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Abstract: New 2-thioxopyrimidin-4-ones capable of participating in regioselective reactions with
functionally diverse hydrazonoyl chlorides towards angular regioisomers, rather than linear ones,
were designed and synthesized to form stereoisomeric cis- and trans-hexahydro [1,2,4]triazolo[4,3-
a]quinazolin-9-ones to be tested as antitumor candidates. The angular regiochemistry of the products
was verified through crystallographic experiments and NMR studies. In addition, the regioselectivity
of the reaction was found to be independent of the stereochemistry of the used 2-thioxopyrimidin-4-
one. Only compound 4c demonstrated satisfactory growth inhibition against all the cancer cells used
among all the produced drugs.

Keywords: regioselective synthesis; hydrazonoyl chloride; [1,2,4]triazolo[4,3-a]quinazolin-9-ones;
antitumor action

1. Introduction

Hydrazonoyl halides have attracted the attention of chemists in organic synthesis,
since they exhibit valuable applicability as precursors for the synthesis of various hete-
rocyclic compounds, such as pyrazoles [1], thiazoles [2,3], imidazoles [4], triazoles [5,6],
thiadiazoles [7,8], and tetrazines [9].

Reactions of hydrazonoyl halides with 2-thioxopyrimidin-4-ones lead to the formation
of 1,2,3-triazoles, which have a wide range of applications as synthetic intermediates and
pharmaceuticals [10–13]. Numerous 1,2,4-triazoles with medicinal potential have been
identified, including HIV inhibitors [14–16], antimicrobial drugs [17], antitumor poten-
tials [18], and kinase inhibitors [19,20]. These reactions are regioselective and controlled by
electronic factors rather than steric properties. Namely, in the reaction of the two possible
regioisomeric 1,2,3-triazoles, the formation of the linear regioisomer is favored by the pres-
ence of the C=C bond in 2-thioxopyrimidin-4-ones [21–25]. The formation of the angular
regioisomer, in turn, will be favored if the substrate does not contain the C=C bond, as
demonstrated in our previous works [26,27].

Cancer remains the second leading cause of mortality in both industrialized and de-
veloping nations, despite the great advancements in cancer therapy that have increased the
cure rates for a variety of malignancies [28]. Chemotherapy is one of the main treatment
options for cancer patients. The toxicity and drug resistance [29] of the existing chemother-
apeutics, however, restrict their use in the treatment of cancer patients. Therefore, the
development of safe chemotherapy drugs with anticancer properties is urgently needed.
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The anticancer efficacy of compounds bearing the 1,2,4-triazolo[4,3-a]pyrimidine scaffold
is well established [30–32]. Hence, we were motivated to prepare new 1,2,4-triazolo[4,3-
a]pyrimidines based on cyclohexene and to investigate their antiproliferative actions.

Continuing our research, we designed and synthesized new 2-thioxopyrimidin-4-
ones achieving regioselective reactions with functionally diverse hydrazonoyl chlorides
3a–h. These new 2-thioxopyrimidin-4-ones are cis and trans stereoisomers of cyclohexene-
condensed 2-thioxopyrimidin-4-ones 1 and 2. The product molecules can be reacted further
to form novel angular cis- and trans-1,2,4-triazoles 4a–h and 5a–h with various functionali-
ties which have the C=C bond for further derivatization. X-ray and NMR investigations
were employed to establish the stereochemistry of the compounds. Furthermore, the
antiproliferative action of the prepared compounds was also examined.

2. Results and Discussion

The cyclohexene-based 2-thioxopyrimidin-4-one 1 and its trans stereoisomer 2 precur-
sor molecules were synthesized according to the literature [33]. The reactions of thioxopy-
rimidinones 1 or 2 with functionally diverse hydrazonoyl chlorides 3a–h were performed
in dioxane as a solvent using triethylamine as a basic additive under reflux conditions for
6–8 h (Scheme 1). As shown in Scheme 2, the reaction proceeds through either path A or B,
depending on the tautomeric structure I or ii that directs the reaction via S-alkylation to
form S-alkylated intermediates iii or v, respectively. These then undergo Smiles rearrange-
ment [34], yielding intermediates iv or vi, followed by cyclization through the elimination
of H2S to afford angular regioisomers 4a–h and 5a–h or linear ones 6a–h and 7a–h, respec-
tively. Because of the conjugation of the C=N and C=O bonds, the tautomeric form i is
favored in comparison to ii. Consequently, the reactions proceeded through path A, which
accounts for the regioselectivity of the reactions towards the angular isomers 4a–h and
5a–h rather than the linear ones 6a–h and 7a–h. This regioselectivity was confirmed using
a variety of tests, including chromatography, 1H-NMR 13C-NMR spectroscopy, and X-ray
crystallographic analysis. TLC, following the reaction, indicated the formation of only a
single product. The 1H-NMR spectra (Supplementary Materials) showed the resonances of
only a single isomer. In addition, in the case of hydrazonoyl chlorides 3a–f, the signal of the
methylene (CH2) moiety of the ester functional group appeared to have higher multiplicity
than expected (quartet). This is due to the proximity of the ester group to the cyclohexene
moiety in the angular regioisomer. The 13C-NMR spectrum (Supplementary Materials)
exhibited the resonance of the carbonyl carbon (CO) of the pyrimidinone ring at almost
176 ppm, which is in accordance with the reported values of structurally related carbonyl
carbon atoms in the literature [35]. In these compounds, where the carbonyl carbon of the
pyrimidinone residue in the angular structure is adjacent to the sp2-hybridized nitrogen (re-
leasing less electrons), the carbonyl group is less shielded, and it resonates at 170–176 ppm.
In contrast, the nitrogen atom in the linear structure is sp3-hybridized (releasing more
electrons), and consequently the carbonyl group is more shielded and resonates at lower δ
values (160–165 ppm). Finally, X-ray crystallographic analysis of 5a (Figure 1) provided
indisputable evidence of the angular stereochemistry of the product.

