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Abstract. New theoretical and numerical results are presented regarding isolated attosecond XUV – soft
X-ray pulses, that can be generated by Thomson-backscattering of a high-intensity single-cycle near-
infrared laser pulse on a suitable nanobunch of MeV electons. A simple approximate formula is derived for
the cut-off frequency of the collective radiation spectrum, which is then employed to find the length of the
nanobunch which emits an isolated pulse of 16 as length. Detailed analysis of the spectral, temporal and
spatial features of this attosecond pulse is given. It is also shown that the 100 nJ pulse energy, corresponding
to 2.1× 1018W/cm2 peak intensity of the laser pulse, can be increased to reach the µJ pulse energy both
by increasing the intensity or by setting a suitable down-chirp of the laser pulse.

1 Introduction

Attosecond pulses of “light”, usually in the XUV – soft
X-ray spectral range, allow us to experimentally access
the real time electron dynamics in atoms, molecules and
solids [1]. At present, high-order-harmonic generation in
noble gas samples is the most reliable method to gener-
ate attosecond XUV pulses [2,3], which, however, has its
limitations both in pulse length and intensity.

Thomson-backscattering of an intense laser pulse on a
relativistic electron bunch is a well-known source of (hard)
X- and gamma-ray radiation [4–10]. In our earlier works
[11,12], we already showed that Thomson-backscattering
of a linearly polarized near-infrared few-cycle laser pulse
on a suitable electron bunch may provide isolated attosec-
ond pulses also in the XUV – soft X-ray spectral range,
including the 2.33–4.37 nm water window. According to
our calculations, these attosecond pulses are almost lin-
early polarized and extremely well collimated, and their
carrier-envelope phase difference (CEP) is locked to that
of the laser pulse.

The availability of suitable electron bunches is
crucial for attosecond pulse generation via Thomson-
backscattering. Based on pioneering experiments [13,14]
and enlightening simulations [15], the state of the art
methods are (i) velocity bunching, producing bunches of
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pC charge, MeV energy, sub-10 fs pulse length [9,16,17],
(ii) bunch compression, providing bunches of 2 as duration
and 5.2 MeV energy [18], (iii) laser-wakefield acceleration,
yielding quasi-monoenergetic, fs or sub-fs electron bunch
trains [19–21], or even an isolated electron bunch [22] of
10–100 pC charge (i.e. 107−108 electrons) and of few to
few hundred MeV energy. The radiation emission by laser-
generated electron nanobunches has also been studied in
[23–25], where the authors also predicted the generation
of extremely dense electron bunches in the few 10–100 nm
length range having a few MeV energy.

Based on these developments, relativistic electron
nanobunches with parameters used in the present paper
are expected to be available in the near future. In order
to investigate the Thomson scattering of a near infrared
(NIR) few-cycle chirped laser pulse on such an nanobunch,
we start from the Newton–Lorentz equations. We com-
pute and analyse the collective radiation and we also give
an approximate analytic formula for its cut-off frequency.
We show that the energy of the attosecond pulse can be
increased from the nJ to the µJ energy range by increasing
the intensity or by setting a suitable value for the chirp of
the driving laser pulse.

2 Theoretical model

Let us assume a coordinate system in which the driving
laser pulse propagates along the z axis and it is linearly
polarized along the x axis. First, we consider a single elec-
tron only, which moves initially in the −z direction, i.e.
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Fig. 1. Frequency dependence of the magnitude of the coherence factor CN (normalized to N) along the backscattering direction.
Curves (a)–(c) correspond to realistic electron nanobunches with stochastic electron positions having a Gaussian distribution in
the longitudinal direction. Curves (d)–(f) correspond to artificial electron nanobunches with an equidistant spacing of electrons.
The longitudinal length of the equidistant bunch is set equal to the full width (2 standard deviations) of the longitudinal
Gaussian distribution of the realistic bunch for corresponding curves (a) and (d): Lbunch = 2.66 nm, (b) and (e): Lbunch = 5 nm,
(c) and (f): Lbunch = 15 nm. All other parameters are the same for all curves.

