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Abstract: Recently, morphological impairments have been detected in the brain of a triple-hit rat
schizophrenia model (Wisket), and delayed depressive effects of caffeine treatment in both control and
Wisket animals have also been shown. The aims of this study were to determine the basal and caffeine-
induced acute (30 min) and delayed (24 h) changes in the cerebral 18fluorodeoxyglucose (18F-FDG)
uptake by positron emission tomography (PET) in control and Wisket rats. No significant differences
were identified in the basal whole-brain metabolism between the two groups, and the metabolism
was not modified acutely by a single intraperitoneal caffeine (20 mg/kg) injection in either group.
However, one day after caffeine administration, significantly enhanced 18F-FDG uptake was detected
in the whole brain and the investigated areas (hippocampus, striatum, thalamus, and hypothalamus)
in the control group. Although the Wisket animals showed only moderate enhancements in the
18F-FDG uptake, significantly lower brain metabolism was observed in this group than in the caffeine-
treated control group. This study highlights that the basal brain metabolism of Wisket animals
was similar to control rats, and that was not influenced acutely by single caffeine treatment at the
whole-brain level. Nevertheless, the distinct delayed responsiveness to this psychostimulant in
Wisket model rats suggests impaired control of the cerebral metabolism.

Keywords: brain metabolism; caffeine; multiple hit; PET; schizophrenia

1. Introduction

Schizophrenia is a devastating neuropsychiatric disease with very complex symptoms
and signs including positive ones, such as delusion and hallucination, negative ones,
for example, lack of motivation, and cognitive impairments, such as decreased learning
and memory capacity. Positron emission tomography (PET) is a non-invasive technique
that detects the tissue distribution of specific labeled tracers. Fluorinated glucose analog
18fluorodeoxyglucose (18F-FDG) is one of the most used tracers in clinical diagnostics, and
it can accumulate in metabolically active tissues in an activity-dependent manner.

Conflicting results have been reported on altered metabolism in various brain struc-
tures in schizophrenia patients by PET studies [1–5]. While preclinical models cannot repre-
sent the full picture of schizophrenia (e.g., most of the positive symptoms of schizophrenia
request verbal report to be measured properly), preclinical studies also suggest changes in
brain metabolism by using various single-hit animal models of schizophrenia, including
maternal immune activation, neonatal hippocampal lesion, the administration of NMDA

Int. J. Mol. Sci. 2022, 23, 8186. https://doi.org/10.3390/ijms23158186 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23158186
https://doi.org/10.3390/ijms23158186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6025-4577
https://orcid.org/0000-0002-3822-9068
https://orcid.org/0000-0002-0185-2155
https://orcid.org/0000-0001-6456-6212
https://doi.org/10.3390/ijms23158186
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23158186?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 8186 2 of 12

receptor antagonists, mutant mice of D2 dopamine or metabotropic glutamate 5 (mGluR5)
receptors, or microtubule-associated protein (STOP: stable tubule only peptide) [6–13].

Since the etiology of schizophrenia involves the interaction of genetic, developmen-
tal, and environmental factors, multiple-hit translational models might provide animals
with a high level of validities (constructive, face, and predictive) with a wider range of
schizophrenia-related signs. Therefore, a triple-hit rat model named Wisket was devel-
oped in our laboratory by combining environmental (post-weaning social isolation for
4 weeks), pharmacological (NMDA receptor antagonist, ketamine, daily treatment in-
traperitoneally: 30 mg/kg at the age of 4 weeks), and genetic (selective breeding based
on behavioral phenotype (pain sensitivity, cognitive function, and sensory gating tests)
for more than 40 generations) manipulations [14,15]. The Wisket animals showed a wide
range of behavioral disturbances including impaired pain sensitivity, sensory gating, and
cognition [16–19]. Alterations in opioid, cannabinoid, oxytocin, and dopamine receptor
(D2R and D1R) signaling and/or expression together with electroencephalography changes
were also detected [14,18,20–23]. Furthermore, a histological study revealed significant
decreases in the frontal cortical thickness and the hippocampal area, moderate increases
in the lateral ventricles, and cell disarray of the CA3 subfield of the hippocampus of the
Wisket animals [24]. Since volumetric analyses cannot reliably predict the changes in the
metabolic pattern [2], the first goal of the study was to characterize the metabolic activity in
the whole brain and in various brain areas (cingulate cortex, hippocampus, striatum, amyg-
dala, thalamus, and hypothalamus) related to the cognitive functions of control animals
and Wisket animals by 18F-FDG PET.