As concerns the antiproliferative properties of the compounds thus prepared, none of
them proved to be comparable with the reference agent cisplatin (Table 1). The most active
analog was 4c, eliciting 30–50% growth inhibition at 30 µM against all the cancer cells used.
Incubation with compound 5h resulted in cell growth inhibition above 30% against 3 cell
lines. Though no clear tendency was observed concerning the role of stereochemistry in the
antiproliferative activity of the compounds, our results indicate that the cis arrangement
of the p-nitrophenyl substituent on the triazole ring may be attractive for anticancer drug
candidates with a similar scaffold. Treatment with compounds 4d, 4g, and 4h resulted in
less than 20% growth inhibition at the higher concentration against only a single cell line.
All other molecules (4a, 4b, and 5a) elicited no relevant antiproliferative action (i.e., less
than 10% growth inhibition) against the tested cancer cell lines.
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Scheme 1. Synthesis of angular [1,2,4]triazolo[4,3-a]quinazolinones 4a–h and 5a–h. Reagents and 
conditions: 1 or 2 (0.06 mmol), 3a–h (0.06 mmol), TEA (100μL), dioxane (10 mL), reflux 6–8 h. 
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Scheme 2. Proposed pathway for forming angular and linear regioisomers. 

 
Figure 1. TELP image of 5a at 50% probability level. 
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Table 1. Antiproliferative action of the tested compounds.

Comp. Conc.
Inhibition of Cancer Growth (%) ± SEM

MDA-MB-231 MCF-7 SiHa A2780

4c 10 µM 33.47 ± 0.90 41.80 ± 1.27 31.22 ± 0.57 24.37 ± 1.72
30 µM 34.63 ± 2.55 46.85 ± 1.12 36.93 ± 0.48 30.55 ± 2.70

4d 10 µM 14.65 ± 3.33 – * – –
30 µM 14.75 ± 2.66 – – –

4e 10 µM – – – –
30 µM 12.02 ± 4.48 – – –



Molecules 2023, 28, 3718 4 of 10

Table 1. Cont.

Comp. Conc.
Inhibition of Cancer Growth (%) ± SEM

MDA-MB-231 MCF-7 SiHa A2780

4g 10 µM – – 17.29 ± 2.24 –
30 µM – – 19.37 ± 1.29 –

4h 10 µM – – – –
30 µM – 12.87 ± 1.16 – –

5b 10 µM – – 17.32 ± 1.90 –
30 µM 13.52 ± 1.87 27.04 ± 2.39 27.34 ± 3.28 19.65 ± 2.09

5c 10 µM – 27.49 ± 2.70 16.58 ± 2.27 10.86 ± 2.32
30 µM – 35.28 ± 2.09 21.43 ± 2.95 24.62 ± 1.73

5d 10 µM – – – –
30 µM 17.97 ± 2.44 25.51 ± 2.52 23.19 ± 2.39 17.34 ± 2.72

5e 10 µM – 21.01 ± 2.77 21.04 ± 2.90 –
30 µM – 23.38 ± 2.86 22.36 ± 2.58 14.53 ± 2.93

5f 10 µM – 12.75 ± 2.79 – –
30 µM – 20.59 ± 2.79 – –

5g 10 µM – 21.18 ± 2.55 10.08 ± 1.07 –
30 µM – 24.48 ± 2.82 10.02 ± 2.45 12.61 ± 2.53

5h 10 µM – – – –
30 µM 17.03 ± 2.36 39.01 ± 2.20 32.78 ± 2.89 31.90 ± 1.59

Cispl. 10 µM 42.72 ± 2.68 54.06 ± 1.17 88.64 ± 0.5 83.57 ± 1.21
30 µM 88.43 ± 0.42 95.45 ± 0.28 90.18 ± 1.78 95.02 ± 0.28

* Cell proliferation inhibition values less than 10% were regarded as negligible and are not shown numerically.

