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Abstract: We consider a quantum mechanical model for the high-order harmonic generation in
bulk solids. The bandgap is assumed to be considerably larger than the exciting photon energy.
Using dipole approximation, the dynamical equations for different initial Bloch states are decoupled
in the velocity gauge. Although there is no quantum mechanical interference between the time
evolution of different initial states, the complete harmonic radiation results from the interference of
fields emitted by all the initial (valence band) states. In particular, the suppression of the even-order
harmonics can also be viewed as a consequence of this interference. The number of the observable
harmonics (essentially the cutoff) is also determined by interference phenomena.

Keywords: light-matter interaction; high intensity lasers; high-order harmonic generation; optical
phenomena in solids

1. Introduction

The first observation of photoemission spectra with clear high-order harmonics was reported
using gaseous target media [1,2]. In noble gas samples, the atoms driven by intense laser fields can
be sources of secondary radiation ranging from visible to extreme ultraviolet regimes. Besides the
wide bandwidth, this radiation has excellent temporal and spatial coherence. Additionally, the process
of high-order harmonic generation (HHG) can be applied for the creation of attosecond pulses [3–5],
which are ideal tools for the time-resolved investigation of electronic processes. These are the first
experiments that successfully generated such short pulses and triggered the fast development of
measurement and control techniques, as well as that of theoretical models [6–13].

Typical intensities of the HHG signals are 5 to 10 orders of magnitude lower than that of the applied
exciting field, which is partially due to the low particle density in gas samples. One possible way to
increase the conversion efficiency is using solid targets [14]. For the case of surfaces, there are two
mechanisms, the appearance of which strongly depends on the laser intensity: coherent wake emission
(CWE) [15] and relativistic oscillating mirror (ROM) [16]. Besides surfaces, bulk solids have also been
demonstrated to produce high-order harmonics, such as using few-cycle mid infrared (0.34–0.38 eV)
pulses impinging on a wide-bandgap zinc oxide (ZnO) crystal [17–20]. The gallium selenide (GaSe)
single crystal has also been used as a target when the control of terahertz high harmonic generation
was studied [21]. Considering real-time observation of crystal electrons, a non-perturbative quantum
interference was identified between interband transitions as a salient HH generation mechanism [22].
In Reference [23], a direct comparison of the HHG signal was given in the solid and gas phases of
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argon and krypton. Properties of the HHG radiation itself have also been investigated in various
samples [24–29]. For a recent review, see [30].

Besides the experimental results, several theoretical methods were developed in order to describe
the interaction of intense electromagnetic fields and matter. The quasi-classical method, used to
explain high-order harmonics, is a well-known three step model [31]. One of the most successful
quantum-mechanical treatments of the process was introduced by Lewenstein et al. [32], known as
the strong field approximation model of HHG, which has also been applied for solid samples [33,34].
Saddle-point approximation can also be used to evaluate the integrals that appear in the description
of both gases and solids [35–37]. The effective Bloch equations that were already developed in
Reference [38], and the density matrix formalism in the velocity gauge [39] are closely related to the
method that we are going to use in the following.

As a different approach, ab initio calculations can provide effective methods for solving the
time-dependent quantum mechanical problem of driving many electron systems. For example,
the nonlinear response to strong laser fields was studied by the three-dimensional, time-dependent,
two-particle reduced-density-matrix theory (TD-2RDM) [40]. In Reference [41], the time-dependent
density functional theory (TDDFT) was used to investigate the dependence of the process on the
ellipticity of the laser field. Other TDDFT simulations revealed how the inhomogeneity of the
electron-nuclei potential affects the process of HHG in solids [42].

In the current work, we focus on the case of bulk solids. As we shall see, a one-dimensional
model [43] (similar to the one used in [44]) for the crystalline solid with a bandgap having the order
of a few eV can reproduce the qualitative features of the HHG spectra (plateau region and cutoff,
including its intensity dependence). The most important positive feature of this simple model is its
transparency and low computational costs. Clearly, unlike more sophisticated models, it is not able to
reproduce all quantitative experimental findings; however, as we shall see, it can help us to clarify the
role of different initial states during the process of HHG, which is the primary aim of this work.

