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Abstract At strong-coupling and weak-field limit, the
scalar Schwinger effect is studied by the field-theoretical
method of worldline instantons for dynamic fields of single-
pulse and sinusoidal types. By examining the Wilson loop
along the closed instanton path, corrections to the results
obtained from weak-coupling approximations are discov-
ered. They show that this part of contribution for produc-
tion rate becomes dominant as Keldysh parameter increases,
it makes the consideration at strong coupling turn out to be
indispensable for dynamic fields. Moreover a breaking of
weak-field condition similar to constant field also happens
around the critical field, defined as a point of vacuum cas-
cade. In order to make certain whether the vacuum cascade
occurs beyond the weak-field condition, following Semenoff
and Zarembo’s proposal, the Schwinger effects of dynamic
fields are studied with an N = 4 supersymmetric Yang–
Mills theory in the Coulomb phase. With the help of the
gauge/gravity duality, the vacuum decay rate is evaluated by
the string action with instanton worldline as boundary, which
is located on a probe D3–brane. The corresponding classical
worldsheets are estimated by perturbing the integrable case
of a constant field.

1 Introduction

The extreme light infrastructure (ELI) is designed to produce
the highest power and intense laser worldwide [1,2]. It has a
potential of reaching ultra-relativistic intensities, challenging
the Schwinger limit Es := m2/e ≈ 1.32 × 1018 V m−1. As
laser field approaches this value, vacuum becomes unstable,
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and a large amount of charged particles produces in pairs,
so that laser loses the energy, and its intensity stays within
the upper limit. However, Schwinger effect is not only a
phenomenon in electromagnetism, but a universal aspect of
quantum vacuum in the presence of a U(1) gauge field with
a classical background, see e.g. [3–7].

The pair-production rate in the constant electric field
had been pioneered by Sauter, Heisenberg and Euler [8,9],
and the corresponding Effect was named after Schwinger
[10], who did the calculation based on field-theoretical
approaches, see e.g. [11,12] for a current review. A semi-
classical approach called worldline instantons has been intro-
duced more recently to the study of constant and inhomoge-
neous fields in the small-coupling and weak-field approxi-
mations [13,14], where the production rate, in Wick-rotated
Euclidean space, is represented by a worldline path integral.
The so-called worldline instantons are the periodic saddle
points relevant for a calculation of integral by the steepest
descent method. The extension of inhomogeneous fields orig-
inates from more practical purpose. As analysed in [14], 1-D
dynamic electric fields reduce the critical value of Schwinger
effect, such that pair production from vacuum is more close
to experimentally observable conditions.

The Schwinger effect at arbitrary coupling in constant field
has also been studied in [13] at the weak-field condition,
which is considered originally in order to overcome some
obstacles from direct application of Schwinger’s approach.
However the later observation (e.g. [15]) found that the weak-
field condition is broken around the critical field, defined
as a point of vacuum cascade, such that the mechanism in
weak-field condition loses its prediction for this vacuum phe-
nomenon. Inspired by the similar existence of critical value of
electric field in string theory, it is of a possibility to clarify the
vacuum cascade in the Coulomb phase beyond the weak-field
condition with the help of gauge/gravity duality [7,16,17].
This is also known as the Semenoff–Zarembo construction,
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where the production rate has been obtained by calculating
the classical action of a bosonic string, which is attached to
a probe D3–brane and coupled to a Kalb–Ramond field.

Since the instanton action in the production rate is equiv-
alent to the string action, which is proportional to the area,
calculation of the rate is related to integrating the classical
equations of motion for bosonic string in the given external
field. In other words, duality converts the problem to evaluat-
ing the area of a minimal surface [18,19] in Euclidean AdS3,
the boundary of which is assumed to be the trajectory of the
worldline on the probe D3–brane. In mathematics, such a
Dirichlet problem is known as the Plateau’s problem [20].

In this work, we consider the scalar pair production in a
dynamic external field of single-pulse and sinusoidal types
at strong coupling and weak-field limit based on the method
of worldline instantons, which is explained in Sects. 2 and
3. We first show by a field-theoretical approach, that besides
the enhancement due to the dynamics of electric fields, a
further contribution to the production rate arises from the
Wilson loop, and it becomes dominant in production rate
as Keldysh parameter increases. However, such a correction
seems to diverge as Keldysh adiabaticity parameter γ → ∞
based on our estimated formula; and it leads to a contradic-
tion to the weak-field condition, so that near the critical field,
the method itself breaks down, and the prediction of a vac-
uum cascade becomes unclear. To overcome the problem of
breaking weak-field condition, we then follow Semenoff and
Zarembo’s proposal in Sect. 4, applying the gauge/gravity
duality to the Schwinger effect in the Coulomb phase of an
N = 4 supersymmetric Yang–Mills theory. The classical
solution of the corresponding string worldsheets are esti-
mated by perturbing the solvable case of a constant external
electric field.