3. Materials and Methods
3.1. General Methods

NMR characterization of the product compounds was carried out in CDCl3 at room
temperature (500.20 MHz for 1H-NMR, 125.62 MHz for 13C-NMR) using a Bruker AV NEO
Ascend 500 spectrometer with a Double-Resonance Broad-Band Probe (Bruker Biospin,
Karlsruhe, Germany). As an internal standard, tetramethylsilane (TMS) was used. Thin-
layer chromatography (TLC) was conducted to monitor the reaction progress (aluminum
sheets, silica gel coating (POLYGRAM®SIL G/UV254, Merck, Darmstadt, Germany) with
evaluations upon UV illumination. Melting points were measured using Hinotek-X4
micro melting point equipment (Hinotek, Ningbo, China). The HRMS flow injection study
was carried out using a Thermo Scientific Q Exactive Plus hybrid quadrupole-Orbitrap
mass spectrometer linked to a Waters Acquity I-Class UPLCTM (Thermo Fisher Scientific,
Waltham, MA, USA) (Waters, Manchester, UK).

The synthesis of cis- and trans-thioxopyrimidinones (1 and 2) was carried out by
transforming the corresponding amino esters, as described in the literature [36,37]. The
synthesis of hydrazonoyl chlorides 2a–h was performed in accordance with the previously
described methods [38,39].

3.2. Synthesis of Cis- and Trans-Hexahydro [1,2,4]triazolo[4,3-a]quinazolin-9(1H)-ones 4a–h and 5a–h

Cyclohexene-condensed 2-thioxopyrimidin-4-one 1 or 2 (0.6 mmol) and hydrazonoyl
chlorides (3a–h) were treated under reflux conditions for 6–8 h in the presence of 100 µL
triethylamine (TEA) and 10 mL of dioxane. The reaction was monitored using TLC
(n-hexane/EtOAC = 1:1) until it was completed. After the evaporation of the solvent under
reduced pressure, the residue dissolved in CHCl3 (20 mL) was extracted with water (three
times, 10 mL). Then, the solution was dried (Na2SO4), and the residue, after evaporation of
the solvent under reduced pressure, was purified using column chromatography with an
n-hexane/EtOAc eluent ratio of 2:1.
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(4aS*,8aR*)-Ethyl 9-oxo-1-phenyl-1,4a,5,8,8a,9-hexahydro [1,2,4]triazolo[4,3-a]quinazoline-
3-carboxylate (4a): 0.17 g (86%), white crystals, m.p. 232–234 ◦C. 1H NMR (500 MHz, CDCl3) δ
8.04 (dd, J = 8.7, 1.0 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 7.34 (t, J = 8.0 Hz, 1H), 5.88 (dd, J = 9.3,
4.4 Hz, 1H), 5.70–5.55 (m, 1H), 4.60–4.43 (m, 2H, CH3CH2), 4.38 (ddd, J = 13.6, 9.7, 5.1 Hz, 1H),
3.34–3.21 (m, 1H), 2.84–2.71 (m, 1H), 2.62 (ddd, J = 13.4, 11.2, 4.9 Hz, 1H), 2.42–2.21 (m, 2H),
1.47 (t, J = 7.1 Hz, 3H, CH3CH2). 13C NMR (126 MHz, CDCl3) δ 176.4, 157.1, 153.5, 138.8, 136.2,
129.2, 127.8, 127.3, 122.1, 121.9, 63.8, 54.8, 39.1, 32.2, 26.3, 14.1. HRMS-ESI [M+H] + m/z calcd
for C18H19N4O3: 339.14517, found: 339.14441.

(4aS*,8aR*)-Ethyl 9-oxo-1-(p-tolyl)-1,4a,5,8,8a,9-hexahydro [1,2,4]triazolo[4,3-a]quinazoline-
3-carboxylate (4b): 0.17 g (78%), white crystals, m.p. 212–215 ◦C. 1H NMR (500 MHz, CDCl3)
δ 7.93–7.85 (m, 2H), 7.25 (d, J = 8.2 Hz, 2H), 5.92–5.83 (m, 1H), 5.64 (dd, J = 9.7, 5.7 Hz, 1H),
4.65–4.42 (m, 2H, CH3CH2), 4.36 (ddd, J = 13.7, 9.7, 5.1 Hz, 1H), 3.38–3.20 (m, 1H), 2.38 (s, 2H),
2.31 (qdd, J = 9.4, 4.5, 2.2 Hz, 2H), 1.47 (t, J = 7.1 Hz, 3H, CH3CH2). 13C NMR (126 MHz, CDCl3)
δ 176.3, 157.1, 153.4, 138.7, 137.9, 133.7, 129.7, 127.3, 122.1, 121.8, 63.7, 54.8, 39.1, 32.2, 26.3, 21.1,
14.1. HRMS-ESI [M+H] + m/z calcd for C19H21N4O3: 353.16082, found: 353.16007.