we are in head-on collision scenario. We model the elec-
tric field of the laser pulse, E = (Ex, 0, 0), with the usual
sine-squared envelope:

Ex (θ) = E0 sin2

(
ωLθ

2nc

)
cos ((ωL + kθ)θ − ϕ0) , (1)

where E0 is the amplitude, ωL is the angular frequency,
nc is the number of optical cycles in the pulse, k is the
chirp parameter, ϕ0 is the CEP and θ = t−nL · r/c is the
wave argument of the laser pulse at position r, with nL
denoting the unit vector pointing in the propagation direc-
tion. We assume uniform transverse beam profile in order
to have the advantage of analytic treatment. For detailed
numerical investigations of the effects of the transverse
beam profile see references [26–28].

The Newton–Lorentz equations govern the motion of a
relativistic electron with charge e and mass m during its
interaction with the laser pulse as

m
du

dτ
=
e

c

[
u0E (θ) + nL (u ·E (θ))−E (θ) (nL · u)

]
, (2)

m
du0

dτ
=
e

c
E (θ) · u, (3)

where
(
u0,u

)
= (γc, γv) is the four-velocity, γ ≡(

1− |v|2 /c2
)−1/2

is the Lorentz-factor and dτ = dt/γ

is the proper time element of the electron. In equation (3)
we have made use of the B = nL × E/c, connecting the
magnetic induction and the electric field strength of a
plane wave. As it is well known, the equations of motion
(2)–(3) have a general analytic solution [29–31] and in
[12] we determined an explicit particular solution of equa-
tions (2)–(3) for a laser pulse corresponding to equa-
tion (1) with k = 0. Using this solution, we are able to

evaluate the spectrum of radiation emitted by an electron,
which is given in the far-field by the following formula [32]:

E1 (ω) =
e

c

eiωR0/c

4πε0R0

∞∫

−∞

n×
[
(n− β)× β̇

]

(1− n · β)2
e

iω(t−n·r(t)/c)
dt , (4)

where R0 is the distance of the observation point, n is the
unit vector pointing towards the observer, β = v/c and β̇
are the normalized velocity and acceleration, respectively.

Then we can generalize equation (4) to describe the
collectively emitted Thomson-backscattered radiation of
an ideal electron bunch with the help of the coherence
factor (sometimes called also relativistic form factor)
[33,34]:

CN (ω) =
N∑
k=1

exp
[
iω

(
tk (θ0)− n · rk (θ0)

c

)]
, (5)

which takes into account the effect of the different ini-
tial positions of the electrons on the collectively emitted
spectrum of N electrons as:

EN (ω) = CN (ω) E1 (ω) . (6)

Since the frequency-dependence of the coherence fac-
tor equation (5) influences the spectrum of the collective
radiation in an essential way [12], we plot the magni-
tude of CN (ω) in Figure 1 for electron nanobunches of
different lengths. For each length, we plot |CN (ω)| both
for a realistic electron nanobunch with stochastic electron
positions characterized by a uniform distribution in the
transverse direction and a Gaussian distribution in the
longitudinal direction (solid lines), and for a rather arti-
ficial electron nanobunch with an equidistant spacing of
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electron positions (dashed lines). The number of electrons
and the transverse size is the same for the bunches, and
the longitudinal length of the equidistant bunch is equal
to the full width (i.e. 2 standard deviations) of the longitu-
dinal Gaussian distribution of the realistic bunch. As it is
expected, |CN (ω)| decreases faster with increasing angu-
lar frequency in the case of the realistic nanobunch, and it
does not exhibit the series of higher frequency peaks as it
does in case of the nanobunch with equidistant electrons.
However, it is interesting that the first zero of |CN (ω)| of
the equidistant nanobunch is a good approximation for the
cut-off frequency of |CN (ω)| of the corresponding realistic
nanobunch.