To this end, we work on a single electron picture and determine the Bloch states and the
corresponding energies. The resulting band structure has a bandgap (between the valence band (VB)
and the first conduction band (CB)) that is equal to that of the ZnO crystal. We solve the corresponding
dynamical equations numerically and calculate the HHG signal using the expectation value of the
dipole moment operator. Since, in the velocity gauge, the time evolution of different Bloch states is not
coupled, this calculation can be carried out for different VB initial states independently. Our aim is to
show that despite this independence, the net HHG signal is strongly influenced by the interference of
the charge currents related to different initial states. Note that although spatial interference during
propagation [45,46] can also have a significant effect on the HHG spectra, here we focus on the time
domain interference that can be detected at a fixed spatial point.

Our paper is organized as follows: first we discuss the physical and numerical aspects of the
model to be used (Section 2). Then, in Section 3, the main properties of the calculated HHG spectra
are analyzed: a general description (Section 3.1) is followed by a discussion on the suppression of the
even-order harmonics (Section 3.2) and the position of the cutoff (Section 3.3). Finally, we summarize
our results in Section 4.

2. Model and Method

2.1. Time-Dependent Hamiltonian

In the following, we use single-electron approximation in order to show how the individual
contribution of different initial states build up the time-dependent source of high harmonic radiation.
To this end, we use a model that is closely related to well-developed, more complex approaches—see
References [38,39,44]. The single-electron Hamiltonian in a crystal is given by:

H(t) =
1

2m
(p− eA)2 + U(r) + eΦ, (1)
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where e denotes the charge of the electron, and the lattice-periodic potential U(r) represents the solid.
The external electromagnetic field is taken into account via the scalar and vector potentials, Φ and
A. For a given U, one can look for the solution of the field-free problem in the form of Bloch states,
Ψn,k(r) = exp(ikr)un,k(r)/

√
V, where n denotes the band index, un,k(r) are lattice-periodic functions,

andV is the crystal volume. The eigenvalue equation for these states reads:

−
}2

2m
(∇+ ik)2un,k(x) + U(r)un,k(r) = En(k)un,k(r). (2)

As we can see, these equations for different k vectors are independent; thus, due to the periodicity
of the functions un,k(r), it is sufficient to determine the k dependent eigenenergies En(k) in a single
unit cell for all values of k separately. Having obtained the Bloch states and the eigenenergies En(k)
(i.e., the band scheme), we have the scene on which laser-induced dynamics take place. Let us note
here that by using Bloch states, the band energies are always the same for ±k, which means a certain
limitation for the materials that can be described in this way. In more detail, this limitation certainly
allows the description of direct bandgap semiconductors or dielectrics, where the extrema of the bands
are at k = 0 and the momentum matrix elements also have the maximal magnitude around here
(since, in this case, most of the significant transitions occur in a k-space range where the assumption
of the symmetry En(k) = En(−k) holds). On the other hand, it is not expected that indirect bandgap
materials (like Si) can be described in this way.

In actual numerical calculations, one has to determine the electromagnetic gauge to be used. In the
following, we consider the velocity gauge, where electromagnetic potentials can be expressed using
the electric field F(t) as A(t) = −

∫ t
−∞

F(t′)dt′, Φ = 0. Realistically, we assume that the characteristic
wavelength of the exciting laser field is much larger than the unit cell; therefore, the spatial variation of
the laser field can be neglected. Within this dipole approximation, the Hamiltonian (1) is diagonal in
k, thus, the time evolutions of different Bloch states Ψn,k and Ψn,k′ (with k , k′) as initial states are
independent. However, all these states interact with the same HHG modes. This is the point we will
analyze in Section 3.

2.2. The Source of the High Harmonic Signal

In order to solve the dynamics induced by the Hamiltonian (1), the initial state has to specified.
In other words, by expanding the quantum mechanical state

∣∣∣Φ(t)
〉
= Φ(r, t) of the electron in terms

of the Bloch states |n, k〉 = Ψn,k(r) as
∣∣∣Φ(t)

〉
=

∑
n,k cn,k(t)|n, k〉, the coefficients cn,k(t = 0) should be

given. (Note that, for the sake of simplicity, we assume periodic boundary conditions, and consequently
the k-space will not be continuous—there will be a discrete, densely spaced series of k vectors.)