(4aS*,8aR*)-Ethyl 9-oxo-1-(4-nitrophenyl)-1,4a,5,8,8a,9-hexahydro-[1,2,4]triazolo[4,3-
a]quinazoline-3-carboxylate (4c): 0.15 g (66%), white crystals, m.p. 257–259 ◦C. 1H NMR
(500 MHz, CDCl3) δ 8.46 (d, J = 8.5 Hz, 2H), 8.32 (d, J = 8.9 Hz, 2H), 5.89 (br, 1H,), 5.65
(br, 1H), 4.55 (m, J = 15.2, 7.4 Hz, 2H, CH3CH2), 4.40 (m, 1H), 3.25 (d, J = 15.0 Hz, 1H), 2.78
(d, J = 17.4 Hz, 1H), 2.64 (dd, J = 16.3, 7.4 Hz, 1H), 2.49–2.19 (m, 2H), 1.50 (t, J = 6.9 Hz, 3H,
CH3CH2). 13C NMR (126 MHz, CDCl3) δ 176.2, 156.8, 153.7, 145.9, 141.2, 139.6, 127.2, 124.8,
122.0, 121.2, 64.1, 54.9, 39.1, 32.1, 26.1, 14.0. HRMS-ESI [M+H] + m/z calcd for C18H18N5O5:
384.13025, found: 384.12941.

(4aR*,8aS*)-Ethyl 9-oxo-1-(4-methoxyphenyl)-1,4a,5,8,8a,9-hexahydro-[1,2,4]triazolo[4,3-
a]quinazoline-3-carboxylate (4d): 0.16 g (74%), white crystals, m.p. 221–223 ◦C. 1H NMR
(500 MHz, CDCl3) δ 8.01–7.78 (m, 2H), 7.08–6.77 (m, 2H), 5.99–5.75 (m, 1H), 5.64 (dd, J = 9.0,
5.2 Hz, 1H), 4.64–4.41 (m, 2H, CH3CH2), 4.37 (ddd, J = 13.6, 9.6, 5.2 Hz, 1H), 3.83 (s, 3H,OCH3),
3.40–3.17 (m, 1H), 2.83–2.70 (m, 1H), 2.61 (ddd, J = 13.4, 11.1, 5.0 Hz, 1H), 2.49–2.18 (m, 2H),
1.47 (t, J = 7.2 Hz, 3H, CH3CH2). 13C NMR (126 MHz, CDCl3) δ 176.3, 159.1, 157.1, 153.3, 138.7,
129.1, 127.3, 123.7, 122.1, 114.3, 63.7, 55.6, 54.9, 39.1, 32.2, 26.3, 14.1. HRMS-ESI [M+H] + m/z
calcd for C19H21N4O4: 369.15573, found: 369.15494.

(4aR*,8aS*)-Ethyl 9-oxo-1-(4-chlorophenyl)-1,4a,5,8,8a,9-hexahydro [1,2,4]triazolo[4,3-
a]quinazoline-3-carboxylate (4e): 0.21 g (94%), white crystals, m.p. 238–240 ◦C. 1H NMR
(500 MHz, CDCl3) δ 8.12–8.02 (m, 2H), 7.46–7.37 (m, 2H), 6.01–5.77 (m, 1H), 5.75–5.50
(m, 1H), 4.62–4.42 (m, 2H, CH3CH2), 4.37 (ddd, J = 13.7, 9.7, 5.2 Hz, 1H), 3.40–3.11 (m, 1H),
2.87–2.69 (m, 1H), 2.62 (ddd, J = 13.3, 11.1, 5.0 Hz, 1H), 2.49–2.05 (m, 2H), 1.48 (t, J = 7.1 Hz,
3H, CH3CH2). 13C NMR (126 MHz, CDCl3) δ 156.9, 153.5, 138.9, 134.8, 133.3, 129.3,
127.3, 122.7, 122.1, 63.9, 54.9, 39.1, 32.1, 26.3, 14.0. HRMS-ESI [M+H] + m/z calcd for
C18H18ClN4O3: 373.10619, found: 373.10548.

(4aR*,8aS*)-Ethyl 9-oxo-1-(3-(trifluoromethyl)phenyl)-1,4a,5,8,8a,9-hexahydro [1,2,4]tri
azolo[4,3-a]quinazoline-3-carboxylate (4f): 0.17 g (72%), white crystals, m.p. 167–169 ◦C.
1H NMR (500 MHz, CDCl3) δ 8.54–8.46 (m, 1H), 8.23 (s, 1H), 7.63–7.56 (m, 2H), 5.91–5.86
(m, 1H), 5.65 (dd, J = 8.9, 5.0 Hz, 1H), 4.61–4.48 (m, 2H, CH3CH2), 4.43–4.36 (m, 1H),
3.30–3.23 (m, 1H), 3.10 (qd, J = 7.3, 5.0 Hz, 1H), 2.81–2.73 (m, 1H), 2.64 (ddd, J = 13.4,
11.1, 5.0 Hz, 1H), 2.39–2.27 (m, 2H), 1.49 (t, J = 7.1 Hz, 3H, CH3CH2).13C NMR (126 MHz,
CDCl3) δ 176.2 (C=O), 156.9(C=O), 153.6(C), 139.2(C), 136.71(C), 131.7 (q, J = 33 Hz, C-CF3)
129.9 (CH), 127.2(CH), 124.9(CH), 124.2 (q, J = 3.7 Hz, CHCCF3), 123.5 (q, J = 230 Hz, CF3)
122.0(CH), 118.3 (q, J = 3.7 Hz, CHCCF3), 64.0 (OCH2), 54.9 (CH), 39.1 (CH), 32.1 (CH2), 26.2
(CH2), 14.03 (CH3). HRMS-ESI [M+H] + m/z calcd for C19H18F3N4O3: 407.13255, found:
407.13179.

