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Abstract The homogeneous cosmological models with a
Liouville scalar field are investigated in classical and quan-
tum contexts of Wheeler–DeWitt geometrodynamics. In the
quantum case of quintessence field with potential unbounded
from below and phantom field, the energy density operators
are not essentially self-adjoint, and self-adjoint extensions
contain ambiguities. Therefore the same classical actions
correspond to a family of distinct quantum models. For the
phantom field the energy spectrum happens to be discrete.
The probability conservation and appropriate classical limit
can be achieved with a certain restriction of the functional
class. The appropriately localized wave packets are studied
numerically using the Schrödinger’s norm and a conserved
Mostafazadeh’s norm introduced from techniques of pseudo-
Hermitian quantum mechanics. These norms give a similar
packet evolution that is confronted with analytical classical
solutions.

1 Introduction

Cosmological models with scalar fields have drawn a lot of
attention in the last decades because of investigations on cos-
mological inflation [1] and dark energy [2], but few of them
can be exactly integrated. A universe driven by scalar fields
with an exponential potential is dubbed Liouville cosmology,
which is one of the well-studied integrable models in cosmol-
ogy. The power-law expansion of particular solutions and its
applications are investigated in e.g. [3–5]. The general clas-
sical solutions have been discussed in detail under various
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gauge conditions in e.g. [6,7]. The correspondence between
Jordan and Einstein frame is studied in [8–13], wherein the
Liouville field in the Einstein frame is related to the power-
law potential in Jordan frame through a conformal transfor-
mation combining with a parameter transformation of scalar
field. The exactly solvable models with several Liouville
scalar fields were developed in [14,15]. The appearance of
the Lioville cosmologies from higher-dimensional theories,
in particular superstring theories and M-theory was studied
in [16,17].

General relativity is a theory with constraints, the corre-
sponding Hamiltonian is zero [18–21]. The reason for the
vanishing Hamiltonian is the presence of a non-dynamical
symmetry, namely diffeomorphism invariance; in other
words, the gravitational theory contains redundant degrees
of freedom. In the minisuperspace approximation, the redun-
dancy appears in the form of the lapse function N (t). There-
fore, to solve the dynamics of the model, it is necessary to
introduce a specific gauge condition to eliminate N (t) [6,14].
Traditionally, the lapse function is set to unity, such that the
universe evolves in cosmic time [22]. However one could
eliminate N (t) and avoid an explicit time parametrization
to obtain exact solutions of Einstein’s equation. This fits
well the Wheeler–DeWitt quantum cosmology which does
not involve time.

The cosmological models driven by a scalar field with
a constant potential may serve as examples of the latter
approach [5,21]. In these models, the scalar field is a cyclic
coordinate, hence the conjugate momentum is integral of
motion, and the conservation law can be applied to eliminate
the lapse function N (t), such that the modified Friedman
equation contains only minisuperspace variables. Inspired
by this, we introduce a similar integral of motion in Liou-
ville cosmology of homogeneous and isotropic models [23],
in order to eliminate the redundant degrees of freedom.
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With the help of this integral of motion, the classical Fried-
man equation reduces to a time-independent nonlinear equa-
tion, the solution of which can be derived explicitly and
describes the trajectory in minisuperspace. This method can
also be directly extended to higher dimensional [24,25] and
anisotropic models, such as Bianchi-I cosmology considered
in [12].

The physical meaning of the formal Wheeler–DeWitt
equation and its correspondence with the classical theory
can be derived in three steps. The first one is the selection of
the space of physical wave functions, usually by endowing
proper boundary conditions. In traditional quantum mechan-
ics, crucial properties of the theory depend on the boundary
conditions for wave functions, such as the Hermiticity of
observables [26], the orthogonality of wave functions (e.g.
[26,27]) and the conservation of probability, to name a few.
A similar situation holds in quantum cosmology [21,28], in
which proper boundary conditions have to be specified, such
that the solutions of the Wheeler–DeWitt equation, which
are not square-integrable, are eliminated from the space of
physical wave functions. In this paper we address an impor-
tant issue encountered at this step. The Hamiltonian operator
naively constructed by the canonical quantization in some
cosmological models, which are interesting from the phe-
nomenological point of view, including phantom field, hap-
pens to be not essentially self-adjoint and its self-adjoint
extension is not unique [29–31]. Namely while the clasi-
cal action fixes up to the usual ordering ambiguities how the
Hamiltonian acts on the localized wavefunctions the evolu-
tion over finite amounts of time depends on its behaviour
at infinity where extra ambiguity arises. Hence one classi-
cal action correspond to a family of distinct quantum models
with different quantum evolutions. The cosmological mod-
els with similar self-adjointness issues were considered in
[32,33].

The second step is to define an inner product on the phys-
ical space that would give the conserved probability distri-
bution in quantum cosmology. Since the Wheeler–DeWitt
equation is of Klein–Gordon type, the ‘probability density’
defined by the so-called Klein–Gordon norm is not guaran-
teed to be positive. While one may restrict consideration to
the WKB wavepackets the question arises how to interpret
the wavefunction of the universe beyond the WKB region.
A resolution of this problem may be provided within the
pseudo-Hermitian theory by introducing the Mostafazadeh’s
norm [34–36]. While we do not treat this norm as the only
possible way to tackle the probability problem it may be con-
sidered as an useful tool to study the quantum cosmology as
a fully consistent quantum theory within restrictions of the
minisuperspace approximation.