Based on equation (5), we can easily obtain a sim-
ple approximate expression for this cut-off frequency
(ωc) of the constructive interference of the Thomson-
backscattered radiation by an electron nanobunch. Here
we consider only the on-axis radiation by setting
n = (0, 0,−1). From references [11,33] we know that one
has to transform the usual initial conditions, which are
valid in a lab-frame (i.e. on a space-like hyper-surface),
to the light-like hyper-surface due to the use of the wave
argument θ in equations (2)–(3). Thus ctk (θ0 = 0) and
zk (θ0 = 0) take the following form:

ctk (θ0 = 0) = zk (θ0 = 0) =
zk (t0 = 0)

(1 + |vz(t0=0)|
c )

· (7)

Making use of the assumed equidistant spacing with the
distance z = Lbunch/N between the electrons, where
Lbunch is the length of the bunch consisting of N electrons,
and using the connection |vz (t0 = 0) | = c

√
1− 1/γ2

0
between the initial Lorentz-factor and the velocity, we
obtain from equation (5) the following:

CN (ω) =
N−1∑
k=0

(
exp

[
i
ω

c

2
1 +

√
1− 1/γ2

0

Lbunch

N − 1

])k
. (8)

With the well known exponential sum formula, we get the
magnitude of the coherence factor as:

|CN (ω)| =

∣∣∣∣∣∣∣∣
sin
(
ω
c

1

1+
√

1−1/γ2
0

Lbunch
N−1 N

)
sin
(
ω
c

1

1+
√

1−1/γ2
0

Lbunch
N−1

)
∣∣∣∣∣∣∣∣ . (9)

For a high-density nanobunch (i.e. N � 1 and Lbunch <
λL), the sine in the denominator of equation (8) can be
approximated by its argument. Then we obtain the fol-
lowing expression for the first zero of |CN (ω)|:

ωc = c

(
1 +

√
1− 1/γ2

0

)
π

Lbunch
· (10)

According to the discussion of the curves of Figure 1, this
formula above gives the approximate cut-off frequency of
an ideal high-density electron nanobunch having a realistic
stochastic electron distribution. It depends only weakly on
the initial Lorentz-factor γ0, but it is very sensitive to the
length of the bunch, Lbunch.

3 Emitted radiation spectra and pulse shapes

Applying the considerations and results of the previous
section, we evaluate now the radiation spectrum emitted
by an electron and then by an electron bunch, moving
according to the solution of equations (2)–(3). We assume
a realistic almost single-cycle (at FWHM) cosine-type
laser pulse by setting nc = 3, k = 0 and ϕ0 = 0, with
a carrier wavelength of λL = 800 nm and a dimensionless
vector potential of a0 = 1, corresponding to a peak electric
field of ca. 4 × 1012 V/m (i.e. a0 = 8.5 × 10−10λ

[µm]
√
I0 [W/cm2]). We show the resulting back-scattered

single electron radiation spectrum in Figure 2 for the ini-
tial Lorentz-factor (γ0) of 10, along the directions n in
the x− z plane defined by the indicated polar angles (i.e.
along and very close to the direction of the electron’s ini-
tial velocity at 180◦). We set the polar angle range in
Figures 2–4 to the usually expected beam divergence of
1/γ0. We plot the spectrum of the dominant x compo-
nent of the electric field. The single electron spectrum on
Figure 2 is more sensitive with respect to the change of
the polar angle than in case of a long laser pulse. Fur-
thermore, the nearly single-cycle length of the driving
laser pulse causes further spectral broadening compared
to the long laser pulse or to the continuous wave limit
[35–38].