Caffeine is the most widely consumed psychostimulant worldwide, and it can act
primarily as a non-selective adenosine A1/A2A receptor antagonist and may lead to reduced
drowsiness and enhanced locomotor activity [25,26]. Besides the disrupted dopaminergic
and glutamatergic neurotransmissions, adenosine dysfunction may also contribute to the
etiology of schizophrenia [27]. Increased coffee intake is well documented in patients, but
the effects seem to be controversial [28–30]. Caffeine may evoke psychosis; however, it can
also improve negative symptoms and/or compensate for the antipsychotic medication-
induced side effects [29,31]. Our recent study demonstrated that caffeine treatment acutely
blunted the cognitive impairments in Wisket animals, while it produced delayed behavioral
depression in both the control and the Wisket animals [19]. Several human as well as
animal studies investigated the acute effects of caffeine administration on the healthy
brain metabolism [32–37]. Nevertheless, these effects have not yet been investigated in
schizophrenic patients or preclinical models. Therefore, our further aims were to reveal the
acute and delayed effects of a single caffeine treatment on brain 18F-FDG uptake of control
and Wisket animals (Figure 1). The time paradigms of the experiments were the same as in
our recently conducted behavioral study [19].
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tracer was administered intravenously (iv.), and saline and caffeine were injected intraperitoneally
(ip.). The PET was performed 30 min after tracer injection for 30 min.
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2. Results

Regarding the body weight, no significant differences were found between the Wistar
and Wisket groups during both the acute (435 ± 14.1 vs. 417 ± 16.7 g, respectively) and the
delayed (438 ± 11.3 vs. 433 ± 7.8 g, respectively) series.

2.1. Whole-Brain Metabolic Activity

Analysis of the whole-brain metabolism 30 min after caffeine administration (Series 1:
acute effect, Figure 1) showed no significant effects on either the treatment or the control
groups (Figure 2). In contrast to the acute paradigm, factorial analysis of the whole-brain
data one day after the caffeine treatment (Series 2: delayed effect) showed significant effects
of the treatment (F(1,20) = 12.29; p < 0.005) and close to significant effects of treatment and
group interactions (F(1,20) = 3.65; p = 0.07; Figure 2). The post hoc comparison revealed that
the basal activation measured after saline treatment (see section Experimental Paradigm,
Series 1: Acute effects, and Figure 1) was similar in the two groups. Caffeine administration
resulted in a significant enhancement of glucose utilization in the Wistar group, but only a
limited increase was observed in the Wisket group; therefore, the psychostimulant treatment
exhibited a delayed and significant difference between the groups.

Int. J. Mol. Sci. 2022, 23, 8186 3 of 12 
 

 

2. Results 
Regarding the body weight, no significant differences were found between the 

Wistar and Wisket groups during both the acute (435 ± 14.1 vs. 417 ± 16.7 g, respectively) 
and the delayed (438 ± 11.3 vs. 433 ± 7.8 g, respectively) series. 

2.1. Whole-Brain Metabolic Activity 
Analysis of the whole-brain metabolism 30 min after caffeine administration (Series 

1: acute effect, Figure 1) showed no significant effects on either the treatment or the control 
groups (Figure 2). In contrast to the acute paradigm, factorial analysis of the whole-brain 
data one day after the caffeine treatment (Series 2: delayed effect) showed significant ef-
fects of the treatment (F(1,20) = 12.29; p < 0.005) and close to significant effects of treatment 
and group interactions (F(1,20) = 3.65; p = 0.07; Figure 2). The post hoc comparison revealed 
that the basal activation measured after saline treatment (see section Experimental Para-
digm, Series 1: Acute effects, and Figure 1) was similar in the two groups. Caffeine admin-
istration resulted in a significant enhancement of glucose utilization in the Wistar group, 
but only a limited increase was observed in the Wisket group; therefore, the psychostim-
ulant treatment exhibited a delayed and significant difference between the groups. 

Since the delayed caffeine effect was significant at the whole-brain level, the meta-
bolic rates of four brain areas were also analyzed in Series 2. 