Finally one has to attribute a proper energy distribution to
construct a wave packet [37–39]. For a given initial coor-
dinate distribution of wave packet in minisuperspace, the

energy distribution can be calculated, which however is not
easy to realize in practice. A common compromise is to
choose a Gaussian energy distribution. Then in correspon-
dence with classical theory the probability distribution of the
established wave packet should ‘centre’ at the classical path
and follow it as closely as possible apart from turning points.

This paper is organized as follows. In Sect. 2 we briefly
elucidate the problem of the quantum particle in the unstable
potential V = −e2x and the ambiguity of self-adjoint exten-
sion of the Hamiltonian operator. In Sect. 3 an integral of
motion is introduced for three types of Liouville cosmologi-
cal models and explicit classical solutions are given in terms
of minisuperspace variables. Section 4 introduces the corre-
sponding canonical quantum cosmology and there the physi-
cal state space is constructed. As a verification of the results,
in Sect. 5 the limit of potential parameter λ tending to zero
is considered. Section 6 is devoted to the classical-quantum
correspondence, in which the wave packets are implemented
and the probability distributions are plotted for two kinds of
norms. The conclusions Sect. 7 contain some comments on
further extensions and applications of the approach adopted
in this paper.

2 Quantum mechanics of a particle in a negative
Liouville potential

To explain the issues that will arise in the quantum cosmo-
logical models of interest let us consider the one-dimensional
motion of a non-relativistic particle in a Liouville potential
which is unbounded from below, described by the Hamilto-
nian

H = p2 − e2x . (1)

This is the special case of the unstable Morse potential
considered in detail in [30, Ch. 8.5].

The corresponding time-independent Schrödinger equa-
tion is

Ĥψ :=
(
−∂2

x − e2x
)

ψ = Eψ, (2)

For the positive energies E > 0 the solutions are,

ψk = c1Fik
(
ex) + c2Gik

(
ex), E = k2 (3)

where,

Fν(z) = 1

2
sec

(νπ

2

) [
Jν(z) + J−ν(z)

]
, (4)

Gν(z) = 1

2
csc

(νπ

2

) [
Jν(z) − J−ν(z)

]
(5)
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where Jν is a Bessel function,

Jν(z) =
+∞∑
n=0

(−1)n

n!Γ (n + ν + 1)

( z

2

)2n+ν

(6)

and functions,

Fν(z) = F−ν(z), Gν(z) = G−ν(z) (7)

are defined according to [40]. They have undamped oscilla-
tory behavior as x → −∞,

Fik
(
ex) �

√
2 tanh πk

2

πk
cos(kx − δk) + O(e2x ), (8)

Gik
(
ex) �

√
2 coth πk

2

πk
sin(kx − δk) + O(e2x ), (9)

and oscillations as x → +∞ exponentially decreasing
amplitude but accelerating frequency,

Fik
(
ex) �

√
2

π
e−x/2

{
cos

(
ex − π

4

)
+ O(e−x )

}
, (10)

Gik
(
ex) �

√
2

π
e−x/2

{
sin

(
ex − π

4

)
+ O(e−x )

}
(11)

Thanks to this behavior both functions should naively con-
tribute to the continuous spectrum. Using the method from
[41] one can obtain the following orthogonality relations,

∫ +∞

−∞
dx Fik

(
ex)Fil

(
ex) = 1

k
tanh

(
πk

2

)
δ(k − l), (12)

∫ +∞

−∞
dx Gik

(
ex)Gil

(
ex) = 1

k
coth

(
πk

2

)
δ(k − l). (13)

However both of these functions Fik(ex ) and Gil(ex ) can
not be included into the continuous spectrum of a self-adjoint
operator simultaneously as they are not orthogonal even when
k �= l is different. Nevertheless, we note that their sym-
metrized scalar product vanishes,

∫ +∞

−∞
dx

[
Fik

(
ex)Gil

(
ex) + Gik

(
ex)Fil

(
ex)] = 0. (14)

For negative energies E ≤ 0 one naively obtains the con-
tinuous spectrum of square-integrable solutions,

ψ̃μ = √
2μJμ

(
ex), E = −μ2. (15)

Similarly to the part of the spectrum with E > 0, not all
of these wavefunctions can be included into the spectrum of

a self-adjoint operator because they are not orthogonal for
different values of μ in general [42],

∫ +∞

−∞
dx Jμ

(
ex)Jν

(
ex) = 2

sin
[

π
2 (μ − ν)

]

π(μ2 − ν2)
(16)

These peculiarities are caused by the operator Ĥ , as
defined on the standard domain of p̂2, being not essentially
self-adjoint. Thus it actually describes a family of different
self-adjoint extensions that are indistinguishable on suffi-
ciently localized smooth functions but generate different uni-
tary evolutions. Since this important topic is often neglected
in the quantum mechanics courses we elucidate few impor-
tant facts here and refer to [29–31] for details.

