λ = 1/2).

With the parameters σ or λ representing shorthand notations

σ = 1 ± √
1 + 8μK

2
,

λ = 1 + 4μK ± √
1 + 8μK

8μK
, (23)

cf. Eq. (22), the Levi-Civita metric is rewritten in terms of μK as

ds2 = r4μK
(−dt2 + dr2) + r1∓√

1+8μK dϕ2 + r1±√
1+8μK dz2. (24)

The duality in the ranges of λ and σ , related to the interchange of the coordinates z and ϕ is represented here by the sign ambiguity,
which selects the coordinate to be regarded as azimuthal (periodic with 2π) in flat space. Denoting this by ψ ∈ [0, 2π] and the
remaining axial coordinate by Z , the metric becomes

ds2 = r4μK
(−dt2 + dr2) + r1+√

1+8μK dψ2 + r1−√
1+8μK dZ2. (25)

This choice is consistent with picking up the lower signs in Eq. (23). We will explore this parametrization of the Levi-Civita metric
in what follows.

3.3 C-energy

Thorne has proposed an energy-like quantity suitable for characterizing systems with whole-cylinder symmetry. This cylindrical or
C-energy [22] arises as the projection of a covariantly conserved flux vector to the worldline of the observer. For the Levi-Civita
spacetime outside a homogeneous cylinder the C-energy agrees with the mass per unit length, but only when the latter is small and
the pressures inside the cylinder are negligible [22]. However, a number of inequivalent definitions of the C-energy can be found in
the literature.

3.3.1 C-energy in terms of Komar mass density

The C-energy has been defined in Ref. [27] as EBGP
C = 1

2 ln(grr gZ Z ). This was based on the presentation of Chandrasekhar of an
argument by Reula, which can be traced back to the integral of a suitable Hamiltonian density in the radial direction [36].

By inserting for the metric functions of the Einstein–Rosen line element in Eq. (9) of Ref. [22] it emerges that the two definitions
differ by a factor of 1/4, namely the C-energy introduced by Thorne is

EC = 1

8
ln(grr gZ Z ). (26)

This has the correct Newtonian limit, as will be shown below. For the Levi-Civita metric

EC = 1 + 4μK − √
1 + 8μK

8
ln r, (27)

which increases monotonically with μK ≥ 0 and approximates μ2
K ln r for small μK .

When rewriting the above C-energy in terms of σ or λ, the monotonic increase holds for a positive σ but it is lost for λ (it holds
only for small λ):

EC = σ 2

4
ln r = λ2

(2λ − 1)2 ln r. (28)

This supports the naturalness of the parametrization of the Levi-Civita metric with the Komar mass density calculated in Ein-
stein–Rosen coordinates, rather than in terms of (μK )Weyl = λ.

3.3.2 Alternative definition of C-energy

Another definition

Ealt
C = 1

8

(

1 − 1

grr gZ Z

)

(29)
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Fig. 1 The Kretschmann scalar as
function of the Komar mass
density (in units of R4)

has also been proposed in Thorne’s paper [22], to guarantee that all observers measure finite C-energy density. The weak gravity
limit (given by a series expansion to first order about grr = gZ Z = 1) is the same for both definitions (26) and (29) of the C-energy.
This alternative definition is explored in the works of Hayward [4] and Chiba [37], which claims that Ealt

C arises as the integral of a
suitable Hamiltonian with reference to Chandrasekhar’s work [36], however this rather leads to EC .

Note that for the Levi-Civita spacetime, EC is also finite everywhere apart from the singularity.

3.3.3 Newtonian limit

A Lagrangian density leading to the Poisson equation ∇2φN = 4πρ (with φN the Newtonian gravitational potential and ρ the
possibly distributional mass density) is

L = − 1

8π
(∇φN )2 − ρφN . (30)

This consists entirely of the potential term of gravity and an interaction contribution. Hence the volume density of the Newtonian
gravitational energy

E = 1

8π
(∇φN )2 (31)

for φN = 2λ ln r becomes E = λ2/
(

2πr2
)

. Integrating this between two cylindrical surfaces and taking its density EN along the Z
axis yields

EN (r2) − EN (r1) = λ2 ln r2 − λ2 ln r1. (32)

This agrees with the Newtonian limit of the differences EC (r2) − EC (r1) or Ealt
C (r2) − Ealt

C (r1) of the C-energies.

4 Geometric characterization in terms of the Komar mass density

4.1 Curvature invariants

In order to characterize the radial features of the spacetime, we introduce the proper radial distance

R =
∫ r

0
r2μK dr = r1+2μK

1 + 2μK
. (33)

The Kretschmann scalar

K = 64μ2
K

(1 + 2μK )3 R
−4 (34)

scales with μK , confirming a flat spacetime when it vanishes. It also vanishes in the limit μK → ∞. For all other parameter values
the Kretschmann scalar falls off at R → ∞ and there is a naked singularity on the Z axis [38, 39].

