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Abstract: We demonstrate a 100 kHz optical parametric chirped-pulse amplifier delivering 
under 4-cycle (38 fs) pulses at ~3.2 µm with an average power of 15.2 W with a pulse-to-
pulse energy stability <0.7% rms and a single-shot CEP noise of 65 mrad RMS over 8h. This 
source is continuously monitored, by using a fast 100 kHz data acquisition device, and 
presents an extreme stability, in the short and long terms. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

The advent of diode-pumped ytterbium-doped solid-state lasers has revolutionized 
femtosecond technologies [1] and strong-field physics not only because of their compactness 
and power scaling capabilities, but also because of versatile repetition rates and unmatched 
energy stability. The latter results from a combination of multiple favorable factors, either 
linked to the physical properties of ytterbium ions (long lifetime, simple electronic structure, 
relatively large gain bandwidth and small quantum defects) or to the technological aspects 
(compatibility with large set of host materials into fiber, bulk, slab, and thin-disk architectures 
and direct pumping by cost-effective laser diodes), allowing efficient and powerful laser 
amplification at multi-kHz to MHz repetition rates under steady-state pumping conditions. 
This technology, couple to the work on parametric amplification of ultrashort pulses [2], has 
set off the development of high-repetition rate optical parametric chirped-pulse amplifiers 
(OPCPA), especially in the mid-infrared range [3–11] where high repetition rate helps to 
counteract the rather low count rate of strong-field physics experiments such as COLTRIMS 
[12], reaction microscope [13], or conversion yield (X-UV generation [14]). 

Energy stabilities well below the ~1% threshold, both shot-to-shot and long-term, unravel 
the potential of nonlinear optics to broaden bandwidths, shift wavelengths, generate or 
amplify light, without sacrificing the necessary prerequisites of deterministic experimental 
science: reproducibility and control of physical parameters. High-repetition rate sources also 
open the path to statistical analysis of large sets of data, an approach seldom used in strong-
field physics so far because of the insufficient reproducibility of the intensity and/or electric 
field of short pulses. 

In this paper, we exemplify such an approach by demonstrating an Ytterbium-pumped 
100-kHz OPCPA generating few-cycle pulses at ~3.2 µm with a pulse energy of 152-µJ, a 
duration of 40-fs and a Strehl ratio >0.8. Compared to our previous publication [10], the 
output energy/power was increased by a factor >4 while maintaining or improving the other 
optical characteristics. Apart from this power upgrade, we present a complete long-term 
characterization of the output beam: a shot-to-shot energy stability of 0.7% RMS, a pointing 
stability of ~10 µrad RMS, and a carrier-envelope phase (CEP) noise of ~65 mrad over more 
than ~3 billion successive shots (>8h). To date, this is the best recorded non-averaged CEP
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Figure 7 shows an example of the statistical approach. On Fig. 7(a) the relative 
fluctuations of the SC energy are plotted against the relative fluctuations of the pump energy. 
There is no clear correlation between these two data sets. One can still note that the SC 
energy looks clamped toward the highest energy values. This feature can probably be related 
to the self-stabilization regime reported in [21]. Figure 7(b) correlates similarly the 
fluctuations of the output energy versus the pump energy. There is a clear anti-correlation 
with a slope of approximately −4 showing that OPA4 operates in the saturation regime. In 
order to be able to save data for a long-period (around a month on a 32 Gb memory card), 
four parameters are computed and saved every second (i.e. calculated over 100 000 
consecutive shots) for all input channels: the average value, the RMS value, the minimum 
value and the maximum value. Figure 8 compares over 8h the RMS CEP noise (closed-loop) 
with the following data: relative output pulse energy, relative pump energy, OPCPA RMS 
energy noise and pump RMS energy noise. The Spearman's rank correlation (or Spearman's 
rho) coefficients between the RMS CEP and the latter data are, respectively: + 0.48, −0.32, + 
0.46 and −0.33. CEP appears to be mostly correlated to the output pulse energy rather than to 
the pump energy. Interestingly, the CEP noise is not only related to the RMS fluctuations (i.e. 
the best CEP stability is achieved when the system is the most stable) but also to the average 
pulse energy. This phenomenon may be explained by an intensity-phase coupling induced by 
the white-light generation stage of the 2f-to-f interferometer: as described in the section IV of 
[22], the strength of this intensity-phase coupling actually depends on the input energy level. 
This measurement also shows a weaker correlation between the pump energy and CEP noise. 
Beyond the correlation coefficient, a common periodic variation (cycle of 10-15 mn) is 
clearly visible. For the sake of completeness, it has to be mentioned than the abrupt drops of 
the output energy are linked to the start/stop of the cooling unit of the system. 

 

Fig. 8. From top to bottom, long term measurements of: relative OPCPA output energy, 
relative pump energy, RMS OPCPA energy fluctuations, RMS pump energy fluctuations, CEP 
noise (RMS). All data were acquired single-shot at 100 kHz (pump energy, OPCPA energy) or 
10 kHz (CEP). The OPCPA and pump variations are relative to the average value computed 
over 8h. 
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Although the information deduced from Figs. 7 and 8 was predictable, the interest of the 
fast data acquisition device lies in the fact that for each shot, several experimental values can 
be correlated, both shot-to-shot and on the long-term. This is not only useful for 
understanding the physics of this OPCPA system, but also for analyzing the effect of laser 
parameters on scientific results. In the present case, this study tends to show that the stability 
of the CEP is ultimately limited by the stability of white-light generation stage of the 2f-to-f 
device through intensity-phase coupling. To a lesser extent, another contribution, linked to the 
pump energy, can be detected. This feature could also be a signature of an intensity-phase 
coupling but at the SC or DFG level. 

8. Conclusion and prospects 

We have characterized a 100-kHz, 3.2-µm, 15.2-W, 4-cycle OPCPA with an RMS 
energy/power stability < 0.7% and an RMS carrier-envelope phase noise of 65 mrad with no 
drift over eight consecutive hours, which corresponds to almost three billion pulses. We 
demonstrated that a peak intensity of 1015 W/cm2 with a focal spot of 20 µm FWHM is 
reachable, making this source suitable to drive nonlinear strong-field processes like HHG up 
to keV energy level [23]. Coupled to the embedded multi-channel data acquisition device, this 
system is suitable for performing ultra-stable shot-to-shot measurements over a long-term, 
promising data accumulation difficult to reach with other sources demonstrated so far. 
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