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Abstract
Previously drilled boreholes of a host rock for a potential nuclear waste repository in 
Hungary revealed a highly fractured claystone rock body. A crucial step for character-
izing the hydrodynamic behavior of such a fractured reservoir is fracture identification 
and accurate calculation of the fracture density. Although acoustic borehole televiewers 
provide a reliable base for determining the fracture density, older boreholes usually lack 
such data. However, conventional borehole geophysical measurements are often accessible 
in such cases. The aim of this study was to identify any correlations between well log 
data and fracture density. Multiple linear regression analysis was performed on data from 
two boreholes penetrating the Boda Claystone Formation in southwest Hungary. The up-
per section of the BAF-4 borehole was used for training, where the fracture density was 
estimated with a fit of R2 = 0.767. The computed regression function predicted the fracture 
density with high accuracy in both boreholes for all intervals with typical lithological 
features. However, in some sections where anomalous well log data indicated changes in 
the lithology, the prediction accuracy decreased. For example, the function underestimated 
the fracture density in sandy intervals.

Article highlights
 ● Fracture density of a potential nuclear waste repository predicted by using regression 

analysis on geophysical logs.
 ● Fracture density of a claystone body influenced by resistivity and density.
 ● Prediction accuracy may be influenced by grain size, bedding type, and presence of 

reductive layers.

Keywords Claystone body · Nuclear waste repository · Geophysical well log data · 
Acoustic borehole televiewer · Fracture density · Multiple linear regression analysis
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1 Introduction

A host rock of a waste repository that contains fractures may be considered a fractured res-
ervoir. The viability of a fractured reservoir as a waste repository depends on how fluid and 
contaminants can be retained in the formation. Claystone formations are often targeted as 
potential repository sites, along with salt, tuff, and granitic rock formations (Ahn and Apted 
2010). Claystone generally has very low matrix porosity and permeability, which allows 
fluid to move exclusively along fracture planes (Anders et al. 2014). Therefore, the fracture 
network geometry, fracture aperture, and fracture density are among the key parameters that 
affect the fluid flow in fractured reservoirs. The detection of fractures and precise estima-
tion of the fracture density are important for characterizing the hydrodynamic behavior of 
a fractured reservoir. Such information can reflect fracture development and connectivity, 
which are useful for optimizing waste disposal (Nelson 2001; Ge et al. 2020).

Fractures in boreholes can be detected both directly and indirectly. Direct methods 
include core analysis, impression packers, and borehole cameras. Indirect methods include 
packer borehole tests and well log data (Ja’fari et al. 2012). The most accurate method is 
through direct observation and core analysis, but this approach is costly and time-consum-
ing, and cores are frequently unavailable. In addition, highly fractured zones are often lost 
during core recovery, and mechanical fractures are frequently induced, which significantly 
alters the fracture density of multiple sections (Laubach et al. 1988). Human error and non-
constant resolution limits may also affect the observed fracture density in direct observation 
of cores. Downhole cameras are small devices that can capture images and video inside a 
borehole. These tools collect high-resolution data and offer a quick and efficient approach 
to detecting discontinuities. Unfortunately, image logs are not available for hundreds of 
boreholes drilled before such technology was introduced in the 1980s (Tokhmchi et al. 
2010; Ja’fari et al. 2012). One of the most popular methods for localizing fractures along 
boreholes is the acoustic borehole televiewer (BHTV), which is rapid, cost-effective, and 
accurate (MartinezTorres 2002). A BHTV provides a continuous and oriented image of the 
borehole wall which reflects the orientation, dip angle and thickness of fractures as a func-
tion of depth. BHTV logs are beneficial for evaluating boreholes without oriented cores 
(Massiot et al. 2017). Images are produced based on the travel time of the ultrasonic signal 
reflected from the borehole wall in this technique (Zemanek et al. 1970; Pöppelreiter et al. 
2010). Potential fluid routes may develop along any discontinuity in a formation. Thus, 
every single discontinuity is worth defining as a fracture when evaluating a fracture network.