The dependence of the Kretschmann scalar on the Komar mass density is illustrated for R = 1 on Fig. 1. It has three extrema:
(i) it vanishes at μK = 0, as the spacetime becomes flat; (ii) at μK = −1/8 there is the maximum in the negative μK range; (iii)
at μK1 = 1 the positive μK range has maximal Kretschmann curvature. The existence of λ1 = 1/4 (corresponding to μK1 ) as the
value of the parameter generating maximal Kretschmann curvature has been emphasized by Bonnor and Martins in their discussion
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Fig. 2 The Kretschmann scalar as
function of the Komar mass
density defined with the Weyl time
(in units of R4) shows a double
coverage as compared to the
Komar mass density defined with
the Einstein–Rosen time

of the Levi-Civita metric in the Weyl form [26] (see Fig. 2 for the Kretschmann scalar as function of (μK )Weyl = λ for R = 1,

showing a double degeneracy, when compared to Fig. 1). The increase and subsequent decrease of the Kretschmann curvature with
μK is counterintuitive, undermining the interpretation of μK as mass density

The curvature of a vacuum spacetime, consisting purely of the Weyl tensor Ci jkl is characterized by four scalar invariants [40]:

J1 = A i j
i j , J2 = B i j

i j ,

J3 = A kl
i j A i j

kl − J 2
1

2
,

J4 = A kl
i j B i j

kl − 5J1 J2

12
, (35)

with

Ai jkl = C mn
i j Cmnkl , Bi jkl = C mn

i j Amnkl . (36)

For the Levi-Civita metric (25) the scalars are

J1 = 64μ2
K (1 + 2μK )

r4(1+2μK )
= K ,

J2 = − 768μ4
K

r6(1+2μK )
= −3μK

2

( K
1 + 2μK

)3/2

,

J3 = −1024μ4
K (1 + 2μK )2

r8(1+2μK )
= −K2

4
,

J4 = 0. (37)

Hence all invariants are expressed in terms of the Kretschmann scalar and exhibit similar dependence on μK .

4.2 Kasner form and Rindler limit of the Levi-Civita spacetime

As in the limit μK → ∞ the metric (25) diverges, we rewrite it in a more suitable form in terms of the proper radial distance (33)
and the rescaled time

T = (1 + 2μK )
2μK

1+2μK t, (38)

as new coordinates. The line element becomes

ds2 = −R2p0 dT 2 + dR2 + [(1 + 2μK )R]2p+dψ2

+ [(1 + 2μK )R]2p−dZ2, (39)

or

ds2 = −R2p0 dT 2 + dR2 + R2p+ dχ2 + R2p−dζ 2, (40)

with

χ = (1 + 2μK )p+ψ, ζ = (1 + 2μK )p− Z , (41)
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Fig. 3 The Kretschmann scalar as
function of the Komar mass
density defined with the Kasner
time (in units of R4) is a double
valued function for
(μK )Kasner > 0.5. By contrast K
is well defined everywhere in
terms of the Komar mass density
μK defined with the
Einstein–Rosen time

and the coefficients

p0 = 2μK

1 + 2μK
, p± = 1 ± √

1 + 8μK

2(1 + 2μK )
. (42)

The ranges of the coordinates are T, ζ ∈ R, R ∈ R
+ and χ ∈ [

0, 2π(1 + 2μK )p+]

. The powers obey p0 + p+ + p− = 1 and
p2

0 + p2+ + p2− = 1, implying p0 ∈ [−1/3, 1], p+ ∈ [0, 1], and p− ∈ [−1/3, 2/3]. This form of the Levi-Civita metric resembles
the inhomogeneous Kasner metric with coordinates T and R interchanged [24] and is expressed in terms of the Komar mass per unit
Z of the Einstein–Rosen coordinates.

For the Levi-Civita metric when μK → ∞, the coefficients reduce to p0 → 1, p± → 0 and (1 + 2μK )2p± → 1, hence

ds2
μK→∞ = −R2dT 2 + d R2 + dZ2 + dψ2. (43)

In this limit it simplifies to a Rindler metric with particular topology S1 ×R
3, representing flat spacetime perceived by a uniformly

accelerated observer with acceleration R−1 along R. The unusual topology consists of each point of the Rindler wedge (T, R)

corresponding to a cylinder of unit radius (parametrized by longitudinal and angular variables Z and ψ , respectively), rather than a
plane.