(4aR*,8aS*)-3-Acetyl-1-(p-tolyl)-4a,5,8,9-tetrahydro [1,2,4]triazolo[4,3-a]quinazoline-
9(1H)-one (4g): 0.14 g (72%), white crystals, m.p. 165–169 ◦C. 1H NMR (500 MHz, CDCl3) δ
7.96–7.88 (m, 2H), 7.27 (d, J = 7.9 Hz, 2H), 5.90–5.80 (m, 1H), 5.66–5.61 (m, 1H), 4.35 (ddd,
J = 13.3, 9.8, 5.0 Hz, 1H), 3.34 (dt, J = 16.2, 5.3 Hz, 1H), 2.76 (dt, J = 18.3, 4.9 Hz, 1H), 2.71
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(s, 3H, COCH3), 2.59 (ddd, J = 13.3, 11.4, 4.9 Hz, 1H), 2.39 (s, 3H, CH3, p-tolyl), 2.32 (ddtd,
J = 15.9, 13.7, 4.7, 2.4 Hz, 1H), 2.22–2.13 (m, 1H). 13C NMR (126 MHz, CDCl3) δ 187.5 (C=O),
176.4 (C=O), 153.9 (C), 144.0 (C), 138.0 (C), 133.9 (C), 129.7 (CH), 127.0 (CH), 122.6 (CH),
121.7 (CH), 55.1 (CH), 39.3 (CH), 32.8 (CH2), 27.2 (CH), 26.47(CH2), 21.07(CH3). HRMS-ESI
[M+H] + m/z calcd for C18H19N4O2: 323.15025, found: 323.14957.

(4aR*,8aS*)-9-Oxo-N-phenyl-1-(p-tolyl)-5-oxo-1,4a,5,8,8a,9-hexahydro [1,2,4]triazolo[4,3-
a]quinazoline-3-carboxamide (4h): 0.17 g (71%), white crystals, m.p. 273–276 ◦C. 1H NMR
(500 MHz, CDCl3) δ 8.79 (s, 1H, NH), 7.89–7.86 (m, 2H), 7.69–7.66 (m, 2H), 7.42 (dd, J = 10.8,
5.2 Hz, 2H), 7.26–7.21 (m, 3H), 5.84 (dd, J = 8.9, 3.8 Hz, 1H), 5.62 (dd, J = 9.0, 5.2 Hz, 1H), 4.36
(ddd, J = 13.4, 9.8, 5.0 Hz, 1H), 3.65–3.51 (m, 1H), 2.74 (dd, J = 13.7, 9.1 Hz, 1H), 2.61–2.45
(m, 1H), 2.38 (s, 3H, CH3, p-tolyl), 2.36–2.17 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 176.7 (C=O),
153.7 (C=O), 153.6 ©, 141.3 (C), 138.0(C), 136.4 (C), 133.6 (C), 129.8 (CH), 129.4 (CH), 126.8 (CH),
125.8 (CH), 122.7 (CH), 121.6 (CH), 120.2 (CH), 55.1 (CH), 39.3 (CH), 32.4 (CH2), 26.5 (CH2),
21.1 (CH3). HRMS-ESI [M+H] + m/z calcd for C23H22N5O2: 400.17680, found: 400.17611.

(4aS*,8aS*)-Ethyl 9-oxo-1-phenyl-1,4a,5,8,8a,9-hexahydro-[1,2,4]triazolo[4,3-a]quinazoline-
3-carboxylate (5a): 0.16 g (82%), white crystals, m.p. 222–225 ◦C. 1H NMR (500 MHz, CDCl3)
δ 8.05 (d, J = 7.6 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 5.93–5.82 (m, 1H),
5.67–5.59 (m, 1H), 4.59–4.44 (m, 2H), 4.37 (ddd, J = 13.6, 9.7, 5.2 Hz, 1H), 3.29 (dd, J = 12.2,
7.1 Hz, 1H), 2.83–2.72 (m, 1H), 2.62 (ddd, J = 13.4, 11.1, 5.0 Hz, 1H), 2.42–2.23 (m, 2H), 1.47
(t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 176.2 (C=O), 157.1 (C=O), 153.4 (C), 138.8 (C),
136.3(C), 129.13(CH), 127.78(CH), 127.32(CH), 122.05(CH), 121.84(CH), 63.70(CH2), 54.88(CH),
39.15(CH), 32.16(CH2), 26.3(CH2), 14.00(CH3). HRMS-ESI [M+H] + m/z calcd for C18H19N4O3:
339.14517, found: 339.14446.