Discrete fracture network (DFN) modeling is a valuable technique for determining the 
fracture network geometry in a fractured reservoir if the geometric characteristics of indi-
vidual fractures are known (Witherspoon et al. 1980; Neuzil and Tracy 1981). By modeling 
the fracture networks of numerous boreholes, it becomes possible to analyze the hydro-
geological behavior over a wider area and the impact of various processes on the fracture 
network characteristics. One of the most critical parameters for correlating boreholes is 
the fracture density. Although BHTV datasets provide a firm basis for computing fracture 
density logs, this information is frequently unavailable for older boreholes. In such cases, 
however, standard geophysical well logs are typically available. Incorporating such old 
boreholes in spatial correlation studies can help improve understanding of fractured rock 
bodies, the locations and sizes of communicating fracture clusters, and the positions of 
significant structural boundaries.
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The fracture density is a significant characteristic that is the primary basis for correlating 
data from boreholes in the Boda Claystone Formation (BCF). P10 is the most widely used 
parameter for quantifying the fracture density, and it is defined as the number of fractures 
per meter, which can be derived from BHTV data for any borehole segment. Downhole geo-
physical logging can be used to examine the petrophysical characteristics of a rock forma-
tion. Logging equipment responds to various features in the borehole environment (Shalaby 
and 98 Islam 2017). Even for older boreholes, conventional well logs frequently include 
geophysical data such as natural gamma rays, spontaneous potential, sonic transit time, bulk 
density, neutron porosity, caliper data, and resistivity. In contrast, unconventional well logs 
such as the Formation MicroScanner (FMS) and Formation MicroImager (FMI) are too spe-
cialized, expensive, or recently invented to be utilized in every borehole (Gamal et al. 2022).

Several earlier studies have attempted to estimate the fracture density by using conven-
tional well logs. Most of these studies were related to hydrocarbon production, so they typi-
cally targeted formations such as fractured carbonate and sandstone reservoirs. Tokhmchi 
et al. (2010) used well log data (caliper data, density, neutron porosity, sonic transit time, 
resistivity, natural gamma rays) to calculate the fracture density in naturally fractured reser-
voirs. Ja’fari et al. (2012) used an adaptive neuro-fuzzy inference method on well log data 
(sonic transit time, deep resistivity, neutron porosity, bulk density) to calculate the fracture 
density. Zazoun (2013) used artificial neural networks (ANNs) on standard well log data 
(gamma rays, sonic transit time, caliper data, neutron porosity, bulk density) as well as 
core data to predict the fracture density. Aghli et al. (2016) used well log data (bulk density, 
neutron porosity, gamma rays, sonic transit time, photoelectric absorption, caliper data) to 
determine fracture zones in a fractured carbonate host rock. Taherdangkoo and Abdideh 
(2016) used the wavelet transformation approach on conventional well log data (gamma 
rays, bulk density, sonic transit time, photoelectric absorption) to estimate the locations of 
fractured zones and calculate the number of fractures in each zone of a reservoir. Dong et 
al. (2020) used a semi-supervised learning system on conventional well log data (gamma 
rays, caliper data, spontaneous potential, neutron porosity, acoustic impedance, density, 
resistivity) to predict fracture zones in tight sandstone. Owing to a lack of directly obtained 
advanced logging data, Gamal et al. (2022) integrated conventional well logs, thin sections, 
and other available data to detect fractures in a carbonate rock body. However, no previous 
study has attempted to use conventional well log data to estimate the fracture density in a 
claystone formation.

The aim of this study was to quantify how different geophysical features describe the 
fracture density so that the fracture density of boreholes can be determined without BHTV 
data. The relationship between geophysical characteristics recorded in well logs and the 
fracture density of a claystone formation was explored by linear regression analysis. The 
developed approach was tested on two boreholes of the Boda Claystone Formation, which 
is a potential site for a high-level nuclear waste depository in Hungary.

2 Methods

Multiple linear regression (MLR) analysis is a statistical technique to model the linear rela-
tionship between a dependent variable and a set of independent variables.The dependent 
variable is referred to as the predictand or response, while the independent variables are 
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referred to as predictors. MLR model establishes a simultaneous statistical relationship 
between the single continuous outcome y and the predictor variables xk (k = 1, 2, …, p − 1):

 yi = β0 + β1xi1 + β2xi2 + ... + βp−1xi,p−1 + εi  (1)

where β0 represents the intercept, also called the constant (the mean of Y when all Xk = 0), 
and each βk represents a slope with respect to Xk, εi is the ith error. The βk are called partial 
regression coefficients (Eberly 2007; Olive 2017; Tranmer et al. 2020).