In the (T, R) coordinates the Komar mass density (associated to the time coordinate vector) emerges as

(μK )Kasner = p0

2
(1 + 2μK )p−+p+ = μK

(1 + 2μK )
2μK

1+2μK

. (44)

In the Rindler limit μK → ∞ of an accelerated observer in flat spacetime (μK )Kasner = 1/2. This is consistent with the Komar mass
surface density σK of the Rindler spacetime given by Eq. (71), multiplied by the circumference 2π of the additional compactified
coordinate.

We have already seen that μK bears the advantage over (μK )Weyl = λ of avoiding a double coverage of the parameter space.
The parameter (μK )Kasner suffers from another inconvenience, the Kretschmann scalar K turning out as a multivalued function of
(μK ) Kasner in the range (μK )Kasner ≥ 1/2 (which applies to all μK ≥ 1.1466), as can be seen from Fig. 3. Hence we keep μK for
parametrizing the metric.

With increasingμK the Levi-Civita metric approaches the Rindler limit, supporting the statement that beside mass and gravitational
energy, the Komar mass density μK also encompasses acceleration effects. As the Rindler observers (from the point of view of an
inertial observer) accelerate as R−1 in theR direction, the Rindler spacetime can also be interpreted through the equivalence principle
as a (Newtonian) gravitational field homogeneous in the T , Z , and ψ directions (hence with the coordinate lines R becoming parallel
with μK → ∞). Thus, we conjecture that the magnitude of μK correlates with the degree of homogeneity (as defined above) of the
Newtonian gravitational field.

4.3 The singular axis

Recently, Ref. [28] has presented the cylindrically symmetric vacuum spacetime

ds2 = sinh2r∗
(−dt2∗ +dϕ2∗

) + dz2∗
sinh r∗

+ cosh2r∗ sinh r∗dr2∗ , (45)

claiming that the r∗ = 0 axis is a geodesically incomplete (for null geodesics) soft singularity both in the sense of Królak [29] and
of Tipler [30]. However, we show in Appendix 3 that this metric is but a particular case of the Levi-Civita metric, corresponding to
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μK = 1, thus referring to the value of the parameter, where the Kretschmann curvature is maximal. We also correct the curvature
invariants given in Ref. [28] and find that the authors of Ref. [28] incorrectly applied the strong singularity criteria.

Therefore we present in this section the rigorous analysis of the singularity on the symmetry axis of the Levi-Civita spacetime,
for a generic value of μK .

Any strong singularity crushes to zero all 3-volumes (or 2-volumes, respectively) parallel transported along timelike (or null)
geodesics [41]. The concept was formulated rigorously by Tipler [30]. Based on the expectation that in physically realistic spacetimes
singularities are both strong and hidden by horizons, Królak proposed a less restrictive condition on the convergence of geodesics
[29]. Clarke and Królak [42] formulated computational recipes corresponding to either the necessary or the sufficient conditions
for the Tipler and Królak criteria. For timelike geodesics, there are no conditions that are simulataneously necessary and sufficient,
therefore we focus on null geodesics, for which (with special conditions holding on the Weyl tensor), necessary and sufficient
conditions may coincide.

In particular, if the Weyl tensor is not identically zero, and it does not display oscillatory behaviour along a null geodesic
γ : I ⊆ R → M hitting the singularity at affine parameter λ → λs , then the Królak strong singularity condition is satisfied if and
only if any component of

Na
b(λ) =

∫ λ

0
dλ′

(

∫ λ′

0
dλ′′∣

∣Ca
0b0

(

λ′′)∣
∣

)2

(46)

diverge as λ → λs , while the Tipler strong singularity condition holds if and only if any component of

La
b(λ) =

∫ λ

0
dλ′

∫ λ′

0
dλ′′

(

∫ λ′′

0
dλ′′′∣

∣Ca
0b0

(

λ′′′)∣
∣

)2

(47)

diverge as λ → λs . The componentsCa
bcd are calculated with respect to a pseudo-orthonormal frame e0, e1, e2, e3 parallel propagated

along the geodesic, such that e0 and e1 are the null vectors, e2 and e3 are the spacelike vectors and e0 = γ̇ is the geodesic’s tangent.
We consider radial null geodesics in the (T, R)-plane of the Kasner-like coordinates:

γ (λ) = (T (λ), R(λ), χ0, ζ0), (48)

where the latter two components are constants. The velocity vector is

e0(λ) = (

Ṫ (λ), Ṙ(λ), 0, 0
)

, (49)

where the overdot denotes derivative with respect to the affine parameter. A radially ingoing null geodesic satisfies the equation

Ṫ = R−2p0 , Ṙ = −R−p0 , (50)

with an irrelevant constant of integration set to unity. Explicitly integrating the geodesic equations is possible, but unnecessary, as
the integrals (46) and (47) can be calculated through the chain rule as