In infinite dimensional Hilbert spaces it is too restric-
tive to demand that the domain of the operator D( Â) cov-
ered the whole Hilber space H . Therefore operators includ-
ing observables are usually defined on the domains that are
merely dense in H i.e. any element in the Hilbert space
can be obtained as a limit of some sequence of elements in
D( Â). For example the operator p̂2 can not be defined on the
whole L2(R) but is symmetric on the domain of all ‘bumps’ -
infinitely differentiable functions with compact support,C∞

c .
However this leads to the following pitfall. Even if its

domain is dense a symmetric operator Â such that,

(ψ, Âχ) = ( Âψ, χ), ∀ψ, χ ∈ D( Â), (17)

does not in general possess important properties like spectral
theorem and reality of eigenvalues. For Â to be self-adjoint
its adjoint Â† defined as,

(ψ, Â†χ) = ( Âψ, χ), (18)

should have the same domain D( Â†) = D( Â). However in
general the domain of Â† is larger than the domain of Â. In
many cases this happens because D( Â) is selected to be too
small and it is possible to find the self-adjoint operator called
self-adjoint extension on a larger domain that equals to Â on
the original domain. If such extension is unique Â is said to
be essentially self-adjoint. But in general the operator Â has
many self-adjoint extenstions. This should not be considered
as a pathology, rather the original definition of Â happens
to be incomplete and provides merely a local description of
many different self-adjoint operators each generating its own
unitary evolution.

For non-singular potentials bounded from below the
Hamiltonian is essentially self-adjoint. However this is not
a case for Eq. (1). It shows itself in the existence of square-
integrable solutions of Eq. (2) with complex E . For example
for E± = ±2i one gets,

ψ± = C±J1±i
(
ex) + C̃±J−1∓i

(
ex), (19)
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The dimensions of the subspaces of solutions correspond-
ing to complex E with Im E > 0 and Im E < 0 are known as
deficiency indices n+ and n− respectively. If n+ = n− = 0
(i.e. there are no such solutions) the operator is essentially
self-adjoint, that is its self-adjoint extension is unique. If
n+ �= n− no self-adjoint extension exists. In our case the
square-integrability requires C̃± = 0 however C± �= 0 is
allowed. Therefore n+ = n− = 1. According to the Weyl–
von Neumann theorem [29] this means that a single param-
eter family of self-adjoint extensions exists.

The functions ψ̃μ are square integrable but don’t belong
to C∞

c . As result the p̂2 and Ĥ are not generally symmetric
on these solutions,
∫ +∞

−∞
dx ψ̃∗

μ(x)
[

Ĥ ψ̃ν(x)
]

−
∫ +∞

−∞
dx

[
Ĥ ψ̃μ(x)

]∗
ψ̃ν(x)

= 2

π

√
μνsin

[π

2
(μ − ν)

]
. (20)

To extend the domain of Ĥ conserving its symmetricity
we consider the new functional class bigger than C∞

c with a
specific oscillatory behavior as x → +∞,

ψ ∼ e−x/2cos
(

ex − π

2
a − π

4

)
, (21)

where a is an arbitrary parameter a ∈ [0, 2). For E > 0
using Eqs. (10), (11) we then get non-degenerate continuous
spectrum,

Ξ
(a)
k (x) = N (a)

k

[
Fik

(
ex) cos

πa

2
+ Gik

(
ex) sin

πa

2

]
.

(22)
(
N (a)

k

)−2 = 1

k2 tanh2
(

πk

2

)
cos2 πa

2

+ 1

k2 coth2
(

πk

2

)
sin2 πa

2
, (23)

whereas for E ≤ 0 using 10.7.2 from [43] we obtain the
discrete spectrum,

Φ(a)
n (x) = √

2(2n + a)J2n+a
(
ex), E = −(2n + a)2. (24)

The resulting full spectrum forms orthonormal set,
∫ +∞

−∞
dx

[
Φ(a)

n (x)
]∗

Φ(a)
m (x) = δnm,

∫ +∞

−∞
dx

[
Φ(a)

n (x)
]∗

Ξ
(a)
k (x) = 0, (25)

∫ +∞

−∞
dx

[
Ξ

(a)
k (x)

]∗
Ξ

(a)
l (x) = δ(k − l). (26)

It is interesting that the discreteness of the spectrum for
E < 0 and the non-degeneracy of the continuous spec-
trum for E > 0 makes the abyss of the potential at large

positive x analogous to a reflecting wall. The classical tra-
jectories for the particle described by H reach infinity in
finite time. Therefore in the first WKB approximation, the
Gaussian wave packet also reaches the infinity in finite time.
The subsequent motion of the particle may be described as a
bounce from infinity. The non-uniqueness of the self-adjoint
extension for Ĥ may be understood intuitively in the fol-
lowing way. After crossing over infinity the wave function
may be multiplied by an arbitrary phase factor e2πia with-
out losing the conservation of probability. Thus we have a
family of unitary evolution operators generated by different
self-adjoint extensions of Ĥ that locally are indistinguishable
however differ at finite times.