However, the most plausible assumption for the initial state of the crystal is that it is in thermal
equilibrium before the arrival of the laser pulse. Thermal states are not pure quantum mechanical
states; thus, instead of a state vector, we have to use a density matrix, ρ. Since the Bloch states are
energy eigenstates of the crystal, all density matrices that represent thermal equilibria are diagonal on
this basis. At room temperature, for a bandgap around 3 eV, the corresponding statistical weights are
practically nonzero only for the valence bands (VB). That is, if we take a single VB into account with
the corresponding band index n0, we can write:

ρ(t = 0) =
1
N

∑
k

|n0 , k〉〈n0 , k|, (3)

where the constant N equals to the number of k vectors in the first Brillouin zone, and provides
normalization: Trρ(0) = 1. Note that the term ”thermal equilibrium” is not completely adequate for
the state given by Equation (3). Strictly speaking, this state corresponds to the low temperature limit.
However, for the large-bandgap case that we consider, the exact thermal state at room temperature
is numerically the same as ρ(t = 0) above. The time evolution of the density operator is governed
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by the von Neumann equation, supplemented by a phenomenological term that takes unavoidable
decoherence effects into account:

∂
∂t
ρ(t) = −

i
} [H(t)ρ(t) − ρ(t)H(t)] +

∂
∂t
ρ(t)

∣∣∣∣∣
dec

, (4)

where the second term on the right-hand side forces the population toward the valence band with
a rate of γd, and destroys the off-diagonal matrix elements (quantum mechanical coherences) with
a rate of γod. (Note that these effects do not change the index k either.) For the calculations presented
here, the diagonal and off-diagonal relaxation rates are γd = 0.1 fs−1 and γod = 0.3 fs−1, respectively.
Note that γod is the inverse of the dephasing time T2, that can be estimated to fall within the range of
15–50 fs for low-energy electrons [47], but can be as short as a few fs, such as for the case of a strong
longitudinal phonon–electron interaction in SiO2 [48]. Although, according to our best knowledge,
scattering rates for hot electrons have never been measured directly, T2 ≈ 4 fs have often been used in
theoretical calculations, such as in [49,50]. This is in agreement with our current choice. The diagonal
relaxation described by γd describes energy relaxation, which is a slower effect that usually plays a less
significant role on the fs timescale, but for the sake of completeness it is worth including it as well.
As one can check, using the dipole approximation and velocity gauge, ρ will always be diagonal in
the index k—that is, the dynamics only mix the band indices (”vertical transitions”), but not different
values of k.

In a thermal equilibrium (without external bias), the sample does not radiate, and the net current
flowing through it is zero. When a laser pulse impinges the crystal, this changes, and the nonzero
current density:

J =
e
Vm

Tr[ρpkin] =
e
Vm

Tr[ρ(p− eA)] (5)

becomes the source of the HHG signal. Note the appearance of the kinetic momentum pkin here—since
it is proportional to the velocity operator (which does not hold for the canonical momentum p = −i}∇),
its expectation value is proportional to the macroscopic net current density that appears in Maxwell’s
equation as a source. For a linearly polarized excitation, the power spectrum of the only nonzero
component of J is assumed to provide the HHG spectra.

Note that J is often considered as a sum of the ”polarization-like” interband and ”current-like”
intraband components. Since this distinction—at least in the single electron picture we use here—is
shown to be gauge-dependent [43], we shall not use it in the following. Instead, we consider the
gauge-independent, entire J as the source of the HH radiation.

2.3. Numerical Approach

In order to simplify the calculations, we are going to use a one-dimensional model in the following
(see Figure 1). Note that this can be adequate for linearly polarized excitations. We consider two
model potentials that have one point in common: both produce a band scheme with a (maximal) gap
of 3.2 eV, which corresponds to the case of the ZnO crystal. The explicit form of the first potential is the
following:

U(a)(x) = −U(a)
0

2∑
i=1

cos2
[
π
(
x− x(a)i

)
/∆a

]
, (6)

where the functions cos2 are assumed to be zero when their arguments are not in the interval [−π/2,π/2].
The parameters are: U(a)

0 = 25 eV, ∆(a)/a = 0.15, x(a)1 /a = 0.3 and x(a)2 /a = 0.607, where a denotes the
lattice constant. U(b) is also a double-well potential, as given by:

U(b)(x) = N

−U(b)
shi f t + U(b)

0 sinh2

x− x(b)1

a


+N

−U(b)
shi f t + U(b)

0 sinh2

x− x(b)2

a


, (7)
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where N(x) denotes the negative part of x, that is, N(x) = x when x ≤ 0, and zero otherwise.
Additionally, U(b)

shi f t = 93.861 eV, U(b)
0 = 4080.925 eV, x(b)1 /a = 0.18, and x(b)2 /a = 0.7. The potentials,

together with the band structure that they induced, are shown in Figure 2. Note that, apart from the
bandgap, these potentials correspond to considerably different band schemes; thus, they can be used
to check to what extent our results depend on the particular choice of the model.
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denoted by τ and the lattice constant of the 1D crystal is given by a. Note that, usually, the central
wavelength of the incoming laser pulse is larger than a, meaning that dipole approximation can be used.