∫ λs

0
dλ =

∫ R0

0
Rp0 dR , (51)

where R0 = R(0). A parallel frame along the radial null geodesic is then given by

e0 = (

R−2p0 ,−R−p0 , 0, 0
)

,

e1 =
(

1

2
,

1

2
Rp0 , 0, 0

)

,

e2 = (

0, 0, R−p+ , 0
)

,

e3 = (

0, 0, 0, R−p−)

. (52)

The Weyl tensor, also the integrals (46) and (47) are calculated in the above frame in Appendix 4. We found that the components L2
2

and L3
3 of the Tipler integrals, as well as the components N 2

2 and N 3
3 of the Królak integrals diverge logarithmically with R → 0,

provided μK �= 0,∞. Hence radial null geodesics satisfy both the Tipler and Królak singularity conditions.
In conclusion, the symmetry axis of the Levi-Civita spacetime represents a strong curvature singularity for any of the allowed

parameter values (including μK = 1, which refutes the claim made in Ref. [28] about the singularity being soft).

5 Physical characterization in terms of the Komar mass density

In this section we analyze the the gravitational effects ocurring in the Levi-Civita spacetime, both from a Newtonian and a general
relativistic perspective.
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Fig. 4 The gravitational
acceleration (defined in a
Newtonian sense through the
equivalence principle) as function
of the Komar mass density, in
units of R

5.1 Gravitational acceleration

In what follows, we investigate the Levi-Civita spacetime by considering a stationary observer at fixed proper distance from the
Z-axis, with 4-velocity ua = (

R−p0 , 0, 0, 0
)

and 4-acceleration

aa ≡ ub∇bu
a = 2μK

1 + 2μK
R−1δaR, (53)

the latter compensating for the gravitational effect of the cylinder, according to the equivalence principle. The acceleration changing
sign with μK shows that gravity is repulsive for −1/8 ≤ μK < 0 and attractive for μK > 0. In the latter case it approximates the
Newtonian regime −dφN/dr at small μK (with φN the Newtonian potential generated by a linear mass distribution on the Z axis)
and decays at R → ∞, as expected.

We define the gravitational acceleration (in a Newtonian sense)

ag = − 2μK

1 + 2μK
R−1, (54)

the magnitude of which represents the magnitude of the acceleration to keep the observer in orbit and its sign being negative (positive)
in the attractive (repulsive) regime. The quantity ag is therefore the Newtonian gravitational force (on a unit mass) in the Levi-Civita
spacetime. This arises from the potential

φ = 2μK

1 + 2μK
ln R, (55)

which reduces to the Newtonian limit φN = 2μK ln r for small μK .
At unit proper radial distance ag becomes aR=1

g = −2μK /(1 + 2μK ), illustrated on Fig. 4. The gravitational acceleration at unit
proper radial distance is negative (positive) for positive (negative) μK . For positive μK the gravitational acceleration is attractive and
increases monotonically with μK , asymptoting −1. Hence, despite increasing μK , gravitational attraction cannot increase above a
certain limit.

5.2 Geodesic deviation

We can better understand the gravitational field by discussing the geodesic deviation. We consider the congruence Ua ≡ (∂/∂τ)a ,
with the proper time τ given by dτ = Rp0dT , implying Ua = R−p0δaT for any given R. Infinitesimally close curves of the
congruence are separated by the deviation vector Xa ≡ (∂/∂R)a = δaR . By construction both Ua and Xa are normalized and they
commute. In any arbitrarily chosen point (τ = τ1, R = R1) there is a geodesic with tangent V a(τ1, R1) ≡ Ua(τ1, R1). In this point
the acceleration D2Xa/dτ 2 can be computed as

Aa = Ra
bcdU

bUcXd = R−2p0 Ra
T T R = p0(1 − p0)R

−2δaR, (56)

with magnitude
(

gab A
a Ab

)1/2 = 2|μK |
(1 + 2μK )2 R

−2. (57)

The negative of this acceleration represents the tidal force acting on a unit mass particle. We visualize its dependence of μK at unit
proper radial distance on Fig. 5
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Fig. 5 The tidal acceleration
among geodesic observers as
function of the Komar mass
density, in units of R2

The tidal acceleration is zero at μK = 0, as expected for a flat spacetime. Then it increases with μK (as for small values it

represents the mass density of the cylindric source) up to μK2 = 1/2 (corresponding to σ2 =
(

1 − √
5
)

/2 and λ2 =
(

3 − √
5
)

/4).

Then it decreases again, falling off to zero at μK → ∞. As we discussed before, this renders the Levi-Civita spacetime into Rindler
spacetime. In this limit the tidal force vanishes and the gravitational field (in a Newtonian sense) attains a high degree of homogeneity
in the T , Z , and ψ directions.