2 Worldline instantons at strong coupling

The worldline instanton approach is a semiclassical calcu-
lation realised by the worldline path integral representations
[21,22], in which the so-called worldline instanton is a peri-
odic solution of the stationary phase in the path integral.
Based on this method, the pair-production rate Γ for a mas-
sive scalar QED in the small-coupling and weak-field approx-
imation is computed by [13–15]

V4Γ = −2Im
∫

Dx
1

m

√
2π

T0
exp(−Sinst), (1)

where V4 is the 4-volume, T0 is a constant, given by

T0 =
√∫ 1

0 dτ ẋ2

m
, (2)

and Sinst represents the action of worldline instanton, i.e.

Sinst = m2

√∫ 1

0
dτ ẋ2 − ie

∫ 1

0
dτ B · ẋ . (3)

In Eq. (3), Bμ is a classical background field, not to be con-
fused with the fluctuation part of the U(1) gauge field Aμ,
which is also included in the initial setup of path integral, but
cancelled due to considerations at small coupling.

The path integral in Eq. (1) can be computed by the sta-
tionary phase approximation in weak-field condition

m

√∫ 1

0
du ẋ2 � 1 (4)

For more general cases with 1D temporally inhomogeneous
fields B1(x0), the worldline instanton is obtained by solving
the instanton equation with periodic boundary condition

x ′
1(x0) = ± ie

m

B1(x0)√
1 +

(
eB1(x0)

m

)2
. (5)

Thus the pair-production rate can be written as

Γ ∼ exp

(
−πm2

eE
f (γ )

)
, (6)

where f (γ ) is a monotonically decreasing function of
Keldysh parameter [23] γ = mω/(eE) and calculated by
substituting the solution of Eq. (5) into the worldline action
with the corresponding background field Bμ. In addition, the
weak-field condition Eq. (4) is of various forms according
to different dynamic fields, because it depends on specific
instanton solution.

At arbitrary coupling constant but with weak-field condi-
tion [13], the production rate is modified by a factor,

V4Γ = −2Im
∫

Dx
1

m

√
2π

T0
exp(−Sinst)〈W 〉, (7)

where 〈W 〉 is the average of U(1) Wilson loop W

W = exp

(
ie
∮

C
A · dx

)
. (8)

The integral path C is along the 2D trajectory of worldline
instanton. In the Feynman gauge of theU(1) field, the Wilson
loop becomes [24]

〈W 〉 = exp

(
− e2

8π2 A
)

. (9)
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After simplification, A can be represented via a double con-
tour integrals

A =
∮

C

∮
C

dx · dy

(x − y)2 . (10)

For a constant electric field, the worldline instanton is a circle,
and the production rate of a single scalar pair is given by

Γ = (eE)2

(2π)2 e−π Es
E , Es := m2

e
, (11)

where Es is the Schwinger limit in natural units. Considera-
tion at arbitrary coupling [13] leads to a correction from Eq.
(9)

Γ = (eE)2

(2π)2 e−π Es
E + e2

4 , (12)

see also Sect. 3.2. Our aim in the next section is to calculate
the Wilson loops in Eq. (9) along two specific worldlines
separately. The first one is the worldline instanton in a single-
pulse field, whereas the second is in a sinusoidal field. We
show that the corrections due to the dynamic fields depend
on Keldysh parameter, and the weak-field condition is also
broken in these two cases, as noted in e.g. [15].

3 Wilson loops along worldline instanton paths

The Wilson loop in Eq. (9) plays a central role in the case
of arbitrary coupling, the integral Eq. (10) standing on the
exponent diverges as x approaches y. A regulator ε has been
introduced in [25], such that Eq. (9) becomes

Aε =
∫ π

−π

ds
∫ π

−π

dt
x ′(s) · x ′(s + t)

[x(s + t) − x(s)]2 + ε2 , (13)

where prime indicates derivative with respect to the instanton
parameter, and s and t can be understood as angular coordi-
nates for the instanton.