Appl. Sci. 2019, xx, 5 5 of 14

-100

-80

-60

-40

-20

 0

 0  0.2  0.4  0.6  0.8  1

po
te

nt
ia

l (
eV

)

x/a

Ua
Ub

 0

 20

 40

 60

-3 -2 -1  0  1  2  3

en
er

gy
 (

eV
)

ka

Figure 2. Top panel: The model potentials U(a) (red curve) and U(b) (grey curve) as a function of the
coordinate x in a unit cell. The corresponding band schemes are shown in the bottom panel (where an
additive scaling factor has been used in order to see more clearly that the band gaps are the same).

2.3. Numerical Approach

In order to simplify the calculations, we are going to use a one-dimensional model in the following
(see Figure 1). Note that this can be adequate for linearly polarized excitations. We consider two
model potentials that have one point in common: both produce a band scheme with a (maximal) gap
of 3.2 eV, which corresponds to the case of the ZnO crystal. The explicit form of the first potential is
the following:

U(a)(x) = −U(a)
0
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i=1
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[
π
(

x− x(a)
i

)
/∆a

]
, (6)

where the functions cos2 are assumed to be zero when their arguments are not in the interval
[−π/2, π/2]. The parameters are: U(a)

0 = 25 eV, ∆(a)/a = 0.15, x(a)
1 /a = 0.3 and x(a)

2 /a = 0.607,
where a denotes the lattice constant. U(b) is also a double-well potential, as given by:
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, (7)
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together with the band structure that they induced, are shown in Figure 2. Note that, apart from the
bandgap, these potentials correspond to considerably different band schemes; thus, they can be used
to check to what extent our results depend on the particular choice of the model.

Inserting these potentials in the 1D version of Equation (2), we obtain the Bloch states Ψn,k(x).
We use a finite number of k values, which are uniformly distributed in the first Brillouin zone
[−π/a, π/a] , where a is the lattice constant. As a next step, we calculate the matrix elements
〈n, k|H0|n′, k′〉 and 〈n, k|px|n′, k′〉, which are both proportional to δkk′ . Using these matrix elements and
the initial conditions (3), the dynamical equation (4) can be integrated by numerical means. In these
calculations, we assume that the only nonzero component of the vector potential is given by:

Ax(x, t) =

{
A0 sin2(πt/τ) sin(ωLt + ϕ), if t ∈ [0, τ],
0 otherwise,

, (8)

Figure 2. Top panel: The model potentials U(a) (red curve) and U(b) (grey curve) as a function of the
coordinate x in a unit cell. The corresponding band schemes are shown in the bottom panel (where
an additive scaling factor has been used in order to see more clearly that the band gaps are the same).

Inserting these potentials in the 1D version of Equation (2), we obtain the Bloch states Ψn,k(x).
We use a finite number of k values, which are uniformly distributed in the first Brillouin zone [−π/a,π/a],
where a is the lattice constant. As a next step, we calculate the matrix elements 〈n, k|H0|n′, k′〉 and
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〈
n, k

∣∣∣px
∣∣∣n′, k′

〉
, which are both proportional to δkk′ . Using these matrix elements and the initial

conditions (3), the dynamical equation (4) can be integrated by numerical means. In these calculations,
we assume that the only nonzero component of the vector potential is given by:

Ax(x, t) =
{

A0 sin2(πt/τ) sin(ωLt + ϕ), if t ∈ [0, τ],
0 otherwise,

, (8)

where τ measures the duration of the pulse, and ωL = 2πc/(3 µm) denotes the central frequency of
the excitation. In dipole approximation, the vector potential has no spatial dependence. Note that
since we are considering relatively long pulses (≈30 optical cycles at intensity FWHM), the results are
expected to be almost independent of the carrier-envelope phase, ϕ. Therefore, we use ϕ = 0 in the
rest of the paper.