6 Discussion and concluding remarks

Levi-Civita spacetime can be regarded as the strong field background for a cylindrical gravitational wave, which is the best testbed for
comparing quantization methods of gravitational waves. Hence it is paramount to clearly understand this static spacetime. Previous
presentations relied on either of the parameters λ or σ , emerging in the Weyl- or Einstein–Rosen coordinates, respectively. Although
both parameters, whenever they are small and positive, have the nice interpretation of mass density along the symmetry axis, when
considered across their full allowed ranges, are hard to interpret. The reason for this is twofold. First, there is a double coverage of
the parameter space, corresponding to a possible interchange of the roles of the axial and polar variables. Then there are two kinds
of flat limits, the second one being of Rindler type. This leads to a quartett of parameter values, all leading to flat limit.

Despite the axis being infinite, we could compute the Komar mass density μK along the axis through a compactification and
a subsequent blowing up of the compactification radius. By introducing μK as a new metric parameter, we got rid of the double
coverage, but the flat limit still arises in two cases, for μK = 0 and μK → ∞. The first indeed represents no mass on the axis. The
second one is a Rindler spacetime, as can be seen manifestly in Kasner type coordinates, which include R, the proper radial distance
measured from the axis.

The Komar mass density can be in the narrow negative range −1/8 ≤ μK < 0, when gravity is repulsive. For all positive values
it is attractive. In the process of increasing μK from 0 to ∞ the Kretschmann scalar increases to 1, then it decreases again. We
identified a recently published solution in Ref. [28] as the Levi-Civita spacetime pertinent to the maximal Kretschmann scalar and
corrected a number of its claims. In the process we proved that the singularity on the axis is strong for null geodesics both in the
Tipler and Królak senses, for any μK .

In order to understand the Rindler limit at μK → ∞, however R cannot be regarded as radial any more. Initially (R, ψ) cover R2

as polar coordinates, while in the Rindler limit they cover a cylinder S1 ×R. This process can be visualized (through an embedding
into higher dimensions) as a pinching of the (R, ψ) plane into a direction perpendicular to both the plane and the Z axis, creating
a cone-like shape. As μK further increases, the tip of the cone opens up into a funnel, which attains its climax as a constant cross-
section tube, in which the R coordinate lines become parallel. In the Rindler limit inertial observers have coordinate acceleration
R−1 in the negative R direction, appearing as gravity (in the Newtonian sense), with the tidal acceleration vanishing.

To illustrate the effect of increasing μK , we calculate the circumference of the circles with coordinate radius R from Eq. (39) as

C(R;μK ) = 2π[(1 + 2μK )R]
1+√

1+8μK
2(1+2μK ) . (58)

Then we plot the circumference as function of both R and μK on Fig. 6. While for μK = 0 the circumference takes the flat value

C(R; 0) = 2πR, at μK → ∞ it becomes limμK→∞ C(R;μK ) = 2π limμK→∞ μ
1/

√
2μK

K = 2π . We also represent the process of
how the Euclidean radius of the circles (defined as C(R;μK )/2π) changes with the coordinate R for increasing values of μK on
both an animation (with increasing μK as time variable), given as supplementary material, and on a sequence of figures (Fig. 7.)

We summarize the findings of the paper by presenting the various regimes of the Levi-Civita spacetime on Fig. 8. On the horizontal
axis the Kasner parameter p0 increases from −1/3 to 1. The red and blue curves represent p+ and p−, respectively. The Komar
mass density also increases from left to right, monotonically with p0. From left to right the figure shows the following regimes:

(i) The limit of maximal repulsion, for μK = −1/8, thus p0 = −1/3
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Fig. 6 The transformation of the
geometry induced by an increasing
Komar mass density μK . The
circumference C of a circle is
approximately 2π times the radius
R for small μK , as shown on the
right side of the plotted surface,
representing an almost flat,
cylindrically symmetric
spacetime. With increasing μK
the increase of the cicumference
with radius becomes slower,
eventually the circumference
becoming a constant, regardless of
the value of the coordinate R. The
latter limit corresponds to the
Rindler spacetime with poinwise
acceleration R−1 in the R
direction

Fig. 7 The coordinates Z and T
are supressed, while R and ψ are
embedded in a three-dimensional
Euclidean space. The sequence of
figures (from top to bottom)
represents the evolution with
increasing μK of the dependence
of the Euclidean radius (defined as
C(R; μK )/2π , the circumference
of the circles over 2π , represented
in the vertical plane) on the
coordinate radius R (represented
on logarithmic scale on the
horizontal axis). At small μK (top
figure) the metric is almost flat.
With increasing μK (lower
figures) gravity bends spacetime
into a funnel (with the tip at
R = 0), which eventually
degenerates into a cylinder, with
unit radius for μK → ∞ (bottom
figure). While for any μK �= 0 the
tip R = 0 of the funnel represents
a singularity, the larger hole
appearing at the base of the funnel
at small R is but a numerical
artefact arising from the lower
theshold in the chosen range of R
to be represented