Based on the single electron spectrum and on equa-
tion (5), we can now consider the collective radiation of
an electron bunch. According to equation (10), we need an
electron bunch with a length of 2.66 nm in order to gen-
erate a broad collective spectrum, e.g. constructive inter-
ference up to 300ωL. This so called electron nanobunch
is well known in the literature, it consists typically of
105−108 electrons and has its longitudinal size in the
1–100 nm range. The assumed initial Lorentz-factor, cor-
responding to 5.2 MeV energy, and the calculated bunch
length are close to the simulation results of Naumova et
al. [15] and to the predictions of Sell and Kärtner [18].
In our calculations, we assume a bunch of N = 108

electrons with negligible energy spread, its distribution
is uniform with a size of 800 nm (= λL) in the trans-
verse direction, while its distribution is Gaussian with
a size of 2.66 nm (2 standard deviation) in the longitu-
dinal direction. Several experimental [13,14,19–22] and
simulation results [39–41] suggest that these nanobunch
parameters are within reach experimentally in the near
future.

The applied parameters allow us to treat the electron
bunch as an ideal bunch. That is, we neglect the radia-
tion reaction because the characteristic time of the energy
loss by radiation reaction [34,42] is five orders of mag-
nitude larger than the interaction time. We also neglect
the electron-electron interaction since the Coulomb-force
between the electrons is three orders of magnitude smaller
than the Lorentz-force due to the laser pulse for a0 = 1.
The effect of the energy spread of 0.1% or less is also
negligible for these parameters. The nonzero transverse
emittance of the bunch, which depends on the transverse
velocity components, does not modify the results because
the dominant terms of the trajectories include the longi-
tudinal component of the velocity only. Additionally, we
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Fig. 2. Polar angle dependence of the Thomson-backscattering spectrum, radiated by a single electron, having an initial energy
of 5.2 MeV (corresponding to γ0 = 10). The driving laser pulse is an almost single-cycle cosine-type laser pulse of sine-squared
envelope. We plot the dominant x-component of the electric field along the propagation directions in the x− z plane near the
backscattering direction (at 180◦). Other parameters: λL = 800 nm, nc = 3, k = 0, ϕ0 = 0, a0 = 1, R0 = 2 m.

Fig. 3. Polar angle dependence of the Thomson-backscattering spectrum, radiated collectively by an nanobunch of 108 electrons
described in the main text. Other parameters are the same as for Figure 2.

investigate the backscattered radiation, very close to 180◦,
which further suppresses the effect of the transverse emit-
tance in equation (4).

Next we show the polar angle dependence of the spectral
amplitude of the collective radiation in Figure 3, computed
on the basis of equation (6) for the bunch parameters
mentioned above. The collective nature of the radiation
causes a narrower radiation cone compared to Figure 2,

because of the sensitive dependence of the coherence fac-
tor on the polar angle, which was investigated in [12].

We show the polar angle resolved temporal pulse shape
of the collective radiation in Figure 4, based on the inverse
Fourier transform of the data of Figure 3. The resulting
attosecond pulse has only two oscillations and its length
at FWHM is 16 as. In a distance of 2 m from interac-
tion region, the peak intensity is 6.21 × 109 W/cm2 and

https://www.epjd.epj.org
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Fig. 4. Temporal and spatial pulse shape of the isolated attosecond pulse, computed from the spectrum on Figure 3. We note
that the emitted pulse has azimuthal symmetry.
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Fig. 5. Temporal pulse shapes of the isolated attosecond pulses along the backscattering direction (at 180◦) for indicated
values of the squared normalized vector potential (a2

0) for the single-cycle cosine-type laser pulse. The inset shows the corre-
sponding spectra. The electron bunch parameters are the same as for Figure 3.

the average intensity is 1.31× 109 W/cm2, giving a pulse
energy of 99 nJ.

A seemingly obvious way to increase the energy and
the intensity of the attosecond pulse is to increase the
intensity of the NIR pulse. We plot the temporal shapes
of the resulting attosecond pulses at 180◦ in Figure 5,
corresponding to a2

0 values in the range of 1–6, and we
plot the corresponding spectra in the inset using the same
electron bunch parameters as before.

Based on the collective spectra, we see that, although
the intensity of the driving pulse is in the nonlinear regime,
only the linear peaks of the single electron spectra con-
tribute to the collective radiation, owning to the properties
of the coherence factor. Since these peaks, besides gaining
more spectral intensity, get also red-shifted and narrowed

with increasing laser intensity, the resulting pulses contain
much more energy and become somewhat longer.