The multiple regression analysis procedure consists of the following steps (Tranmer et al. 
2020). In order to build a multiple linear regression model, additional assumptions must be 
verified. It is important to confirm that a linear relationship is likely to exist for each predic-
tor. If the relationship is not linear, a transformation of the variables is required. The normal-
ity assumption assumes that the residuals have a normal distribution with a mean of zero.

The predictors should be independent of each other. High correlations between two or 
more independent variables are a sign of multicolinearity, which creates redundant informa-
tion that distorts the results of a regression model. The model can be simplified by removing 
the highly correlated variables. The variance inflation factor (VIF) can show how multicol-
linearity has increased the variance of the regression estimates. Multicollinearity can be a 
problem if the VIF is higher than 10 (Alin 2010):

 
V IF i =

1
1 − R2

i
 (2)

Where VIFi is the variance inflation factor of the ith predictor and R2
i is the multiple coeffi-

cient of determination in a regression of the ith predictor on all other predictors (Alin 2010).
The Durbin-Watson (DW) statistic tests for autocorrelation in the residuals of the regres-

sion analysis and determines whether there is a significant correlation based on the order in 
which they appear in the data file:

 
d =

∑n
i=1(ei − ei−1)

2

∑n
i=1e

2
i

 (3)

where n is the number of observation, εi = yi– ȳi (yi is observed values, ȳi is the predicted 
values). DW value is always between 0 and 4, if there is no autocorrelation the DW value 
should be between 1.5 and 2.5 (Vinod 1973).

Subsequently, the estimation of the linear regression model and the diagnostic evaluation 
is performed. The model should then be reduced by removing non-significant predictors after 
making inferences about the regression coefficient. Finally, the model performance (whether 
the model provides an adequate fit to the data) has to be checked.

This study used multiple regression analysis with the backward elimination method. 
Backward stepwise regression is a stepwise regression method that starts with a full model 
and gradually removes variables to obtain a reduced model that best fits the data. The pro-
cess of backward elimination is terminated once all remaining variables meet the require-
ments to remain in the model (Olive 2017). The dependent variable was the fracture density 
measured as P10. The set of independent variables was the geophysical well log data.
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Different goodness-of-fit measures can be used for linear regression models. The R2 
value ranges from 0 to 1 and provides a relative measure of the portion of the variation in 
the dependent variable that is explained by the model (Bowerman et al. 2005). The standard 
error of estimate (Se) measures how far away data points typically are from the regression 
line. Mean absolute error (MAE) indicates the average value of residuals.

3 Geological setting

Several 1000-m-deep boreholes with nearly 100% core recovery were previously drilled 
in the BCF to investigate its potential as a final storage location for high-level radioactive 
waste in Hungary (Konrád and Hámos 2006). These boreholes offer a rare opportunity to 
study and model the fracture network of a claystone formation as precisely as possible. The 
BCF may be appropriate for storing nuclear waste in Hungary because of its thickness, low 
permeability and porosity. The average thickness of the BCF is 900 m and is a member of 
the 4000–5000 m thick Palaeozoic–Triassic sedimentary sequence of the Western Mecsek 
Mountains in southwest Hungary (Fig. 1). This Late Permian formation primarily comprises 
well-compacted reddish-brown claystone and siltstone with layers of fine sandstone and 
dolomite. The rock-forming minerals are quartz, albite, illite-muscovite, chlorite, calcite, 
dolomite, and hematite (Árkai et al. 2000). The BCF was deposited in a playa mudflat in 
an alkaline lake environment during the Late Permian (Árkai et al. 2000; Varga et al. 2005, 
2006; Varga 2009; Konrád et al. 2010).