 

 

acute saline 
control 

acute 
saline 
Wisket 

acute 
caffeine 
control 

acute 
caffeine 
Wisket 

delayed 
saline 

control 

delayed 
saline 
Wisket 

delayed 
caffeine 
control 

delayed 
caffeine 
Wisket 
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Figure 2. The mean 18F-FDG PET SUV with standard error bars (with their representative horizontal
PET images and SUV scale) in the whole brain of control and Wisket animals 30 min or one day after
saline or caffeine administration. Symbols denote significant differences between the two groups (*)
and compared to saline (##); p < 0.05 or p < 0.01 with one or two symbols, respectively.

Since the delayed caffeine effect was significant at the whole-brain level, the metabolic
rates of four brain areas were also analyzed in Series 2.
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2.2. Hippocampus

The factorial analysis of the hippocampal activity showed a significant effect of the
group (F(1,20) = 4.59; p < 0.05) and a close to significant effect of the treatment (F(1,20) = 3.55;
p = 0.07; Figure 3a). The post hoc comparison revealed that the basal metabolic activity of
this area was similar in the two groups. Increased hippocampal metabolism was observed
after caffeine treatment, primarily in the control animals (p = 0.08), and thus, a close to
significant (p = 0.056) difference was observed between the two groups.
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Figure 3. The mean 18F-FDG PET SUV with standard error bars in the hippocampus (a) and striatum
(b) in control and Wisket animals with saline/caffeine applied one day before PET scan. Symbols
denote significant differences between the two groups (**) compared to saline (##); p < 0.01 with
two symbols.

2.3. Striatum

The factorial analysis of the striatal activity showed significant effects of the group
(F(1,20) = 4.90; p < 0.05), treatment (F(1,20) = 8.67; p < 0.01) and close to significant group
and treatment interactions (F(1,20) = 3.95; p = 0.061; Figure 3b). The basal SUV values
of this area were comparable between the groups. As caffeine administration caused
significantly enhanced metabolism only in the Wistar group, a significant difference was
detected between the two groups.

2.4. Thalamus

The factorial analysis of thalamic metabolism showed significant effects of the group
(F(1,20) = 5.35; p < 0.05) and treatment (F(1,20) = 11.74; p < 0.005), and close to significant group
and treatment interactions (F(1,20) = 3.19; p = 0.089; Figure 4a). The post hoc comparison
disclosed that the baseline metabolism of this area did not differ by group. Caffeine
treatment produced significantly augmented 18F-FDG uptake in the Wistar animals but not
in the Wisket animals, hence a significant difference was detected by group one day after
caffeine administration.

2.5. Hypothalamus

The factorial analysis of the hypothalamic activity showed significant effects by treat-
ment (F(1,20) = 5.62; p < 0.05) and close to significant effects by group (F(1,20) = 4.24; p = 0.053;
Figure 4b). The basal metabolism of this area was similar in the two groups. Caffeine ad-
ministration caused significantly enhanced metabolism in the Wistar, but only a moderate
increase in the Wisket group; therefore, significant differences emerged between them in
this circumstance.
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3. Discussion

This study investigated the brain metabolism of control and Wisket animals after
the administration of saline or caffeine. The main findings of this study are threefold:
the basal brain metabolism of Wisket animals corresponds to the control (1); that was
not influenced acutely by single caffeine administration (2); however, the Wisket animals
showed divergent delayed responses to caffeine administration compared to the control
rats (3).

Several studies support the impaired brain metabolism in schizophrenia, which might
be related to widespread cerebral dysfunction and neurochemical alterations [1–3,38]. 18F-
FDG PET assessments of patients have reported primarily decreased metabolic rates in the
cortical regions (especially in relation to negative symptoms), amygdala, and hypothalamus,
while inconsistent results have been obtained in the basal ganglia, thalamus, and hippocam-
pus [1–3,39,40]. Patients with predominantly negative symptoms had greater metabolic
abnormalities compared to patients with primarily positive symptoms and healthy subjects,
suggesting that the degree of impairment may depend on the type of schizophrenia [41].