(ii) The repulsive gravity regime, for μK ∈ [−1/8, 0), thus p0 ∈ [−1/3, 0)

(iii) The flat limit, for μK = 0, thus p0 = 0
(iv) The regime, where gravitational attraction dominates, for μK ∈ (0, 1), thus p0 ∈ (0, 2/3)

(v) The maximal value of the Kretschmann scalar (the metric of Ref. [28]), for μK = 1, thus p0 = 2/3
(vi) The regime, where Newtonian gravity drags the field lines increasingly parallel, for μK ∈ (1,∞), thus p0 ∈ (2/3, 1)

(vii) The Rindler limit, where the perfectly parallel field lines transform gravity into a pure acceleration field through the equivalence
principle, for μK → ∞, thus p0 = 1.
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Fig. 8 The various regimes of the
Levi-Civita metric in terms of the
Kasner parameters p+ (red
curve), p− (blue curve) and p0
(horizontal axis). The Komar mass
density increases from left to
right, spanning to the regime of
negative gravity μK ∈ [−1/8, 0),
no gravity μK = 0, gravitational
attraction dominated regime
μK ∈ (0, 1) , maximal
Kretschmann scalar (the metric of
Ref. [28]) μK = 1, increasingly
parallel field lines transforming
gravity into an acceleration field
μK ∈ (1, ∞), and perfectly
parallel field lines, the Rindler
limit μK → ∞

Hence, from the combined analysis of the gravitational acceleration (54), which increases monotonically with μK but asymptotes
to a constant; and of the tidal force (which falls off completely in the asymptotic regime μK → ∞), as shown by the geodesic
deviation acceleration (57) we conclude, that adding to the Komar mass density strengthens the gravitational acceleration, as
expected, however drives the field lines increasingly parallel. The first effect dominates at small μK , while the second at large
μK . The Riemannian curvature decays with increasing μK , the gravitational field becoming fully equivalent to a Rindler frame of
accelerating observers in flat spacetime. Hence, in a Newtonian sense the field lines become parallel, while in an Einsteinian sense
gravity vanishes.

6.1 Supplementary information

An animation showing how the Euclidean radius of circles changes with the coordinate radius (with increasing Komar mass density
as the animation parameter), is included as supplementary material. In the limit of infinite Komar mass density the Euclidean radius
asymptotes to unity, irrespectively of the coordinate radius.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/epjp/s13360-023-04027-9.
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Appendix 1: Derivation of the Einstein–Rosen form of the cylindrically symmetric metric

Thorne [22] has given the line element for a generic cylindrically symmetric spacetime with vorticity-free Killing vectors and
orthogonally transitive group action (dubbed as whole-cylinder symmetry) in a standard form

ds2 = e
2
(

K̃−U
)

(−dt̃2 + dr̃2) + e−2UW 2dϕ2 + e2Udz2, (59)
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withU, K̃ andW functions of
(

t̃, r̃
)

only. For certain particular sources this can be reduced to the simpler Einstein–Rosen (canonical)
form (1). For the completeness of presentation we discuss in this Appendix explicitly the reduction and coordinate transformation
leading to the canonical form of the cylindrically symmetric line element.

As Thorne has emphasized, when the energy density equals the radial pressure, thus T t̃
t̃

+ T r̃
r̃ = 0 (a condition holding both for

vacuum and electromagnetic field), the Einstein equation Rt̃
t̃
+ Rr̃

r̃ − R = 0 implies that the function W with differential

dW = ∂W

∂ t̃
dt̃ + ∂W

∂ r̃
dr̃ (60)

obeys the wave equation W,t̃ t̃ = W,r̃ r̃ . Hence W is a harmonic function, advantageous to use as a new coordinate.
We introduce another new coordinate t through

∂t

∂ t̃
= ∂W

∂ r̃
,

∂t

∂ r̃
= ∂W

∂ t̃
. (61)

The new coordinate is well-defined, since the harmonicity of W is but the integrability condition for t. Moreover, t is also harmonic
through Eq. (61). From Eqs. (60) and (61) it is immediate to show that

−dt2 + dr2 = e2α
(−dt̃2 + dr̃2), (62)

with α a function of
(

t̃, r̃
)

given as

e2α = −
(

∂W

∂ t̃

)2

+
(

∂W

∂ r̃

)2

. (63)

Hence the set of harmonic coordinates (t, r ≡ W ), similarly to the old coordinates
(

t̃, r̃
)