Several successive tectonic stages characterize the structural evolution of the region. 
Significant NE–SW shortening occurred in the Late Cretaceous (Benkovics et al. 1997) 
followed by Neogene events related to the formation of the Pannonian Basin. Early Mio-
cene deformation caused by tensional forces was followed by Late Miocene (Sarmatian) 
compression and thermal subsidence of the basin (Bergerat and Csontos 1988; Csontos 

Fig. 1 (a) Location of the Mec-
sek Mountains in Hungary. (b) 
geological map of the Mecsek 
Mountains showing the distribu-
tion of the Boda Claystone 
Formation (BCF) modified 
after Konrád and Sebe (2010). 
Legend: (1) Neogene sediments, 
(2) Jurassic and Cretaceous sedi-
ments and Cretaceous volcanic 
rocks, (3) Triassic sediments 
(sandstones, carbonates, and 
evaporites), (4) Upper Perm-
ian–Triassic Kővágószőlős 
Sandstone Formation, (5) Upper 
Permian BCF, (6) Palaeozoic, 
(7) fault, (8) strike-slip fault, (9) 
thrust fault, (10) syncline and 
anticline, (11) borehole sites
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and Bergerat 1992; Fodor et al. 1999; Csontos et al. 2002; Maros et al. 2004). The ongoing 
tectonic inversion of the basin is the most recent significant event (Konrád and Sebe 2010). 
Previous drillings have revealed a rock body with a significant number of mineral veins and 
fractures. Examining these structural elements is crucial for evaluating the retention quali-
ties of the claystone. BAF-2 is a borehole that has been extensively investigated, and numer-
ous studies have focused on its veins and fractures (Hrabovszki et al. 2017, 2020, 2022; 
Tóth et al. 2020, 2022a, b). Four distinct vein generations have been identified: straight 
veins, veins with wall rock inclusions, breccia-like veins, and sigmoidal shaped en-échelon 
veins. These are primarily filled by calcite while small amounts of anhydrite, barite, celes-
tine, etc. are also present as vein-filling phases (Hrabovszki et al. 2020, 2022).

DFN modeling and hydrogeological evaluation of the simulated fracture network of 
BAF-2 revealed three zones whose hydrogeological properties deviate from the average of 
the claystone body (Tóth et al. 2022a). BAF-2 is more than 900 m deep (Fig. 2), and the first 
anomalous zone is located in the upper 100 m, where the porosity decreases faster than the 
permeability. This may be because the BCF was exposed at the surface for a considerable 
amount of time (Konrád et al. 2015), and weathering changed the hydrogeological char-
acteristics in the uppermost part. Several features of the upper 400-m and bottom 400-m 
sections of BAF-2 differ considerably. The upper half of BAF-2 has a significantly higher 
P10 than the lower half, and the geophysical logs also differ (Tóth et al. 2022a). The average 
P10 is 8.7 m − 1 in the upper 400 m and 4.6 m − 1 in the lower 400 m (Fig. 3). Considering 
the tectonic history of the area, the contact between the two regimes can be interpreted as a 
large-scale structural boundary that is probably a reverse fault zone. The border of the two 
sections also behaves as an independent hydraulic unit. The third zone, which differs from 
the average hydrogeological characteristics, is at a depth of about 700 m, and it displays a 
unique behavior attributed to fine sandstone layers that are common at depths below 758 m 
or another large-scale tectonic structure could also influence the hydrogeological behavior 
of this section (Tóth et al. 2022a).

3.1 Fracture system of the BAF-4 well

BAF-4 is a 900-m-deep borehole that was also considered in the present study. Below the 
BCF, BAF-4 unexpectedly ran into the Gyűrűfű Formation and drilled into it for about 
50 m (Fig. 2). The same method presented by Tóth el al. (2022a) was used to characterize 
the fracture network of BAF-4. The P10 values of the two boreholes, which are approxi-
mately 3.5 km apart (Fig. 1), differ significantly. The two key 400-m-thick sections defined 
in BAF-2 (Tóth et al. 2022a; Fig. 3a) cannot be identified in BAF-4 (Fig. 3b). In BAF-4, P10 
increased continuously with increasing depth from 0 to 900 m without any sudden changes. 
According to BHTV data, the average fracture density is 3.6 fractures per meter.
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4 Results and discussion