Using animal models could exclude the limitations of clinical studies that result in
conflicting results, such as heterogeneous symptom profile, differences in medication status,
and disease history. While our recent morphometric study on Wisket rats proved moder-
ately decreased brain volume, it was not accompanied by altered metabolic brain activity at
the whole-brain level and in the investigated cerebral structures [24]. Regarding the earlier
preclinical studies of brain metabolism in single-hit schizophrenia models, inconsistent
data are available [6–12,42]. The in vitro autoradiography studies have found increased
glucose metabolism in several brain structures (e.g., ventral tegmental area, substantia
nigra, and hypothalamus) but not in the hippocampus, some cortical areas or thalamus
in STOP protein mutant mice, or after a neonatal hippocampal lesion [9,10]. Regarding
the in vivo PET studies, the maternal immune stimulation did not influence the glucose
uptake in the total brain, but the glucose uptake was decreased in the ventral hippocampus
and prefrontal cortex, whereas it was enhanced in some subcortical nuclei [7,12]. Chronic
treatment with an NMDA receptor antagonist caused decreased metabolism in all the
detected brain regions (caudate putamen, medial prefrontal cortex, cingulate cortex, and
hippocampus) [8]. In contrast, mGluR5 mutant mice showed no differences in the base-
line SUV values in the investigated brain areas (cortex, hippocampus, thalamus striatum,
cerebellum, and the whole brain) compared to controls [11]. The selective dopamine D2
receptor deletion from parvalbumin positive interneurons caused decreased metabolism in
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the somatosensory/insular cortex and lateral hypothalamic areas, but augmented glucose
utilization was detected in the basolateral amygdala [6]. Additionally, post-weaning isola-
tion rearing resulted in a reduced metabolic rate in the hippocampus and thalamus [42].
Thus, parts of these studies have achieved agreement with our results obtained in Wisket
animals, whereas the inconsistent results might be due to the differences in the animal
models and/or the experimental set up [7,17,43,44]. In summary, our results suggest that
the impaired brain structure was not accompanied by altered brain metabolism in this
triple-hit schizophrenia-like rat model [24].

Regarding the effects of caffeine on the brain metabolism, it had no significant influence
shortly after its administration in either group, while it produced a delayed (24 h later) and
significant (or close to significant) increase in the investigated areas in the control groups
compared to the baseline values. In addition, only a moderate increase was observed in the
Wisket animals, leading to a high level of significant difference between the two groups,
suggesting distinct delayed responsiveness to this psychostimulant in Wisket model rats.

It is well accepted that the widespread effects of caffeine are related primarily to the
blockade of adenosine receptors (A1 and A2), while other mechanisms (phosphodiesterase
inhibition, calcium mobilization, interaction with benzodiazepine, and/or prostaglandin
receptors) are only slightly involved [25]. There is considerable evidence to suggest that
adenosine decreases the firing of central neurons; furthermore, the adenosinergic system is
linked to motivation and cognitive processes by influencing the dopaminergic, glutamater-
gic, serotoninergic, and cholinergic neurotransmissions [25,36,45–48]. The activation of
adenosine A1 receptors, which are present in almost all brain areas, results in a pronounced
decrease in transmitter release in several brain areas related to behavioral control [25].
Adenosine A2 receptors are concentrated in the dopamine-rich regions of the brain (stria-
tum, nucleus accumbens, and tuberculum olfactorium) but they can also be detected in the
hippocampus and cortex. Although most of the schizophrenia symptoms are primarily
due to disturbed dopaminergic and glutamatergic neurotransmissions, alterations in the
adenosinergic systems have also been shown [27,47]. Adenosine A1 and A2A receptor
agonists reverse both hyperdopaminergia and NMDA receptor hypofunction-related symp-
toms, while caffeine may worsen the positive symptoms of schizophrenia patients [29].
However, the data also suggest that caffeine may produce procognitive effects by inhibiting
these receptors, even in schizophrenia or in preclinical models [47,49–52], but the results
are inconsistent [53–56].