, are conformally flat.
In defining α we assumed the right hand side of Eq. (63) positive, implying the 4-gradient of W to be spacelike. It follows that t

is a temporal coordinate.
Equation (63) is trivially satisfied by parametrizing the 4-gradient of W through

∂W

∂ r̃
= eα cosh β , (64)

∂W

∂ t̃
= eα sinh β, (65)

with β a function of
(

t̃, r̃
)

. The coordinate transformation then emerges as a sequence of a hyperbolic rotation and a dilation on the
coordinate differentials:

(

dt
dr

)

= eα

(

cosh β sinh β

sinh β cosh β

)(

dt̃
dr̃

)

. (66)

With K = K̃ − α and U functions of (t, r) the line element in the new coordinates takes the canonical (Einstein–Rosen) form (1).

Appendix 2: Komar mass density of the Rindler metric

In this appendix we calculate a suitably defined Komar mass surface density in flat spacetime, expressed in a reference frame
uniformly accelerated into the x direction with acceleration x−1, hence in Rindler coordinates:

ds2 = −x2dt2 + dx2 + dy2 + dz2, (67)

where t is now the Rindler time. This metric covers the right quadrant of the Minkowski spacetime, corresponding to x > 0 in the
Rindler coordinates and has a coordinate singularity at the hyperplane x = 0, which represents an infinitely accelerated observer.

We define y = lϕ and z = kψ , with l and k length scales, 0 ≤ ϕ ≤ 2π and 0 ≤ ψ ≤ 2π angular coordinates with period 2π .
This compactifies the spacetime in both the y and z direction with the original spacetime recovered for l, k → ∞. In terms of the
compactified coordinates the line element becomes

ds2 = −x2dt2 + dx2 + l2dϕ2 + k2dψ2. (68)

The timelike Killing vector ξ = ∂t has the length squared ξ · ξ = −x2 forbidding a distinguished normalization for ξ . The Komar
superpotential reads

Uξ = ∗dξ = −2kldϕ ∧ dψ, (69)

which integrated on t = const, x = const, 0 ≤ ϕ ≤ 2π , and 0 ≤ ψ ≤ 2π gives

mK = πkl. (70)
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The coordinate area of the torus 0 ≤ ϕ,ψ ≤ 2π in the original coordinates y, z is 4π2kl, we thus define the surface Komar mass
density as

(σK )Rindler
= mK

4π2kl
= 1

4π
. (71)

We may now take k, l → ∞ to recover the original Rindler spacetime, a procedure which does not affect (σK )Rindler
.

With respect to the timelike coordinate vector of the standard pseudo-Cartesian coordinates, Minkowski spacetime has zero
Komar mass. Indeed, the timelike Killing vector is naturally normalized everywhere.

When no obvious normalization of the Killing vector (ensured for example by a proper asymptotic behaviour) is available, Komar
integrals can lead to finite, conserved charges that capture some aspects of the reference frame (in this case, acceleration), but such
charges do not necessarily characterize invariant geometric aspects of the gravitational field.

Appendix 3: A particular case: the maximal Kretschmann parameter

In this appendix we show that the cylindrically symmetric vacuum spacetime discussed in Ref. [28] is but a particular case of the
Levi-Civita metric. We also refute some of their claims about the spacetime.

We start by introducing new coordinates as

T =
(

3

2

)2/3

t∗, R = 2

3
sinh3/2 r∗,

χ =
(

3

2

)2/3

ϕ∗, ζ =
(

3

2

)−1/3

z∗, (72)

(with χ ∈ [

0, 2π(3/2)2/3]), rendering the line element (45) into (40), with the particular coefficients p0 = p+ = 2/3 and
p− = −1/3, leading to μK = 1. Hence the metrics (25) and (45) are locally equivalent for this particular parameter value,
nevertheless there is a disagreement in the angular deficits in χ in their Kasner form.

At μK = 1, the particular case of the Levi-Civita metric discussed in Ref. [28], the Kretschmann scalar exhibits its maximum:

K =
(

4

3

)3

R−4 = 12

sinh6 r∗
(73)

and the curvature invariants (37) are

J1 = K , J2 = −K3/2

2
√

3
= − 12

sinh9 r∗
, (74)

J3 = −K2

4
= − 36

sinh12 r∗
, J4 = 0. (75)

With this, we correct the values of J2 and J4 given in Ref. [28].
The C-energy (27) in the particular case μK = 1 reads

EμK=1
C = ln r = ln 2

3
+ 1

2
ln sinh r∗, (76)

also different from the one given in Ref. [28], which however seems to be calculated from Ealt
C .

Reference [28] additionally claimed that the singularity on the axis is soft. We also refute this statement in Sect. 4.3 and D.