Another way, perhaps more physical, to understand this
non-uniqueness is to consider the regularized potential, for
example introducing an infinitely high wall at x = L that
forms a potential well with the fall of the potential at large x
playing the role of another wall,

[
− ∂2

x − e2x
]
ψ = Eψ, ψ

∣∣∣
x=L

= 0. (27)

Even in the limit L → +∞ the energy levels for E < 0
stay apart from each other and the spectrum remains to be dis-
crete. The non-uniqueness of the self-adjoint extension takes
the form of the regularization-dependence. The parameter a
can be shown to be equal to,

πa

2
=

(
eL − 3π

4

)
mod π (28)

3 Classical solutions of Liouville cosmology

Consider a Friedmann–Lemaître model minimally coupled
with a spatially isotropic and homogeneous Liouville field.
The Friedmann–Lemaître– Robertson–Walker (FLRW) met-
ric is

ds2 = N 2(t) dt2 − e2α(t) dx2, (29)

where N (t) is the lapse function, and a(t) = exp α(t) the cos-
mological scale factor; moreover, the scalar field is a function
only of time, φ = φ(t). With 
 = 8πG, σ = ±1 and λ ∈ R,
the minisuperspace action reads

S(λ) =
∫

dt Ne3α

(
− 3




α̇2

N 2 + σ
φ̇2

2N 2 − V eλφ

)
, (30)

where σ = +1 gives a quintessence model [44], and σ = −1
is dubbed as a phantom model [45]. From Eq. (30) one readily
derives the Hamiltonian density

H (λ) = Ne−3α

(
− 


12
p2
α + σ

1

2
p2
φ + V e6α+λφ

)
, (31)
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in terms of α and φ, as well as their canonical momenta

pα = −e3α 6




α̇

N
, pφ = σe3α φ̇

N
; (32)

the significance of stressing λ will be elaborated in Sect. (5).
It has been shown in [14,23] that

ω := e3α

(
λ




α̇

N
+ σ

φ̇

N

)
(33)

is an integral of motion, i.e. ω is a constant on the constraint
surface

ω̇ = −2

λ
H ≈ 0, (34)

where ≈ represents Dirac’s weak equivalence [46–50].
Applying Eq. (33) to the Friedmann equation

α̇2

N 2 = 


3

(
σ

φ̇2

2N 2 + V eλφ

)
, (35)

one can eliminate the lapse function N and obtain a non-
linear equation

(
dα(φ)

dφ

)2

− σ



6
= 3ω2


V
e6α(φ)+λφ

(
λ




dα(φ)

dφ
+ σ

)2

(36)

in terms of minisuperspace variables α and φ only, and α̇/φ̇

has already been replaced by dα(φ)/dφ. Equation (36) can
be solved with the help of a change of variables

x (or y) := 6α + λφ. (37)

where x is for quintessence and y is for phantom.
Defining

mx := −6
 + λ2, (38)

the solution for a quintessence model σ = +1 can be divided
into two cases:

1. When mx and V are of different sign, one obtains

e6α+λφ = 3
ω2

−V mx
csch2

(
λ

√
3

2

α +

√
3


2
φ + c1

)
,

(39)

where c1 is an integration constant associated with the ini-
tial conditions. Equation (39) contains two distinct solu-

tions separated by λ

√
3

2

α +

√
3

2 φ + c1 = 0 due to the

divergence of csch x for x → 0. Both of the solutions
can be interpreted as an expansion model, see e.g. Fig. 2.

For ω = 0, one recovers the power-law special solution
or α ∝ φ in [5].

2. When mx and V are of the same sign, one has

e6α+λφ = 3
ω2

V mx
sech2

(
λ

√
3

2

α +

√
3


2
φ + c1

)
, (40)

this trajectory contains a single turning point in finite
domain of minisuperspace.

As for the second case the quantization is straightforward
we will concentrate on the first case.

Similar to Eq. (38), one can define

my := +6
 + λ2 > 0 (41)

for phantom model with σ = −1. The solution reads

e6α+λφ = 3
ω2

V my
sec2

(
λ

√
3

2

α −

√
3


2
φ + c2

)
, (42)

where c2 is another integration constant. Equation (42) con-
tains a infinite family of distinct solutions separated by two
types of cosmological singularities at infinity, due to the peri-
odic divergences of sec function, see Fig. 1. These three
results Eqs. (39), (40) and (42) can also be obtained through
Hamilton-Jacobi (HJ) approach [51], where the nonlinear

-1 0 1 2 3 4
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Fig. 1 Multiple solutions contained in Eq. (42) for 
 = 1, V = 1,
λ = 2 and A2 = 160/3. Only one of them is physical, which can be
taken to be the red one; the other trajectories (in green) appear due to
the ambiguity in the timeless Eq. (42). If a time parameter is chosen,
the other branches will disappear
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Eq. (36) is replaced by HJ equation including ω as an inte-
gral of motion.

With a given set of initial conditions, the universe runs
only along one branch. Hence the domain of minisuperspace
variables in Eq. (42) has to be restricted

−π

2
+kπ ≤ λ

√
3

2

α−

√
3


2
φ+c2 ≤ π

2
+kπ, k ∈ Z, (43)

such that only one trajectory between a pair of singularities
is selected. In other words, eliminating time parameter in the
classical solution gives rise to Eq. (42) that covers redun-
dant trajectories as well, which should be eliminated by the
additional condition Eq. (43). For simplicity, one can choose
c1 ≡ 0, k ≡ 0 and obtain

−π

2
≤ λ

√
3

2

α −

√
3


2
φ ≤ π

2
, (44)

which could be applied as a boundary condition in quantum
theory. According to DeWitt’s criterion [52] , the wave func-
tions must vanish at classical singularities. This restriction
on the classical domain of variables affords the possibility
to determine the ambiguity of self-adjoint extension, if one
prefers to fix the periodicity of wave function with respect to
τ . See Sect. 4.