When the time-dependent density matrix is obtained, the expectation value of the kinetic
momentum can be calculated in a way that leads to the function J(t) (the 1D version of Equation (5)),
and the fast Fourier transform provides the HHG spectra.

The fact that all transitions are vertical in velocity gauge allows us to calculate the contribution of
every value of k to the net current density separately. Not only is the time evolution of the projectors
|n0 , k〉〈n0 , k| independent for different values of k, but as the initial conditions (3) show, there is no
quantum mechanical interference between these states either. However, their contribution to J has
to be added linearly, so these contributions do interfere. Technically, this means that we first have to
construct J(t) and then calculate its power spectrum (so it is not the power spectra corresponding to
different values of k that have to be added). In the next section, we investigate how these interference
phenomena determine the properties of the HHG spectra.

3. Results

3.1. General Properties of the HHG Spectra

The HHG spectra that can be obtained as described above, show a weak dependence on the
number of the conduction bands that we take into account. According to our experience, for moderate
exciting field intensities, a four-band model (VB + 3CBs) is sufficient in the sense that in adding more
CBs, the results practically do not change. (Note that a peak field strength of F0 = 1 GV/m, together
with a focal spot size of around 50 microns and additional pulse parameters given in the caption
of Figure 3, means pulse energies of the order of 0.01 mJ). Additionally, in order to see the physical
meaning of the relevant parameter ranges, it is worth providing the ratio of some important energies
and frequencies. For a peak field strength of 1 GV/m (that corresponds to 1.33 × 1011 W/cm2 peak
intensity) and a characteristic lattice constant of 5 Å, the Bloch frequency ωB = aeF0/} has the same
order of magnitude as ωL at λL = 3 microns. }ωL is 7.7 times smaller than the minimal bandgap
(3.2 eV), and more than 50 times smaller than the maximal bandgap (for both potentials). Considering
aeF0 to be the characteristic laser-induced energy, we find that it has the order of magnitude of a few
eV, which is considerably below the binding energy of both of the potentials—see Figure 2.

As expected, the choice of the periodic potential U (as given by Equations (6) and (7)) also
influences the resulting spectra. However, we found that the qualitative features of the HHG spectra
to be discussed below, are general—that is, the same for both potentials. Therefore, apart from a single
example (see the next subsection), we are not going to compare all the results for U(a) and U(b).

Figure 3 shows representative HHG spectra calculated using U(a). As can be seen, the usual
structure of the high-order harmonic spectra can be identified in this Figure—the most dominant peak
corresponds to the exciting frequency, and there is a plateau region with peaks of approximately the
same heights, as well as a cutoff where the peaks disappear. A difference of several orders of magnitude
can be observed between the maxima and minima of the spectra. Additionally, in this intensity regime,
the cutoff scales linearly with the amplitude of the exciting field, in a qualitative agreement with
experimental findings [17]. Quantitatively, however, we observe more harmonics than the ones seen in
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the experiment. For a more realistic model that takes e.g. propagation effects also into account, we
can expect a better agreement. Furthermore, the increase of individual HH peaks as a function of the
intensity of the excitation shows qualitative agreement with the experimental results—see Figure 4.
Similarly to [17], the heights of the peaks follow a power law for low intensities, and we can also see
a deviation from this law at higher intensities. Quantitatively, this change in behavior occurs slightly
earlier than in the experimental data.
Appl. Sci. 2019, xx, 5 7 of 14

Figure 3. Representative high-order harmonic spectra for different peak field strengths, which
correspond to 0.083, 0.33, 0.75, and 1.33 ×1011 W/cm2 peak intensities. The band scheme of the
target is derived using the potential U(a). Parameters: λL = 3 µm and τ = 300 fs . The frequency on the
horizontal axis is given in units of ωL = 2πc/λL.

Figure 4. The height of the seventh and 11th high harmonic peak as a function of the peak field strength
of the external field. (Please note the log–log scale.)

To summarize, our model can reproduce most of the qualitative features of the experimental
spectra, but since neither the propagation, nor the decay effects beyond the phenomenological ones
were taken into account, no strong quantitative agreement can be found. More specifically:

• The structure of the spectra (plateau, cutoff) can be reproduced;
• The cutoff depends linearly on the peak field strength of the excitation (F0);

Figure 3. Representative high-order harmonic spectra for different peak field strengths, which
correspond to 0.083, 0.33, 0.75, and 1.33 × 1011 W/cm2 peak intensities. The band scheme of the target
is derived using the potential U(a). Parameters: λL = 3 µm and τ = 300 fs. The frequency on the
horizontal axis is given in units of ωL = 2πc/λL.
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To summarize, our model can reproduce most of the qualitative features of the experimental
spectra, but since neither the propagation, nor the decay effects beyond the phenomenological ones
were taken into account, no strong quantitative agreement can be found. More specifically:

• The structure of the spectra (plateau, cutoff) can be reproduced;
• The cutoff depends linearly on the peak field strength of the excitation (F0);
• The F0-dependence of the heights of the HH peaks is characteristically the same as in

the experiments.