(4aS*,8aS*)-Ethyl 9-oxo-1-(p-tolyl)-1,4a,5,8,8a,9-hexahydro-[1,2,4]triazolo[4,3-a]quinazoline-
3-carboxylate (5b): 0.18 g (83%), white crystals, m.p. 200–202 ◦C. 1H NMR (500 MHz, CDCl3) δ
7.90 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 5.88 (dd, J = 9.3, 4.5 Hz, 1H), 5.63 (dd, J = 9.5,
5.8 Hz, 1H), 4.60–4.42 (m, 2H, CH3CH2), 4.35 (ddd, J = 13.6, 9.7, 5.2 Hz, 1H), 3.33–3.22 (m, 1H),
2.82–2.71 (m, 1H), 2.60 (ddd, J = 13.3, 11.2, 5.0 Hz, 1H), 2.37 (s, 3H), 2.35–2.24 (m, 2H), 1.47
(t, J = 7.1 Hz, 3H, CH3CH2). 13C NMR (126 MHz, CDCl3) δ 176.2 (C=O), 157.1 (C=O), 153.4 (C),
138.7(C), 137.9(C), 133.8 (C), 129.7(CH), 127.3 (CH), 122.1(CH), 121.8(CH), 63.6 (CH2), 54.9(CH),
39.2(CH), 32.2(CH2), 26.3 (CH2), 21.1 (CH3), 14.0 (CH3). HRMS-ESI [M+H] + m/z calcd for
C19H21N4O3: 353.16082, found: 353.16005.

(4aS*,8aS*)-Ethyl 1-(4-nitrophenyl)-9-oxo-1,4a,5,8,8a,9-hexahydro-[1,2,4]triazolo[4,3-
a]quinazoline-3-carboxylate (5c): 0.16 g (71%), white crystals, m.p. 236–238 ◦C. 1H NMR
(500 MHz, CDCl3) δ 8.46 (d, J = 9.3 Hz, 2H), 8.31 (d, J = 9.3 Hz, 2H), 5.97–5.79 (m, 1H),
5.71–5.56 (m, 1H), 4.66–4.44 (m, 2H, CH3CH2), 4.39 (ddd, J = 13.7, 9.6, 5.1 Hz, 1H), 3.33–3.15
(m, 1H), 2.84–2.70 (m, 1H), 2.64 (ddd, J = 13.4, 11.1, 4.9 Hz, 1H), 2.44–2.21 (m, 2H), 1.49
(t, J = 7.1 Hz, 1H, CH3CH2). 13C NMR (126 MHz, CDCl3) δ 176.0 (C=O), 156.8 (C=O), 153.7
(C), 146.0 (C), 141.3(C), 139.6 (C), 127.2 (CH), 124.7 (CH), 121.9 (CH), 121.2(CH), 64.0 (CH2),
54.9 (CH), 39.1 (CH), 32.1(CH2), 26.1 (CH2), 14.0 (CH3). HRMS-ESI [M+H] + m/z calcd for
C18H18N5O5: 384.13025, found: 384.12980.

(4aS*,4aS*)-Ethyl 1-(4-methoxyphenyl)-9-oxo-1,4a,5,8,8a,9-hexahydro-[1,2,4]triazolo[4,3-
a]quinazoline-3-carboxylate (5d): 0.20 g (90%), white crystals, m.p. 201–204 ◦C. 1H NMR
(500 MHz, CDCl3) δ 7.90 (d, J = 9.1 Hz, 2H), 6.95 (d, J = 9.1 Hz, 2H), 5.88 (dd, J = 7.7, 5.7
Hz, 1H), 5.63 (dd, J = 9.7, 5.7 Hz, 1H), 4.58–4.44 (m, 1H, CH3CH2), 4.36 (ddd, J = 13.9, 9.7,
5.1 Hz, 1H), 3.83 (s, 3H, OCH3), 3.35–3.22 (m, 1H), 2.83–2.71 (m, 1H), 2.60 (ddd, J = 13.3, 11.2,
4.9 Hz, 1H), 2.39–2.23 (m, 2H), 1.46 (t, J = 7.1 Hz, 3H, CH3CH2). 13C NMR (126 MHz, CDCl3)
δ 176.17(C=O), 159.11(C=O), 157.12(C), 153.4(C), 138.6(C), 129.3(C), 127.3(CH), 123.7(CH),
122.1(CH), 114.3(CH), 63.6(CH2), 55.6(OCH3), 55.0(CH), 39.2(CH), 32.2(CH2), 26.4(CH2),
14.00(CH3). HRMS-ESI [M+H] + m/z calcd for C19H21N4O4: 369.15573, found: 369.15513.