4 Dirac quantization of Liouville cosmology

4.1 Inner product and probabilities

On of the basic building blocks of any quantum model is the
inner product that allows to assign probabilities. However this
is a long standing problem in quantum cosmology due to the
Wheeler–DeWitt equation being of the Klein–Gordon type.
The naturally conserved Klein–Gordon inner product corre-
sponds to the indefinite norm [20, ch. 5]. Pseudo-Hermitian
quantum mechanics [36] provides a cure and will be applied
here to reconstruct wave packets based on consistent norms.

Assume that the Wheeler–DeWitt equaton can be written
in the form,

∂2
τ ψ + Dψ = 0, (45)

The simplest approach is to use the usual Schrödinger
inner product,

(ψ1, ψ2)S :=
∫ +∞

−∞
dx ψ∗

1 (τ, x)ψ2(τ, x), (46)

however it is not conserved. On the other hand, the naturally
conserved Klein–Gordon inner product,

(ψ1, ψ2)KG :=
∫ +∞

−∞
dx

(
ψ̇∗

1 (τ, x)ψ2(τ, x)

− ψ∗
1 (τ, x)ψ̇2(τ, x)

)
,

(47)

is not suitable to define the probabilities as it is not positive-
definite.

In the pseudo-Hermitian quantum mechanics, an alter-
native definition of inner product by Mostafazadeh can be
adapted from [34,35], where a family of Hilbert spaces with
a corresponding pseudo-Hamiltonian were constructed for
the Klein–Gordon equation (45). The solution of Eq. (45)
are endowed with, again, the Schrödinger L2(R) inner prod-
uct in Eq. (46), and D (not necessarily independent of τ !)
is required to be Hermitian with eigenfunctions and non-
negative eigenvalues

Dψn = ν2
nψn . (48)

The Mostafazadeh inner product of the new Hilbert space,
which features time-translational invariance with respect to
τ , can be chosen to be

(ψ1, ψ2)M := 1

2μ

[(
ψ1,D+1/2ψ2

)
S

+
(
ψ̇1,D−1/2ψ̇2

)
S

]
,

(49)

in which μ is a normalizing constant, ψ̇ := ∂τψ , and Dγ is
defined by the spectral decomposition

Dγ :=
∑

n

ν
2γ
n Pn, Pnψ := ψn(ψn, ψ)S. (50)

Equation (49) is manifestly positive-definite, but its inte-
grand � is, in general, complex. Luckily, a non-negative den-
sity

ρ := 1

2μ

[∣∣∣D+1/4ψ

∣∣∣
2 +

∣∣∣D−1/4ψ̇

∣∣∣
2
]

(51)

can be defined whose integral gives the Mostafazadeh inner
product

∫
dx ρ(x) ≡ (ψ,ψ)M =:

∫
dx �(x). (52)

Therefore ρ is a good candidate for a probability density in
the minisuperspace.

4.2 Quintessence field

In addition to Eq. (37), a further transformation

τ := 6


mx

(
λ



α + φ

)
, (53)

123



Eur. Phys. J. C (2018) 78 :786 Page 7 of 13 786

is to be performed in order to separate the variables, which
is related to ω by

ω = 1

Ñ

dτ

dt
, Ñ := 6


mx
Ne−3α. (54)

Because of Eq. (54), τ can be treated as the time of a
Klein–Gordon-type equation and ω as its Fourier conjugate.
The Hamiltonian in Eq. (31) then becomes

Hx = Ne
3
x
mx

− λτ
2

(
− 3


mx
p2
τ + mx

2
p2

x + V ex
)

, (55)

which is of Klein–Gordon form. Promoting the canonical
variables to operators in the position representation

τ → τ, x → x; pτ → −i�
∂

∂τ
, px → −i�

∂

∂x
,

(56)

one can obtain the Wheeler–DeWitt equation

(
3
�

2

mx
∂2
τ − mx�

2

2
∂2

x + V ex
)

Ψ (τ, x) = 0, (57)

which is Eq. (45) with

D = −�
2m2

x

6

∂2

x + V mx

3

ex (58)

Its solution can be represented by the Fourier integral

Ψ (τ, x) =
∫ +∞

−∞
dωA (ω)e− i

�
τωψ(ω, x), (59)

where ψ(ω, x) satisfies

(
−3
ω2

mx
− mx�

2

2
∂2

x + V ex
)

ψ(ω, x) = 0. (60)

In order to save the Hermiticity of operators and define
meaningful probability densities [20,21] one can demand the
solution to be square integrable. The expectation value of a
physical observable can be defined naively by

〈O〉 =
(
Ψ, ÔΨ

)
S

:=
∫

dx Ψ ∗(τ, x)ÔΨ (τ, x). (61)

When mx V > 0 the operator is essentially self-adjoint
and the quantization proceeds in a straightforward fashion.
In contrast when mx V < 0, the Eq. (60) can be regarded as
the stationary Schrödinger equation with negative potential
unbounded from below and the corresponding operator is not

essentially self-adjoint which is the problem that was con-
sidered in detail in Sect. 2. The square-integrable functions
can be represented as superpositions of eigenfunctions of,

Ψ (τ, x) =
∫ +∞

−∞
dωA (ω)e− i

�
τωΞ(a)

ν

(
2

�

√
−2V

mx
ex/2

)

+
∑
(±)