On the other hand, there is no quantitative agreement, since:

• The cutoff appears for higher harmonics than in the experiment;
• The power law dependence of the HH peak heights on the exciting field strength breaks down

earlier than in the experiment [17].

Additionally, since the high-frequency regime of the spectrum is noisier than its first part, we
cannot reliably determine whether we can observe the appearance of a second plateau as in [23].
The appearance of even-order harmonics will be discussed in the next subsection.

Based on the properties collected above, we can conclude that our 1D model can reproduce most
of the characteristic properties of the HHG spectra. Now, we investigate the physical reasons for the
appearance of these properties.

3.2. Even and Odd Harmonics

As we have seen, it is possible to calculate spectra that result from any subset of k values chosen
from the first Brillouin zone. In other words, we can artificially restrict the summation over k in
Equation (3), and investigate how the interference of the contributions of these states as sources to the
complete current density result in the net HHG signal.

Focusing on the practical absence of the even-order harmonics from the spectra, Figure 5 provides
an explanation. As we can see, HHG signals corresponding to a given value of k contain all harmonics
with approximately the same weights. However, as the example of Figure 5 shows, when we
combine the current densities that result from the time evolution of a given k and its opposite,
the even harmonics tend to disappear. That is, the fields emerging from the time evolution of states
that—without the external field—have phase velocities with the same magnitudes but opposite signs,
interfere constructively for the odd harmonics, and destructively for the even ones. Additionally, this
result does not depend on the particular choice of the model potential U, since it is visible for both U(a)

and U(b).
Now, it is important to emphasize that the question of whether even-order harmonics will appear

or not, can be decided using very fundamental, symmetry based considerations. Besides inversion
symmetry [51], the periodicity of the excitation is also crucial (we thank one of our referees for drawing
our attention to this point), since destructive interferences appear in consecutive half-cycles. In this
way, the inversion symmetry of the material, together with the repetition of the field with the opposite
sign in the next half-cycle, is responsive for the suppression of even-order harmonics. However,
when no real-space symmetry can be associated to the emitters (like in the case of abstract two-level
systems [52]), generally both odd and even order harmonics appear. As we see here, when a system of
few-level quantum systems can be related to a physical system in real space, this situation changes, but
in this case, the interference of fields emitted by all individual few-level systems is needed.

The trivial method of discovering the role of inversion in our treatment would be comparing the
spectra that correspond to potentials with and without inversion symmetry. However, using different
pairs of potentials (not only U(a) and U(b)), we observed no qualitative difference, and the even-order
harmonics were practically always missing. This effect can originate from the dimensionality of the
model, since working in one dimension means assuming that only a very narrow set of k vectors
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from the orthogonal plane plays a relevant role in the time evolution, and this may not be the case for
real materials.
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Figure 5. The suppression of even-order harmonics. Panel (a) [(b)] corresponds to U(a)[U(b)]. In both
panels, the contributions of given values of k is shown together with that of −k and their combined
effect, for parameters F0 = 4.0 GV/m (2.13 ×1012 W/cm2 peak intensity), λL = 3 µm and τ = 300 fs .

On the other hand, since the appearance of the even-order harmonics is not determined by the
crystal structure alone, the symmetry of the exciting field is equally important. The ”half-cycle by
half-cycle sign change symmetry” of a long, many-cycle infrared pulse can be broken by adding a
slowly varying, few-cycle electromagnetic pulse, such as in the THz regime. The result of this kind
of ”THz-assisted” HHG is shown by Figure 6. As we can see, in this case, the even-order harmonics
appear—practically as strongly as the odd-order ones—already in a 1D model.