Figure 5 shows that the intensity and the energy of
the attosecond pulse increase non-linearly with increas-
ing intensity of the driving laser pule up to a certain
intensity limit which depends on the parameters of the
bunch, the central wavelength and the pulse length of
the driving laser field. E.g. for a2

0 = 3, the peak inten-
sity is 6.15 × 1010 W/cm2 and the average intensity is
2.62 × 1010 W/cm2, already giving a pulse energy of
ca. 500 nJ. For a2

0 = 5, this effect is much stronger, the
pulse energy increases with a factor of 10, reaching already
the µJ energy range. However, further increase of the NIR
intensity does not cause any increase of the intensity or
the energy of the attosecond pulse.
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Fig. 6. Temporal pulse shapes of the isolated attosecond pulses, obtained by nonlinear Thomson-backscattering at 180◦, for
the indicated values of chirp parameter (k) for the cosine-type laser pulse. The insets show the incoming NIR pulse shapes (left)
and the corresponding collective spectra (right) for different values of k. The electron bunch parameters are the same as for
Figure 3.

High-intensity laser pulses are usually chirped, which
provides an additional control parameter for the
Thomson-backscattering process. It is thus interesting to
explore how the chirp of the driving laser pulse affects the
emitted collective radiation spectrum and the resulting
attosecond pulse. To our best knowledge, this question
was not investigated for coherent Thomson-backscattering
previously. We note that for nonzero k, the explicit ana-
lytic solution of the equations of motion (2)–(3) requires
some further approximations, therefore we use a numerical
solution instead. We show the resulting attosecond pulse
shapes in Figure 6 for two nonzero values of the chirp
parameter k of the laser pulse, in comparison with the
case of zero chirp. The left inset of Figure 6 plots the cor-
responding driving laser pulses, while the right inset shows
the corresponding collective spectra. The result is some-
what counter-intuitive, since one would expect that the
energy of the attosecond pulse increases with the energy
of the driving laser pulse (since a laser pulse with posi-
tive chirp contains more energy). In contrast, our results
show that the intensity and the energy of the attosecond
pulse increase if the driving laser pulse is down-chirped.
E.g. for k = −5 × 10−2fs−2, the energy of the attosec-
ond pulse can be increased up to 1µJ, which is an order
of magnitude larger than in the case of zero chirp. This
can be explained again by the collective nature of radia-
tion. The down-chirp causes a quiet decrease and a sig-
nificant red-shift on the peaks of the single-electron spec-
trum, which is much more favourable to the constructive
interference of the electrons’ radiation than the opposite
process caused by the up-chirp. This prediction about the
energy dependence of the attosecond pulse on the chirp of
the driving laser pulse could be easily verified experimen-
tally. Note also that the pulse length remains the original
16 as, although the pulse-shape changes.

4 Summary and conclusions

Our theoretical investigations show that the Thomson-
backscattering of a NIR laser pulse on a suitable relativis-
tic electron nanobunch is a promising source of an isolated
attosecond XUV – soft X-ray pulse, having advantageous
features. Based on the analysis of the coherence factor, we
derived a simple formula for the cut-off frequency of the
collective radiation spectrum, which could be useful also
in designing the corresponding experiments. As an exam-
ple, we have shown that an nanobunch of 108 electrons hav-
ing 5.2 MeV energy, driven by a few-fs NIR laser pulse of
ca. 2.1× 1018 W/cm2 peak intensity, could produce an iso-
lated attosecond pulse of 16 as pulse-length and ca. 100 nJ
energy. Our results also show that the energy of the attosec-
ond pulse can be effectively increased by increasing the
intensity or by changing the chirp of the driving laser pulse:
e.g. with a proper down-chirp of the laser pulse, the attosec-
ond pulse energy could reach the µJ energy range.
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