+∞∑
n=0

C (±)
n e± 1

�
τ |ωn |Φ(a)

n

(
2

�

√
−2V

mx
ex/2

)
,

(62)

where ν is given by,

ν = 2

√
6


�

∣∣∣∣
ω

mx

∣∣∣∣ . (63)

and the functions Ξ
(a)
ν and Φ

(a)
n are defined in Eqs. (22) and

(24) respectively. The solution contains arbitrary parameter
a ∈ [0, 2) specifying the self-adjoint extension. The first part
of the wave function corresponds to the solution of Eq. (60)
with positive ω2 > 0, while the second is derived from same
equation with negative ω2 < 0. The discrete purely imagi-
nary ωn

2n + a = 2

√
6


�

∣∣∣∣
ωn

mx

∣∣∣∣ , (64)

are required for completeness and hermiticity, but they pro-
duce growing and decreasing modes, which are not com-
patible with conservation neither of the Klein–Gordon norm
Eq. (47) nor of the Mostafazadeh norm Eq. (49). It is worth
noting that these modes also violate the classical restriction
ω2 > 0 imposed by reality of metric and field variables in
Eq. (40). It will be shown below that the wave packets along
the correct classical trajectories can be constructed only from
the continuous spectrum Ξ

(a)
iν . Thus we conclude that on the

physical space there’s no contribution from the discrete spec-
trum, i.e.

C (±)
n = 0 (65)

as a result in the quantum model both unitary evolution and
correct classical limit can be guaranteed.

4.3 Phantom field

A transformation similar to the quintessence case

τ := 6


my

(
λ



α − φ

)
(66)
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can be made for phantom, such that the Hamiltonian in
Eq. (31) becomes

Hy = Ne
− λτ

2 −3 
y
my

(
− 3


my
p2
τ − my

2
p2

y + V ey
)

. (67)

The Wheeler–DeWitt equation then reads

(
3
�

2

my
∂2
τ + my�

2

2
∂2

y + V ey
)

Ψ (τ, y) = 0, (68)

That again takes the form of Eq. (45) with,

D = +�
2m2

y

6

∂2

y + V my

3

ey . (69)

The separation of variables allows us to find the solution
using two equations

(
∂2
τ + ω2

)
f (τ, ω) = 0. (70)

and

(
my�

2

2
∂2

y + V ey
)

ψ(ω, y) = 3
ω2

my
ψ(ω, y), (71)

The Eq. (71) is very similar to Eq. (60) with mx V < 0,
hence it will give rise to a similar problem, which will be
considered in Sect. 2 as well. But in this case the sign of ω2

is different with quintessence, the general solutions include
two parts, one is the time-oscillating functions constructed
from the discrete spectrum, and the other is decreasing and
increasing functions as the superpositions of the modes with
continuous spectrum,

Ψ (τ, y) =
∑
(±)

+∞∑
n=0

A (±)
n e∓ i

�
τωn Φ(a)

n

(
2

�

√
2V

my
ey/2

)

+
∫ +∞

−∞
dω̃B(ω̃)e− 1

�
τ ω̃Ξ(a)

ν

(
2

�

√
2V

my
ey/2

)
,

(72)

where,

2n + a = 2
√

6


�my
ωn, μ = 2

√
6


�my
ω̃. (73)

Similarly to the case of quintessence with mx < 0 and
V > 0 one can exclude the continuous spectrum to preserve
both probability conservation and correct classical limit with
ω2 > 0 by setting

B(ω̃) = 0. (74)

The resulting wave packet can be written explicitly as,

Ψ (τ, y) =
∑
(±)

+∞∑
n=0

A (±)
n

√
2n + ae∓ i

�
τωn J2n+a

(
2

�

√
2V

my
ey/2

)

(75)

If the wave packet is only restricted to the positive fre-
quencies the discreteness will be associated with periodicity
of τ . The value of a can be fixed by the condition,

Ψ (τ, y) = eiaπΨ

(
τ + 2π

√
6


my
, y

)
(76)

Such periodic condition also guarantees the self-
adjointness of the ∂2

τ operator. If both positive and negative
frequencies are included the only possibilities are a = 0 and
a = 1 corresponding to periodic and antiperiodic wavefunc-
tions respectively.

5 The limit λ → 0

As a verification of our approach to the minisuperspace tra-
jectory, the limit λ → 0 will be considered, which have been
extensively studied as a pedagogic model, see e.g. [5,13,21].
This limit enforces mx < 0 which will be assumed for the
rest of the section.

The action in Eq. (30) in this limit becomes

S(0) =
∫

dt Ne3α

(
− 3




α̇2

N 2 + σ
φ̇2

2N 2 − V

)
, (77)

and the integral of motion Eq. (33) tends to

ω → σe3α φ̇

N
≡ pφ, λ → 0. (78)

For quintessence model with V < 0, one obtains the clas-
sical solution from Eq. (39) by setting λ = 0

e6α = p2
φ

2V
csch2

(√
3


2
φ + c1

)
. (79)

The quantum solution can also be calculated in similar
way

Ψ (α, φ) =
∫ +∞

−∞
d pφ A

(
pφ

)
e− i

�
φpφ

×
[

c1Fiν

(
2

�

√
V

3

e3α

)
+ c2Giν

(
2

�

√
V

3

e3α

)]

(80)
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where the index of the Bessel function becomes

ν =
√

2

3


∣∣∣ pφ

�

∣∣∣ . (81)

For the phantom model, one obtains

e6α = p2
φ

2V
sec2

(√
3


2
φ + c2

)
, (82)

and

Ψ (α, φ) =
∑

n

A (pn)e− i
�

pnφJ2n+a

(
2

�

√
V

3

e3α

)
. (83)

6 Semiclassical wave packets and comparisons with
classical solutions

With the explicit form of minisuperspace trajectories at hand,
its comparison with the quantum solutions becomes more
transparent, since the latter does not depend on any time
parameter, but only the minisuperpace coordinates. It is
expected that a classical trajectory could be restored from the
wave functions at the limit � → 0, which must be consistent
with the results in Sect. (3); furthermore, the cosmological
wave packets are expected to go along the classical trajecto-
ries in minisuperspace, which can be visualized in plots.