4.1 Multiple regression analysis between the fracture density and the geophysical 
log data

This study examined the relationship between geophysical log data and fracture density of 
the rock body by using the software IBM SPSS Statistics, version 28.0. Geophysical well 
log data from the top section of BAF-4 (220–530 m) were used to train the multiple linear 
regression model. This section has a lithology typical of the BCF and all of the required 
geophysical log data. The lower part of BAF-4 (530–840 m) was used to validate the model. 
Then, the regression function computed in BAF-4 was used to estimate P10 of BAF-2, 
which was then compared to the measured data. The P10 values for both boreholes were 
calculated by using BHTV data. The independent variables comprised a standard well log 
set of the neutron porosity, short-spaced density, natural gamma, and resistivity (e10, e40, 

Fig. 2 Lithologies of BAF–2 and 
BAF–4. Legend: (1) quaternary 
sediments; (2) claystone with 
siltstone beds; (3) claystone with 
siltstone and sandstone beds; (4) 
reductive claystone; (5) rhyolite
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and ll3) (Figs. 4 and 5). Conventional log data and the BHTV measurements were carried 
out by Geo–Log Ltd. There were short sections for which geophysical log data were not 
available due to technical reasons. These sections were not included in the study. The verti-
cal resolution of the logs was 10 cm. Each log was averaged into 10-m sections with a 5-m 
overlap (i.e., moving window). These were then compared with the observed P10 values, 
which were also calculated for 10-m-wide sections from the BHTV data.

Fig. 4 Geophysical logs of BAF–4. Each log is averaged into 10 m wide sections with a 5 m overlap. e10, 
e40 and ll3: resistivity logs, GR: natural gamma ray, Npor: neutron porosity, Des: density log measured 
with short-spaced detector. Discontinuities of the logs are caused by a lack of data

 

Fig. 3 Fracture density in (a) 
BAF–2 and (b) BAF–4
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4.2 Results of the multiple linear regression analysis

A multiple linear regression analysis was run to predict P10 from well log data. The normal 
distribution of the variables was checked, a log transformation of the natural gamma ray and 
the density values were required. There was linearity as shown by partial regression plots. 
With the backward stepwise regression method all predictors were entered (e10, e40, ll3, 
lg(GR), lg(Des), Npor, Table 1.). The elimination criterion was that variables having partial 
F p-values greater or equal to 0.100 were eliminated from the model (Table 1).

Independence of residuals was identified, as assessed by a Durbin-Watson statistic of 
1.426. All three variables of the model are statistically significant to the prediction, p < .001 
based on t-statistic (Table 3.) Multicollinearity was assessed by tolerance values greater than 
0.1 (VIF smaller than 10; Franke, 2010). The backward elimination process found two types 
of resistance logs to be significant, between which there may be a correlation (Table 3.). 
The residuals have normal distribution, with a standard deviation close to 1, MEA = 0.092 
(Fig. 6).

Table 1 Workflow of the multiple linear regression model with backward elimination method, where a vari-
ables was removed from the model if partial F p-value was greater or equal to 0.100. During the backward 
regression analysis ll3, lg(GR) and Npor were removed from the model
Variables Entered/Removed
Model Variables Entered Variables Removed Method
1 lg(GR), lg(Des), 

Npor, e40, ll3, e10
- Enter

2 - ll3 Backward (criterion: Probabil-
ity of F-to-remove > = 0.100).

3 - lg(GR) Backward (criterion: Probabil-
ity of F-to-remove > = 0.100).

4 - Npor Backward (criterion: Probabil-
ity of F-to-remove > = 0.100).

Fig. 5 Geophysical logs of the BAF–2. Each log is averaged into 10 m wide sections with a 5 m overlap. 
e10, e40 and ll3: resistivity logs, GR: natural gamma ray, Npor: neutron porosity, Des: density log mea-
sured with short-spaced detector. Discontinuities of the logs are caused by a lack of data
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The multiple regression model statistically significantly predicted P10, F(3, 47) = 51.511, 
p < .001, with R2 = 0.767 and Se = 0.668 based on e10, e40 and density data in the upper part 
of the BAF-4 well (Table 4.). The best fitting regression function was as follows:

 P10 = 76.174 + 0.024*e10 − 0.018*e40 − 173.499*lg (Des) (4)

Table 2 Summary of the models of the backward multiple regression analysis with the R2, standard error of 
each model and the Durbin-Watson statistics
Model Summarye