Appendix 4: Strong singularity conditions

In this Appendix we give the details of the calculations of the Tipler and Królak integrals necessary to classify the singularity on
the axis.

In the special case when the Weyl tensor is not identically zero, does not show oscillatory behaviour along the geodesic and the
geodesic is null, a unified necessary and sufficient condition for a strong singularity both in the sense of Tipler (47) and of Królak
(46) can be given, in terms of the components Ca

bcd of the Weyl tensor in a parallel propagated pseudoorthonormal frame {ea}, with
dual {θa}. Such a frame, with e0 the tangent of the (affinely parametrized) null geodesic (written in terms of Kasner-like coordinates)
was presented as Eq. (52) and can be conveniently extended to a neighborhood of the geodesic.

The curvature forms �a
b = dωa

b + ωa
c ∧ ωc

b (with ωa
b the connection 1-forms) are

�0
0 = p0(p0 − 1)

R2 θ0 ∧ θ1,
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�0
2 = p+ p−

2R2 θ0 ∧ θ2 − (2p0 + p−)p+
4R2(1−p0)

θ1 ∧ θ2,

�0
3 = p+ p−

2R2 θ0 ∧ θ3 − (2p0 + p+)p−
4R2(1−p0)

θ1 ∧ θ3,

�1
2 = p+ p−

2R2 θ1 ∧ θ2 − (2p0 + p−)p+
R2(1+p0)

θ0 ∧ θ2,

�1
3 = p+ p−

2R2 θ1 ∧ θ3 − (2p0 + p+)p−
R2(1+p0)

θ0 ∧ θ3,

�2
3 = − p+ p−

R2 θ2 ∧ θ3, (77)

with the frame indices raised and lowered by the flat metric

(kab) =
(

kab
)

=

⎛

⎜

⎜

⎝

0 − 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

, (78)

which for an arbitrary vector V a results in the rules

V0 = −V 1, V1 = −V 0, V2 = V 2, V3 = V 3. (79)

The Levi-Civita spacetime being Ricci-flat, the curvature forms �a
b = 1

2 R
a
bcdθ

c ∧ θd represent Weyl tensor components, nonvan-
ishing along the geodesic (except for special parameter values for which the spacetime is flat, but then there is no singularity either),
also they do not oscillate. Hence the criteria for the diverging of the Tipler and Królak integrals representing unified necessary and
sufficient conditions for a strong singularity are met.

Except the flat case, thus either of the cases (p0, p+, p−) = (0, 1, 0) or (1, 0, 0), all components of the Weyl tensor blow up
with R → 0. In what follows, we discuss, whether this singularity is strong or soft.

The explicit calculation gives the nonvanishing Królak integrals

N 0
1 = D − CR2p0 − C2

p0 + 1
Rp0+1 − p2

0F1(R; p0), (80)

where C and D are constants of integration, and

F1(R; p0) =
⎧

⎨

⎩

R3p0−1

3p0−1 , p0 �= 1/3

ln R, p0 = 1/3
, (81)

together with

N 2
2 = D + p2+(2p0 + p−)2

(p0 + 1)3 R−(p0+1) − C2

p0 + 1
Rp0+1

− 2C
p+(2p0 + p−)

p0 + 1
ln R,

N 3
3 = D + p2−(2p0 + p+)2

(p0 + 1)3 R−(p0+1) − C2

p0 + 1
Rp0+1

− 2C
p−(2p0 + p+)

p0 + 1
ln R. (82)

At R → 0, the integrals N 2
2 and N 3

3 contain both power-law and logarithmic divergences, while N 0
1 can blow up for any p0 ≤ 1/3

parameter values.
Likewise, the Tipler integrals La

b are

L0
1 = E − D

p0 + 1
Rp0+1 + C

3p0 + 1
R3p0+1

+ C2R2p0+2

2(p0 + 1)2 + p0

4
R4/3F2(R; p0), (83)

where C, D and E are constants of integration, and

F2(R; p0) =
{

R4(3p0−1)/3

3p0−1 , p0 �= 1/3
ln R, p0 = 1/3

, (84)
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together with

L2
2 =

∫ R0

R
dR

[

DRp0 + (2p0 + p−)2 p2+
(p0 + 1)3R

− C2R2p0+1

p0 + 1

−2C
(2p0 + p−)p+

p0 + 1
Rp0 ln R

]

, (85)

(with R0 characterizing the initial point of the geodesic) and L3
3 obtained from L2

2 through the exchange p+ ↔ p−. We can see
even without calculating the integrals a logarithmic divergence emerging in both L2

2 and L3
3 at R → 0, while L0

1 blows up only
for p0 ≤ 1/3. We conclude that for radial null geodesics the strong singularity conditions are satisfied both in the sense of Królak
and of Tipler.
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