In order to see this in more detail, we investigated the role of the delay between the THz and the
infrared pulses. (Note that this delay was zero for Figure 6.) As we can see in Figure 7, when there
is no overlap between the pulses, the strength of the harmonics are practically the same as without
the THz radiation, regardless of the sign of the delay. This underlines the fact that it is the infrared
radiation that produces high harmonics, and the THz pulse itself is not intense enough in this sense.
However, the overall HH gain increases when the pulses considerably overlap—it has a maximum at
zero delay, that is, when the peak value of the net electric field is maximal.

For the individual harmonics, we can see that in accordance with the previous results, the
presence of the THz radiation increases the height of the even-order harmonic peaks. (Note that in
order to decrease numerical errors, Figure 7 shows the intergral of the spectrum around the given
HH frequencies.) On the other hand, surprisingly, odd-order harmonics become weaker when the
infrared and the THz pulses overlap considerably. For the strength of the seventh harmonic, as it
is shown by Figure 7, the dependence on the delay exhibits strong modulations with the half-cycle
period of the THz field. For the case of the eighth harmonic, this is less obvious, and fast modulations
are more apparent.
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[
U(b)

]
. In both

panels, the contributions of given values of k is shown together with that of −k and their combined
effect, for parameters F0 = 4.0 GV/m (2.13 × 1012 W/cm2 peak intensity), λL = 3 µm and τ = 300 fs.

On the other hand, since the appearance of the even-order harmonics is not determined by the
crystal structure alone, the symmetry of the exciting field is equally important. The ”half-cycle by
half-cycle sign change symmetry” of a long, many-cycle infrared pulse can be broken by adding
a slowly varying, few-cycle electromagnetic pulse, such as in the THz regime. The result of this kind
of ”THz-assisted” HHG is shown by Figure 6. As we can see, in this case, the even-order harmonics
appear—practically as strongly as the odd-order ones—already in a 1D model.

In order to see this in more detail, we investigated the role of the delay between the THz and the
infrared pulses. (Note that this delay was zero for Figure 6.) As we can see in Figure 7, when there
is no overlap between the pulses, the strength of the harmonics are practically the same as without
the THz radiation, regardless of the sign of the delay. This underlines the fact that it is the infrared
radiation that produces high harmonics, and the THz pulse itself is not intense enough in this sense.
However, the overall HH gain increases when the pulses considerably overlap—it has a maximum at
zero delay, that is, when the peak value of the net electric field is maximal.

For the individual harmonics, we can see that in accordance with the previous results, the presence
of the THz radiation increases the height of the even-order harmonic peaks. (Note that in order
to decrease numerical errors, Figure 7 shows the intergral of the spectrum around the given HH
frequencies.) On the other hand, surprisingly, odd-order harmonics become weaker when the infrared
and the THz pulses overlap considerably. For the strength of the seventh harmonic, as it is shown
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by Figure 7, the dependence on the delay exhibits strong modulations with the half-cycle period of
the THz field. For the case of the eighth harmonic, this is less obvious, and fast modulations are
more apparent.
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infrared excitation. The time dependences of the vector potentials of the exciting fields are shown by
the insets, where the units for the horizontal and vertical axes are fs and GV·fs/m, respectively. Panel
(c) shows the current density J, which is the source of the HH radiation.

Although the qualitative features of Figure 7 can be explained, and they are in agreement with
Figure 6, it is clear that in order to completely explore the case of THz-assisted HHG with different
delays, a more detailed investigation is needed—however, this is beyond the scope of the current paper.

Figure 7. The contribution of different frequency ranges to the HHG radiation as a function of the
delay between the infrared and the THz pulses for the same amplitudes as in Figure 6. Negative delays
mean that the THz pulse arrives first. For the nth individual harmonic, the integral of the spectrum
for an interval of the length of 0.6ωL that is centered around nωL is shown. For ”all harmonics”, the
integration runs from 1.5ωL to 30ωL.