Model R2 Std. Error of the 
Estimate

Durbin-
Watson

1 0.784 0.66463
2 0.784 0.65724
3 0.779 0.65690
4 0.767 0.66829 1.426
e. Dependent Variable: P10
a. Predictors: (Constant). lg(GR), lg(Des), Npor, e40, LL3, e10
b. Predictors: (Constant). lg(GR), lg(Des), Npor, e40, e10
c. Predictors: (Constant). lg(Des), Npor, e40, e10
d. Predictors: (Constant). lg(Des), e40, e10

Table 3 Coefficients of the multiple regression analysis of model 4 with the collinearity and t-statistics
Coefficientsa

Model Unstandardized Coefficients t Sig. Collinearity Statistics
β Std. Error Tolerance VIF

4 (Constant) 76.174 13.285 5.734 < .001
lg(Des) -173.499 33.095 -5.242 < .001 .321 3.114
e10 .024 .006 3.997 < .001 .098 10.178
e40 − .018 .002 -7.287 < .001 .170 5.888

a. Dependent Variable: P10

Fig. 6 Distribution of the residu-
als with a mean of -0.01 and a 
standard deviation of 0.966
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where P10 denotes the fracture density (m− 1), e10 and e40 indicate the resistivity [Ωm], Des 
is the density [g/cm3].

In the upper section of BAF-4 (220–530 m), a good fit was obtained by the regression 
analysis with R2 = 0.767, (Figs. 7a and 8a). The residuals are the difference between the 
observed value and value predicted by the model. A slight correlation was obtained between 
the residuals and P10, and the residuals increased slightly with P10 (Fig. 7b).

In the lower section of BAF-4 (530–850 m), fracture density can be predicted using the 
same function with good accuracy, exept for the section between 750 and 780 m, where 
the predicted and measured P10 values differ noticeably (Fig. 8b). In this section, the pre-
dicted P10 values underestimated the measured P10. Correlation coefficient between 530 
and 750 m is R2 = 0.630, Se = 1.623, MEA = 1.024.

Table 4 ANOVA (analysis of variance) table of the multiple linear regression
ANOVAa

Model Sum of Squares df Mean Square F Sig.
4 Regression 69.016 3 23.005 51.511 < .001b

Residual 20.990 47 0.447
Total 90.006 50

a. Dependent Variable: P10
b. Predictors: (Constant), lg(DES), e40, e10

Fig. 7 Linear regression analysis: 
observed P10 values plotted 
against (a) predicted P10 in 
BAF–4 at 220–530 m and (b) re-
siduals (i.e., difference between 
the data points and regression 
line)
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The regression model function computed on the upper segment of BAF-4 was applied 
to predict P10 along BAF-2 (Fig. 9). The correlation between the measured and predicted 
P10 values was strong with R2 = 0.701, Se = 2.239, MEA = 2.533. The predicted P10 values 
closely matched the dichotomy of the borehole. However, P10 was slightly underestimated 
in the upper 400 m, which was highly fractured. Below 400 m, in the lower half of the 
well, the prediction was accurate including the section at 400–600 m, which was the least 
fragmented section of the well (Fig. 9). At 700–860 m, P10 was underestimated. In some 
extreme cases (e.g., at 720, 780, and 820 m), the model function predicted a negative P10 
value because it underestimated the very low measured P10 value. Obviously, a negative 
fracture density is not possible.

4.3 Limitations and implications

Results suggest that resistivity and density were the primary influencing factors of P10. The 
resistivity is related to formation fluid saturation and depends on the rock type, porosity, 
type, composition, and volume of fluid (Archie 1942). Resistivity measurements are usu-
ally used to identify permeable sections and estimate the porosity. Because resistivity logs 
are available to locate permeable intervals in an essentially impermeable host rock, they 
are suitable for determining fractured zones. The neutron porosity and density also showed 
correlations in the partial regression plot with P10. Because open fractures may increase 
porosity and decrease bulk density, these logs may also be used to identify fractured zones. 
Natural gamma-ray logs are used to detect gamma radiation, which is linked to the amount 
of clay in the host rock. This lithological factor may affect the rheology of the claystone 
through the grain size and clay content, which can influence the formation and propaga-
tion of fractures (Eisenstadt and Sims 2005). Based on the multiple regression analysis of 

Fig. 8 Predicted and measured 
P10 values with the depth of 
BAF-4: (a) in the training sec-
tion at 230–530 m and (b) in the 
predicted section at 530–850 m. 
Black line: measured P10, 
orange line: predicted P10, gray 
are: section with lower predic-
tion accuracy
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the BCF, neutron porosity and gamma radiation did not influence significantly the fracture 
density in the formation.