(4aS*,8aS*)-Ethyl 1-(4-chlorophenyl)-9-oxo-1,4a,5,8,8a,9-hexahydro-[1,2,4]triazolo[4,3-
a]quinazoline-3-carboxylate (5e): 0.18 g (79%), white crystals, m.p. 231–233 ◦C. 1H NMR
(500 MHz, CDCl3) δ 8.08 (d, J = 12.0 Hz, 2H), 7.42 (d, J = 9.0 Hz, 2H), 5.88 (dd, J = 8.8,
4.9 Hz, 1H), 5.63 (dd, J = 7.5, 6.0 Hz, 1H), 4.62–4.44 (m, 2H, CH3CH2), 4.41–4.29 (m, 1H),
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3.33–3.19 (m, 1H), 2.82–2.71 (m, 1H), 2.61 (ddd, J = 13.4, 11.2, 4.9 Hz, 1H), 2.39–2.22 (m, 2H),
1.47 (t, J = 7.1 Hz, 3H, CH3CH2). 13C NMR (126 MHz, CDCl3) δ 176.1(C=O), 157.0(C=O),
153.4(C), 138.9(C), 134.9(C), 133.3(C), 129.2(CH), 127.3(CH), 122.7(CH), 122.0(CH), 63.8(CH2),
54.9(CH), 39.1(CH), 32.1 (CH2), 26.3(CH2), 14.0(CH3). HRMS-ESI [M+H] + m/z calcd for
C18H18ClN4O3: 373.10619, found: 373.10560.

(4aS*,8aS*)-Ethyl 9-oxo-1-(3-(trifluoromethyl)phenyl)-1,4a,5,8,8a,9-hexahydro-[1,2,4]tri
azolo[4,3-a]quinazoline-3-carboxylate: (5f): 0.18 g (76%), white crystals, m.p. 162–164 ◦C.
1H NMR (500 MHz, CDCl3) δ 8.55–8.46 (m, 1H), 8.24 (s, 1H), 7.63–7.55 (m, 2H), 5.89 (dd,
J = 8.4, 4.7 Hz, 1H), 5.64 (dd, J = 8.6, 4.9 Hz, 1H), 4.61–4.46 (m, 2H, CH3CH2), 4.38 (ddd,
J = 13.6, 9.6, 5.2 Hz, 1H), 3.36–3.16 (m, 1H), 2.77 (dt, J = 8.7, 4.6 Hz, 1H), 2.62 (ddd, J = 13.4,
11.1, 5.0 Hz, 1H), 2.45–2.18 (m, 2H), 1.49 (t, J = 7.1 Hz, 3H, CH3CH2). 13C NMR (126 MHz,
CDCl3) δ 176.1 (C=O), 156.9(C=O), 153.6(C), 139.2(C), 136.8(C), 131.7 (q, J = 34 Hz, C-CF3)
129.9 (CH), 127.3(CH), 124.9(CH), 124.2 (q, J = 3.6 Hz, CHCCF3), 123.5 (q, J = 270 Hz,
CF3) 122.0(CH), 118.2 (q, J = 3.7 Hz, CHCCF3), 63.9 (OCH2), 54.9 (CH), 39.2 (CH), 32.1
(CH2), 26.2 (CH2), 14.0 (CH3). HRMS-ESI [M+H] + m/z calcd for C19H18F3N4O3: 407.13255,
found: 407.13150.

(4aS*,8aS*)-3-Acetyl-1-(p-tolyl)-4a,5,8,9-tetrahydro-[1,2,4]triazolo[4,3-a]quinazolin-9(1H)-
one (5g): 0.14 g (71%), white crystals, m.p. 162–165 ◦C. 1H NMR (500 MHz, CDCl3) δ 7.93
(d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.1 Hz, 2H), 5.90–5.82 (m, 1H), 5.67–5.60 (m, 1H), 4.34 (ddd,
J = 13.4, 9.8, 5.1 Hz, 1H), 3.39–3.28 (m, 1H), 2.76 (dt, J = 18.5, 5.0 Hz, 1H), 2.71 (s, 3H, COCH3),
2.63–2.54 (m, 1H), 2.39 (s, 3H, CH3, p-tolyl)), 2.32 (ddtd, J = 15.9, 13.6, 4.6, 2.4 Hz, 1H), 2.17
(dddt, J = 12.2, 7.0, 4.6, 2.4 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 187.5 (C=O), 176.5 (C=O),
153.9 (C), 144.0 (C), 138.0 (C), 133.9 (C), 129.7 (CH), 127.0 (CH), 122.6 (CH), 121.7 (CH), 55.1
(CH), 39.3 (CH), 32.8 (CH2), 27.2 (CH), 26.47(CH2), 21.1(CH3). HRMS-ESI [M+H] + m/z calcd
for C18H19N4O2: 323.15025, found: 323.14953.