It is also worth plotting the populations in the four bands that we took into account. The result is
shown by Figure 8, where it can be seen why, in the intensity range we considered, four bands were
enough for the appropriate description: the population of the third conduction band is practically
negligible. As a closer look (and the Fourier transform as well) reveals, harmonic frequencies modulate
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Although the qualitative features of Figure 7 can be explained, and they are in agreement with
Figure 6, it is clear that in order to completely explore the case of THz-assisted HHG with different
delays, a more detailed investigation is needed—however, this is beyond the scope of the current paper.
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Figure 7. The contribution of different frequency ranges to the HHG radiation as a function of the
delay between the infrared and the THz pulses for the same amplitudes as in Figure 6. Negative delays
mean that the THz pulse arrives first. For the nth individual harmonic, the integral of the spectrum
for an interval of the length of 0.6ωL that is centered around nωL is shown. For ”all harmonics”,
the integration runs from 1.5ωL to 30ωL.
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It is also worth plotting the populations in the four bands that we took into account. The result is
shown by Figure 8, where it can be seen why, in the intensity range we considered, four bands were
enough for the appropriate description: the population of the third conduction band is practically
negligible. As a closer look (and the Fourier transform as well) reveals, harmonic frequencies modulate
the time evolution of the populations. Finally, it is worth mentioning that for multi-cycle infrared
excitations (without the THz field), the populations in the conduction bands were practically zero
when the pulse was over. On the other hand, with the additional THz field, these final populations
increased orders of magnitude (definitely above the level of the numerical errors), but they still had the
order of magnitude of 10−6–10−8.
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3.3. The Position of the Cutoff

For M CBs and a given value of k, we have to calculate the dynamics of an (M + 1)-level quantum
system. For long excitations, Floquet’s method [53] can be applied, and (at least for M = 1, see [54])
the cutoff of the HHG spectrum can be analytically estimated. However, in general, these cutoffs will
be different for different values of k, since the parameters (the k-dependent bandgap and the matrix
elements of the Hamiltonian) will also be different. Additionally, different values of k contribute to the
net HHG signal to a different extent: the states close to the minimal bandgap (k = 0 in our case) are the
most dominant, but a very narrow set of states around k = 0 cannot reproduce the complete spectrum.
On the other hand, as expected, states close to the boundaries of the Brillouin zone (ka = ±π, where
the bandgap is the largest) modify the spectra negligibly.

Figure 9. Contributions of different parts of the valence band (represented by red color above the
dotted vertical lines in the insets) to the HHG spectra as calculated using the potential U(a). Parameters:
F0 = 0.5 GV/m (0.33 ×1011 W/cm2 peak intensity) λL = 3 µm and τ = 300 fs . Note that the physical,
measurable spectrum is the topmost one, where all initial states from the VB of the first Brillouin zone
contribute to the radiation.

As a demonstration, Figure 9 shows how the net HHG signal and the physically measurable
cutoff is being built up as a superposition of the individual contributions from different values of k
that cover intervals of increasing sizes around k = 0. (The corresponding parts of the valence band are
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3.3. The Position of the Cutoff

For M CBs and a given value of k, we have to calculate the dynamics of an (M + 1)-level quantum
system. For long excitations, Floquet’s method [53] can be applied, and (at least for M = 1, see [54])
the cutoff of the HHG spectrum can be analytically estimated. However, in general, these cutoffs will
be different for different values of k, since the parameters (the k-dependent bandgap and the matrix
elements of the Hamiltonian) will also be different. Additionally, different values of k contribute to the
net HHG signal to a different extent: the states close to the minimal bandgap (k = 0 in our case) are the
most dominant, but a very narrow set of states around k = 0 cannot reproduce the complete spectrum.
On the other hand, as expected, states close to the boundaries of the Brillouin zone (ka = ±π, where
the bandgap is the largest) modify the spectra negligibly.

As a demonstration, Figure 9 shows how the net HHG signal and the physically measurable
cutoff is being built up as a superposition of the individual contributions from different values of k that
cover intervals of increasing sizes around k = 0. (The corresponding parts of the valence band are
schematically shown by the insets.) Note that, as we saw in the previous subsection, the symmetry of
these intervals around zero provides the dominance of the odd-order HHG peaks in the spectrum
over the even-order ones. As we can see, although a narrow interval of k values around 0 can produce
qualitatively correct HHG spectra, the combined effect of practically all states is needed for the spectra
that can be detected.
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contribute to the radiation.

4. Summary

In this paper, we considered a quantum mechanical model for the generation of high-order
harmonics in bulk solids. The crystal was assumed to be initially in thermal equilibrium, with only the
valence band being populated. We investigated the contribution of different initial states to the HH
radiation, and showed that important aspects of the HHG spectra were strongly influenced by the
interference of these contributions. According to our calculations, the absence of even-order harmonics
can be viewed as a consequence of the destructive interference of currents that correspond to initial
states with an opposite crystal momentum, k. This approach provides an intuitive picture behind the
fundamental, symmetry-based argumentations. Interference effects were also shown to be related to
the position of the cutoff.
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