The determined correlation coefficients were significantly influenced by the lithology 
of the section under study. Because the rock body of the BCF showed little variation in its 
lithology (Halász 2009; Halász and Halmai 2015), P10 can be predicted using the above 
multiple linear regression function for much of the formation. However, the estimated and 
measured P10 values diverged more than usual at several sections in the analyzed bore-
holes: at 750–780 m in BAF-4 and at 700–860 m in BAF-2.

In BAF-4, the model function underestimated P10 at 750–780 m, at this section, the 
BHTV detected more discontinuities than predicted. Core images (Fig. 10) show that this 
interval contains substantially thinner layers than typical for the BCF. The BHTV registers 
all planar objects in the borehole; therefore, the raw data used to calculate P10 included both 
the bedding planes and fractures. The P10 prediction based on the geophysical log data was 
less accurate for this section because these beds do not affect the geophysical characteristics 
of the rock body. The difference between the observed and estimated values shows that in 
the laminated zones of the claystone, the actual P10 value may be significantly lower than 
the calculated value from considering all discontinuities.

Fig. 9 Predicted (orange line) 
and measured (black line) P10 
values with the depth in BAF-2
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Since the function of the linear regression model was trained by using the upper portion 
(220–530 m) of BAF-4, the prediction was less accurate in lower parts of the BCF, which 
had a larger average grain size. When the regression model function was applied to BAF-2, 
it showed a similar behaviour. Here, the slight decrease in accuracy toward the bedding may 
be attributed to a gradual change in the lithology (i.e., coarsening grain size). P10 was most 
significantly underestimated below 700 m, where the fine sandstone layers were common. 
For accurate prediction of the sandy parts, another regression analysis should be performed 
on this section. However, it was not possible to validate the calculation on another sec-
tion with fine sandstone layers among the available boreholes of the BCF. In addition, the 
sandy part of the BCF is a less important concern regarding the choice of the repository site 
because the repository should be built in a part with the best sealing properties.

The above results suggest that the prediction accuracy of the regression analysis was pri-
marily affected by the lithology of the rock body. For intervals of typical lithology and con-
sequently representative well log data, P10 can be predicted with a high degree of accuracy. 
However, special attention must be paid to intervals with atypical well log data suggesting 
unique changes in the lithology, such as a larger than average grain size or laminar layers.

5 Conclusion

In this study, the relationship between P10 and different geophysical log data was examined 
for the BCF, which is a potential host for a high-level nuclear waste repository. Two, ~900 
m deep boreholes provided a unique opportunity to explore the fracture network charac-
teristics of the BCF. Regression analysis showed a strong linear relationship between P10 
and selected geophysical log data. The main influencing factors for P10 were the resistivity 
(e10, e40) and density. The coefficients of the regression model function were trained on 
the upper half of BAF-4. The function was then used to predict P10 with high accuracy for 
other sections typical of the BCF.

Fig. 10 (a) Core sample of BAF–4 between 778.37 and 778.52 m. Thin-layered claystone was detected 
by the BHTV. Blue arrow: downward direction. (b) BHTV image from the same depth, thin layers of the 
claystone can be detected on the BHTV image on the right
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In some sections where the lithological properties were atypical, the prediction was less 
accurate. The lower part of the BCF contains fine sandstone layers, and this change in grain 
size may have influenced the geophysical properties. In these sandy sections, the function 
underestimated P10.

The established linear regression model function for the BCF may be used to determine 
the fracture density in older boreholes that intersect the formation where BHTV log data 
are not available. By involving more boreholes, the presented approach may provide more 
information about the spatial extension of communicating fracture clusters and large-scale 
structural elements such as fault zones.
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