(4aS*,8aS*)-9-Oxo-N-phenyl-1-(p-tolyl)-1,4a,5,8,8a,9-hexahydro-[1,2,4]triazolo[4,3-a]qu
inazoline-3-carboxamide (5h): 0.17 g (71%), white crystals, m.p. 282–284 ◦C. 1H NMR
(500 MHz, CDCl3) δ 8.81 (s, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 7.9 Hz, 2H), 7.41
(t, J = 7.9 Hz, 2H), 7.24 (d, J = 8.2 Hz, 3H), 5.86–5.78 (m, 1H), 5.66–5.58 (m, 1H), 4.41–4.27
(m, 1H), 3.57 (d, J = 15.4 Hz, 1H), 2.74 (d, J = 17.9 Hz, 1H), 2.59–2.45 (m, 1H), 2.37 (s, 3H,CH3,
p-tolyl), 2.35–2.13 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 176.56(C=O), 153.67(C=O),
141.28(C), 137.92(C), 136.47(C), 133.71(C), 129.73(CH), 129.33(CH), 126.79(CH), 125.75(CH),
122.65(CH), 121.58(CH), 120.26(CH), 55.14(CH), 39.29(CH), 32.37(CH2), 26.46 CH2), 21.06
CH3). HRMS-ESI [M+H] + m/z calcd for C23H22N5O2: 400.17680, found: 400.17591.

3.3. X-ray Structure Determinations

After immersing the crystal of 5a mounted on a loop into cryo-oil at a temperature
of 120 K, XRD data were collected (Rigaku Oxford Diffraction Supernova device, Cu Kα

radiation). Cell refinement and data reduction were achieved using the CrysAlisPro soft-
ware package ((CrysAlisPro 1.171.40.53), CrysAlisPro = CrysAlisPro package, SHELXL
2017/1, SHELXT 2018/2, SHELXLE rev. 1320) [35]. The intensities were corrected be-
fore structure determination (Gaussian absorption correction (CrysAlisPro [40]), intrinsic
phasing (SHELXT [40]) method). Additional structural refinements were also carried
out (SHELXL [41] software with the SHELXLE [42] graphical user interface). The crystal
contained two independent molecules in the asymmetric unit. Hydrogen atoms were posi-
tioned geometrically on their parent atoms, with C–H = 0.95–1.00 Å and Uiso = 1.2–1.5·Ueq
(parent atom) (Appendix A). Other important structural details can be found in Table S1
(Supplementary Materials).

3.4. Determination of Antiproliferative Properties of the Prepared Compounds

The antiproliferative actions of the selected compounds (4a–e, 4g,h, and 5a–h) were
investigated through the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide) assay using a set of adherent cell lines isolated from human (SiHa), ovarian (A2780),
and breast (MCF-7 and MDA-MB-231) cancers [43]. All cell lines were obtained from the
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European Collection of Cell Cultures (ECCAC, Salisbury, UK), except for SiHa, which was
purchased from the American Tissue Culture Collection (Manassas, VA, USA). The cells
were grown in minimal essential medium supplemented with fetal bovine serum (10%),
non-essential amino acids (1%), and a penicillin–streptomycin–amphotericin B mixture
(1%). All cell culture components were purchased from Lonza Group Ltd. (Basel, Switzer-
land). Malignant cells were plated into 96-well plates at the density of 5000/well, and
the next day, the test substance was added in 10 µM or 30 µM final concentrations. After
72 h of incubation, MTT solution (5 mg/mL, 20 µL) was added to each well and incubated
for 4 h. Finally, the medium was discarded, and the formazan was solubilized in 100 µL
DMSO during 60 min of shaking at 37 ◦C. The absorbance was determined at 545 nm
using a microplate reader (SpectoStarNano, BMG Labtech, Ortenberg, Germany). Two
independent experiments were carried out with five wells for each condition, and cisplatin
(Ebewe GmbH, Unterach, Austria) was included as a reference agent.

4. Conclusions

New angular 1,2,4-triazolo[4,3-a]quinazolin-9-ones with various functionalities were
prepared in a simple and regioselective manner by reacting variously functionalized hydra-
zonoyl chlorides and cyclohexene-based 2-thioxopyrimidin-4-ones 1 and 2 that favored
the formation of angular products rather than linear ones. Both cis and trans isomers of
2-thioxopyrimidin-4-ones led to the formation of angular products. Among all the prepared
compounds, only the cis isomer of triazole 4c with a p-nitrophenyl substituent of the ring
revealed significant growth inhibition against all the used cancer cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules28093718/s1, NMR spectra of all synthesized compounds and crystallographic
details of 5a and Table S1: Crystal Data.
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Appendix A

5a: C18H18N4O3; a colourless needle of dimensions 0.02 × 0.06 × 0.132 mm3 gave a
triclinic space group P 1, a = 9.5332(3) Å, b = 10.4081 (3) Å, c = 16.8864(5) Å, α = 89.227(2)◦,
β = 81.130(2)◦, γ= 74.199(3)◦, λ= 1.54184 Å, V = 1.592.20(3) Å, T = 120(2) K, ρcalc = 1.412 Mg/m3,
θ range: 2.650 to 76.986◦, No. reflections: 42,738, no. unique reflections: 6682, completeness to
θ67.684◦ = 100%, GOOF = 1.029, Rint = 0.0503, R1 = 0.0377, wR2 = 0.0932 with R1 = Σ||Fo|−
|Fc||/Σ|Fo|. wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2.
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