6.1 WKB limit as � → 0

The minisuperspace Wheeler–DeWitt wave functions can be
compared with the classical trajectories by taking the WKB
limit, i.e. expanding at � → 0.

For the model with mx V < 0, it is sufficient to consider
the phase contribution of Fiν(x). The uniform asymptotic
expansion of unmodified Bessel function for large index ν

provides the leading order [40]

Fiν(νz) ∼
(

2

πν

)1/2 (
1 + z2

)−1/4
cos

(
ζν − π

4

)
, (84)

ζ :=
(

1 + z2
)1/2 + ln

(
z

1 + (
1 + z2

)1/2

)
. (85)

The zeroth-order action reads

S0

�
= −τω

�
+ν

[(
1 + z2

)1/2 + ln

(
z

1 + (
1 + z2

)1/2

)]
−π

4
,

(86)

where

ν := 2

√
6


�

∣∣∣∣
ω

mx

∣∣∣∣ , z := 1

|ω|
√−V mx

3

ex/2. (87)

∂S0/∂ω = 0 gives

e6α+λφ = 3
ω2

−mx V
csch2

(
λ

√
3

2

α +

√
3


2
φ

)
, (88)

which is consistent with Eq. (40) up to a choice of c2.
For the phantom model, the Bessel function Jn is to be

considered, whose leading-order expansion reads

Jν(νz) ∼
(

4ζ

1 − z2

)1/4 Ai
(
ν2/3ζ

)

ν1/3 , (89)

for

2

3
(−ζ )3/2 =

(
z2 − 1

)1/2 − arccos
1

z
, |z| > 1, (90)

Ai
(
ν2/3ζ

)
∼ 1√

π(−ν2/3ζ )1/4
cos

(
2

3
ν(−ζ )3/2 − π

4

)
.

(91)

The zeroth-order of action then reads

S0

�
= τω

�
+ ν

[(
z2 − 1

)1/2 − arccos
1

z

]
− π

4
, (92)

where

ν = 2
√

6


�my
|ω| , z = 1

|ω|
√

V my

3

ey/2. (93)

Consequently ∂S0/∂ω = 0 gives us

e6α+λφ = 3
ω2

V my
sec2

(
λ

√
3

2

α −

√
3


2
φ

)
, (94)

which is consistent with Eq. (42).

6.2 WKB Gaussian wave packet

The WKB Gaussian wave packet of quintessence models is
expected to solve the Wheeler–DeWitt equation in the WKB
approximation. For the model with mx V < 0, one obtains

ψWKB = C(x, ω)e
i
�

S0 , (95)
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where

C(x, ω) := c√|∂x S0| = c
4
√

f/m2
x

, f := 6
ω2 −2mx V ex ,

(96)

and two zeroth-order actions are

S0 = ±2
√

f

mx
∓ 2ω

√
6


mx
arccoth

(
ω

√
6


f

)
, (97)

so that a Gaussian wave packet can be written as

Ψ =
∫ +∞

−∞
dωA (ω, ω̄)e

i
�
τωψWKB, (98)

where A (ω, ω̄) is the square root of a Gaussian distribution

A (ω, ω̄) = 1

(�Γ
√

π)1/2
exp

[
− (ω − ω̄)2

2�2Γ 2

]
. (99)

To integrate Eq. (98), one can first expand S0 around ω̄,

S0 = S̄0 + (∂ω S̄0)Δω + 1

2
(∂2

ω S̄0)Δω2 + o(Δω3), (100)

then apply the stationary phase approximation, and obtain
the general form of wave packet

Ψ =
√√

π

�Γ
C(x, ω̄)e

i
�
αω̄ eP2/4Q+ i

�
S̄0

√
Q

+ · · · (101)

The ellipsis denote the same formula but with the another S̄0,
and

Q := 1

2Γ 2�2 − i

2�
∂2
ω S̄0, P := i

�
(τ + ∂ω S̄0). (102)

For the phantom model, in the limit h̄ → 0 the discrete-
ness diappears and we can assume that the spectrum is contin-
uous. Note that this approximation makes the leading order
blind to the choice of the self-adjoint extension. The WKB

wave packet is ψWKB = C(y, ω)e
i
�

S0 , with

S0 = ±2
√

f

my
∓ 2ω

√
6


my
arctan

(
1

ω

√
f

6


)
, (103)

and

C(y, ω) := c

4
√

f/m2
y

, f := −6
ω2 + 2my V ey . (104)

6.3 Numerical matching

The integral with Gaussian distribution in Eq. (98) cannot be
implemented analytically. Even though the WKB approxi-
mation Sect. (6.2) is effective, its precision is poor in regions
where semiclassical approach does not hold, for instance near
the classical turning point. Instead, one can turn to numerical
approaches.