The effects of caffeine on cerebral metabolic activity have been primarily investigated
with the help of functional magnetic resonance imaging techniques in human participants
with controversial results [33,57–59], which might be due to the different techniques applied,
the dietary caffeine consumption pattern, and/or the caffeine abstinence periods. To
understand the effect of caffeine on brain metabolic profiles, caffeine-naive preclinical
animal models could be more suitable. The in vitro autoradiography rodent studies have
found caffeine-induced increases in the energy metabolism in several brain structures,
including limbic and cortical areas, which may reflect its general stimulatory role and
positive effects on alertness [25,34–36]. Only one PET study has investigated the dose-
dependent acute cerebral metabolic responses to caffeine 10 min after 18F-FDG injection
for 60 min [37]. While the lower dose of caffeine (2.5 mg/kg) had limited effects on the
brain metabolism in any investigated brain structures; enhanced metabolism was detected
in the striatum, hippocampus, and thalamus, but not in the whole brain, amygdala, or
hypothalamus, after 40 mg/kg dose of caffeine. The differences between the results of the
above-mentioned study and our data might be due to, at least partially, the differences
in the applied dose of caffeine and the experimental paradigm. Based on our present
findings, the acute enhancement of locomotor and exploratory activities in control rats
and the improved behavior of the Wisket rats did not depend on enhanced whole-brain
energy metabolism in response to caffeine [19]. As caffeine causes acute vasoconstriction
leading to reduced cerebral blood flow, it might have blunted the direct metabolic effects of
adenosine receptor inhibition in in vivo circumstances at the total brain level [60].
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Regarding the delayed effects of caffeine, in spite of the significantly decreased motor
activity and learning ability in both groups one day after caffeine administration, caffeine
caused significant enhancement in brain metabolism only in the control animals, suggesting
perturbed delayed metabolic responses to this psychostimulant in our model rats [19]. It
is very difficult to explain the controversies between the delayed effects of caffeine on the
behavioral activity (decreased) and glucose utilization (enhanced) of the control animals.
Since even the withdrawal from chronic caffeine consumption did not cause persistent
changes in the availability of A1 receptors, we may exclude that the enhanced brain
metabolism was due to changes in their number [61]. However, enhanced binding potency
of adenosine receptors was observed after the cessation of repeated caffeine treatment;
therefore, an enhancement in the A2B activation might stimulate the glucose uptake [62,63].
Another possible explanation might be that the acute vasoconstrictor effects of caffeine
disappeared the next day, and thus the activation of the brain structures became uncovered.
Furthermore, astrocytes also contribute significantly to the 18F-FDG signal [64]; therefore,
the delayed enhancement in the glucose uptake might be due to the sum of the enhanced
uptake by different cells in the brain after the relief of the vasoconstriction, in spite of
the behavioral depression. The effects of anesthesia and/or interactions with caffeine
should also be considered [37]. However, further studies are required to characterize the
delayed effects of psychostimulants at behavioral and cellular levels. Caffeine-induced
increases in dopamine levels in several reward centers may have increased neuronal activity,
as supported by findings from a previous study using autoradiography [36]. Reduced
dopamine D2 receptor function detected in the Wisket animals might also be associated
with a reduced metabolic response to caffeine [22,65]. Therefore, the diminished D2 receptor
function of Wistar rats may result in poor metabolic adaptation, as it has also been reported
in schizophrenia patients [66]. In summary, the delayed stimulatory effects of caffeine
on the brain metabolism in the control group might be due to changes in the adenosine
receptor functions at neural, glial and/or vascular levels, which were disturbed in the
Wisket animals.

Some limitations should be considered in the interpretation of our results. The lack
of precise anatomical localization with PET is a recognized problem [41]. It is difficult to
determine detailed structures for the image; therefore, in the present study, we outlined
ROIs based on 3D coordinates for an atlas of the rat brain, but our lack of magnetic
resonance imaging for brain structures still poses a limit to this study. For that reason,
to minimize the error of the evaluations, only data from relatively large structures were
involved in this study.

Furthermore, the group size seems small, but several studies used similar number of
animals [37,42,67], and in both series of experiments the saline-treated control and Wisket
animals showed similar values, suggesting a good reliability of the obtained parameters.

Importantly, in agreement with the 3Rs (Replacement, Reduction, and Reinforcement)
of animal research, we did not involve saline-treated control groups, since PET had a good
level of test–retest stability, and the order of different interventions did not influence the
brain glucose uptake [6,8,11,68,69].

4. Materials and Methods
4.1. Experimental Paradigm

Male Wistar (control) and Wisket rats aged between 4 and 5 months were involved in
the study. The Hungarian Ethics Committee for Animal Research (RN: XIV/1248/2018 in
accordance with EU Directive 2010/63EU) approved the experiments. The animals were
group-housed, 3 animals per cage (except during the experimental days, when they were
kept individually up to waking after PET scanning), and kept with a 12 h light/dark cycle
under controlled temperature (22 ± 1 ◦C) and humidity (55 ± 10%).