With the wave functions normalized, one may construct
wave packets for the quintessence and phantom models. The
corresponding plots are in (2), (3) and (4). The parameters are
specified in Planck units h̄ = 
 = 1. The common feature of
the plots is that the wave packets coincide with classical tra-
jectories and follow them as closely as possible. The height
of the wave ‘tube’ is negatively correlated to the ‘speed’ of
the classical trajectory with respect to the Klein–Gordon time
τ , i.e. the higher the ‘speed’ is, the lower the amplitude of
the wave ‘tube’ is [53]. It is interesting to note that for all
models the naive inner product Eq. (46) happen to approxi-
mate the conserved norm Eq. (45) very well so that there’s
no noticeable difference in plots.

In Figs. 2 and 3, the classical trajectory contains two dis-
joint branches representing two distinct solutions separated
by cosmological singularity. This leads to a quite interesting
interference of the two wave tubes. The different choice of a
corresponds to slightly different wave packets.

For the phantom model, on the other hand, Poisson’s dis-
tribution of momentum (see Fig. 4) has been chosen,

Fig. 2 Wave packets and the corresponding classical trajectories for
quintessence with mx V < 0. Parameters are V = +1, λ = 4/5, ω̄ =
−35/8 and Γ = 7/5
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Fig. 3 Wave packets and the corresponding classical trajectories for
the quintessence with mx V < 0. Parameters are V = +1, λ = 4/5,
ω̄ = −35/8 and Γ = 7/5

Fig. 4 Poissonian wave packets established by the wave functions with
discrete spectrum and the corresponding classical trajectories for the
phantom model. Parameters are V = 1, λ = 2, ω̄2 = 10240/9, mean-
while a = 1 is fixed

An = n̄n/2e−n̄/2

√
n! . (105)

As expected from Eq. (76) the wave packet is periodic in τ

emerging along all the periodic classical solutions separated
by Big Rip singularities.

7 Conclusions

In this paper, by using the integral of motion to eliminate the
lapse function in Friedmann equation, we have solved the
cosmological model with Liouville field for homogeneous
isotropic metrics. The general classical solutions are obtained
and represented in terms of minisuperspace variables only,
such that the correspondence between classical and quan-
tum theory can be demonstrated manifestly. The quantum
wave packets reproduce the classical limit in a sense that
the distributions of traditional Schrödinger’s norm and the
Mostafazadeh’s inner product are maximized near the clas-
sical trajectories.

Generally if ordinary matter is added, the model loses
integrability and it is not possible to find the analytical solu-
tion even in terms of minisuperspace variables. Neverthe-
less one may consider the integrable model with multiple
scalar fields considered in [14]. The homogeneous Wheeler–
DeWitt equation for this model is separated into a system of
the Schrödinger equations for one-dimensional particle in the
exponential potential. Each of the fields could be then treated
independently in the same way as the one-field model consid-
ered in this paper. Thus our results are trivially generalized
to this integrable model.

The classical models of quintessence with potential
unbounded below and the phantom fields give rise to the
appearance of a family of non-equivalent quantum mod-
els, because the energy density operators are not essentially
self-adjoint operator. In order to preserve unitarity and cor-
rect classical limit one has to omit half of the spectrum.
While this requires that the wave packet at some fixed τ

belongs to much narrower class than L2(R), it is enough
to produce wave packets in the vicinity of the classical
trajectories.

For the phantom field the resulting spectrum is discrete. It
is associated with the fact that at the classical level the uni-
verse exists in a finite interval between two singularities and
non-singular unitary evolution is accessible through the peri-
odicity of wave function. This periodicity may be regarded
as a fundamental condition not only for the homogeneous
but also on inhomogeneous modes. On the other hand, if the
minisuperspace wave packet contains multiple semiclassical
branches they may be associated with coherent superposi-
tion of different universes. This Schrödinger-cat-like effect
at the cosmic scale might be an artifact of the model in min-
isuperspace. In the full theory in Wheeler’s superspace [54],
inhomogeneity is involved, which may serve as an unob-
servable environment, in contrast with the scale factor [55].
The observable effects are then fully described by the den-
sity matrix of the scale factor only, whose off-diagonal ele-
ments characterize the superposition of universes with dif-
ferent scale factors. Calculation suggests that those elements
are highly-suppressed in the above-mentioned decoherence
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scheme [56,57]; hence the cosmic Schrödinger cat might
be fictitious, and the superposition of distinct semiclassical
branches might be decohered to vanish. The approach devel-
oped in the paper can also be extended to Higher dimensional
[24,25] and anisotropic models, such as Bianchi-I cosmology
considered in [12].

It is known that the quantum field theory with the phan-
tom fields considered on the classical cosmological back-
ground suffers from the vacuum instability problem [58,59].
However the self-adjoint issues in the homogeneous modes
quantization considered in this paper may influence the appli-
cability of the mean field approach. To address this question
one should combine the Wheeler-DeWitt equation on the
homogeneous minisuperspace with inhomogeneous pertur-
bations. This could be done for instance starting with the
Born-Oppenheimer approximation of the Wheeler–DeWitt
equation for the free inhomogeneous perturbations [60–63].
We leave this problem for future work.

As the different self-adjoint extensions lead to different
quantum evolution and require the wavefunction to belong to
the different restricted functional class they may produce dif-
ferent observable results. The leading order of WKB approx-
imation is insensitive however one may expect that the choice
of self-adjoint extension should be important for the NLO
corrections to the spectra of perturbations [64–67].
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