Standard semi-synthetic diet SDS VRF-1 (Animalab Ltd., Vác, Hungary) and wa-
ter were available ad libitum, except during the experiments. Based on earlier studies,
PET scans were carried out on each animal twice with 14 days between the experiments,
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whereby each animal acted as its own control [6,8,11,69]. The rats were injected with
11.3 ± 0.8 MBq of 18F-FDG in 100 µL saline via the lateral tail vein and/or saline or caffeine
(20 mg/kg; 4 mL/kg intraperitoneally; Sigma-Aldrich Ltd., Budapest, Hungary). For
the injections the animals were anesthetized for a few minutes with 3% Forane using a
dedicated small animal anesthesia device. After arousal (within 5 min) the animals were
free to move in their cage without behavioral analysis until the beginning of the PET scan.
The experiments were performed between 8:00 AM and 12:00 AM to exclude the diurnal
variation of brain metabolism. Laboratory animals were kept and treated in compliance
with all applicable sections of the Hungarian Laws and regulations of the European Union
(permission numbers: III/6-KÁT/2015; 10/2019/DEMÁB).

Series 1 (Acute effects)
In this series (n = 5/group), on Week 1, the intraperitoneal saline and intravenous

tracer injections were administered consecutively (Figure 1). During the 30 min period of
tracer uptake, rats were unrestrained and free to move in their cage, and then the animals
were scanned for 30 min, which served as a baseline (see below). Two weeks later, the
paradigm was repeated with an intraperitoneal caffeine injection (instead of saline) to
determine its acute effect on the metabolic activity. In this trial, a 30 min delay was applied
for the development of the caffeine effects and tracer uptake, since this time delay caused
significant stimulation in behavioral activity in our recent study [19].

Series 2 (Delayed effects)
In this series (n = 6 rats/group), the intraperitoneal saline (on Week 1) and caffeine

(on Week 3) treatments were applied one day before the tracer administration and the
scanning procedure (Figure 1). The time paradigm in this series is the same as in our recent
behavioral study [19].

4.2. In Vivo PET Imaging

Thirty minutes after the intravenous radiotracer injection, PET scans were performed
in the prone position under isoflurane anesthesia using the preclinical MiniPET-II device
(Debrecen, Hungary) [70,71]. The body temperature of the animals was controlled by a
heating pad (ATC 1000, World Precision Instruments, Rancho Cordova, CA, USA), and
they were returned to their home cage, monitored until awake, and given food and water.

Scanner normalization and random correction were applied to the data, and the images
were reconstructed with the standard expectation–maximization (EM) iterative algorithm.
The voxel size was 0.5 × 0.5 × 0.5 mm, and the spatial resolution varied between 1.4 and
2.1 mm from central to 25 mm radial distances. After 3D OSEM-LOR image reconstruction,
volumes of interest (VOIs) were drawn around the examined regions in the transaxial view
using the BrainCAD image analysis software. The regions were selected according to the
Waxholm Rat atlas (https://scalablebrainatlas.incf.org/rat/PLCJB14; accessed on 1 July 2022).
The quantitative 18F-FDG PET accumulation was expressed in standardized uptake values
(SUVs) using the following formula: SUV = [ROI activity (MBq/mL)]/[injected activity
(MBq)/animal weight (g)] (ROI: region of interest). SUV mean values were calculated for the
whole brain, hippocampus, striatum, thalamus, and hypothalamus.

4.3. Statistical Analysis

All data were expressed as means ± S.E.M., and significance was accepted at the
p < 0.05 level. Factorial variance analysis was performed to determine the significance level
of group (control or Wisket) and treatment (saline or caffeine) in both series and in the
SUV values for all the investigated brain regions. When the global test was significant,
the Fisher LSD post hoc test was used for the evaluation of the effects of various factors.
For the statistical analyses, the STATISTICA 13.5.0.14 (TIBCO Software Inc., Palo Alto, CA,
USA) software was used.

https://scalablebrainatlas.incf.org/rat/PLCJB14
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5. Conclusions

To our knowledge, this study is the first one to show functional changes within the
brain in a multiple-hit rat model of schizophrenia. The basal brain metabolism and the
acute and delayed effects of caffeine treatment in Wisket and control (Wistar) animals were
characterized. The schizophrenia model rats did not show impairment in basal cerebral
metabolism. Single caffeine treatment resulted in a delayed increase in cerebral energy
metabolism in different regions of the control rats, whereas a blunted response could be
observed in the Wisket group. Our study also suggests that neuroimaging may help to
elucidate the nature of the effects of different interventions in the cerebral metabolism in
this type of neuropsychiatric disease model.
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Disparate Behavioral and Long-Term Dopaminergic Changes in Control and Schizophrenia-like Wisket Rats. Physiol. Behav. 2021,
236, 113410. [CrossRef]
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