One sees that the integrand in A0 behaves like t−2 as
t → 0, rendering the integral divergent. Introducing ε makes
the integral regular, and the divergence can now seen explic-
itly by expanding the numerator and denominator of the inte-
grand separately. Up to O

(
t2
)
, the numerator reads

x ′(s) · x ′(s + t)

= x ′(s)2 + x ′(s) · x ′′(s)t + 1

2
x ′(s) · x ′′′(s)t2 + O(t3)

= x ′(s)2 + 1

2
x ′(s) · x ′′′(s)t2 + O(t3), (14)

whereas the denominator becomes

[x(s + t) − x(s)]2 + ε2 = ε2 + x ′(s)2t2 + O(t4). (15)

The condition x ′(s)·x ′′(s) ≡ 0 has also been used, because all
worldline instantons satisfy x ′(s)2 = a2, where a is defined
in the same way as in [14]. Hence up to second order of t ,
one has

2A(0)
ε =

∫ π

−π

ds x ′(s)2
∫ π

−π

dt

x ′(s)2t2 + ε2

= π

ε

∫ π

−π

ds
√

x ′(s)2 − 4 + O(ε), (16)

2A(1)
ε ≡ 0, and

2A(2)
ε = 1

2

∫ π

−π

ds x ′(s) · x ′′′(s)
∫ π

−π

t2 dt

x ′(s)2t2 + ε2

= π

∫ π

−π

ds
x ′(s) · x ′′′(s)

x ′(s)2 + O(ε). (17)

One sees that the divergence of A now is removed by intro-
ducing a subtraction term

δA = π

ε

∫ π

−π

ds
√

x ′(s)2, (18)

which is an example of the perimeter law, depicting the
behaviour of the Wilson loop in Euclidean space [24, ch. 82].
Since x ′(s)2 = a2 is independent of integration variable, the
subtraction term can be worked out as

δA = 2π2a

ε
. (19)

After subtracting this term from Eq. (13), one obtains the
physical Aphy by taking the limit of regularised Areg

Aphy := lim
ε→0

Areg := lim
ε→0

(Aε − δA). (20)

The physical Wilson loop is then given by

〈W 〉phy = exp

(
− e2

8π2 Aphy

)
, (21)

which appears as a factor in the final expression of the pro-
duction rate.

In our practice with the dynamic fields, Aε has yet to
be worked out in a closed form, and its estimation is to be
discussed in Sect. 3.1.
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3.1 Estimation of Aε and Aphy

To derive an approximation of Aε, one may keep the finite
terms in Eqs. (16) and (17), i.e.

2Areg ≈ −4 + π

∫ π

−π

ds

[
x ′(s) · x ′′′(s)

x ′(s)2

]
+ O(ε) (22)

This will be called a t-expansion up to second order of t ,
which follows straightforwardly from the separation of diver-
gent term. This method belongs to rational approximation.
Furthermore in our application in dynamic fields, this expan-
sion can be worked out in a closed form easily. Also note the
−4 term in Eq. (22), which will be mentioned again later
with example. The validity of t-expansion is closely related
to the uniform convergence of integrand, and demonstrated
in Appendix A. If one uses diagonal Padé approximant for
integrand rather than t-expansion, the convergence is obvious
[26–28].

Alternatively, one may also expand the integrand of Aε

with respect to γ for the well-defined point γ0, i.e.

Aε =
∫ π

−π

ds
∫ π

−π

dt

[∑
n

fn(ε)(γ − γ0)
n

]
(23)

where n ∈ Z. This will be called a γ -expansion. If the
sequence { fn(ε)} is integrable term by term, such that the
interchanging summation and integration is valid, then com-
paring with the similar expansion of δA, one obtains the finite
terms of each order by

A(n)
reg = 1

ε

∑
k=0

Fn,kε
k − 2π2an

ε
(24)

where Fn,k are coefficients of expansion for Fn with respect
to ε

Fn =
∫ π

−π

ds
∫ π

−π

dt fn(ε) (25)

while an are coefficients of expansion for a(γ ) with respect
to γ . Since ε = 0 is the pole of first order for Aε as a func-
tion of ε, Fn having the same pole of ε is obviouse. For
those points, where interchanging operation not long stands,
this approach fails, e.g. at γ0 → +∞. In our application
in dynamic fields, this expansion can also be worked out in
a closed form at each order. However, the number of terms
in the expansion increases exponentially, and the result are
obtained by computer algebra system.

Yet another way of estimating Aphy is numerical inte-
gration, in which the regulator ε is still needed. There are
polynomial contributions of ε in the bare term Aε, and one

might think taking a small ε would give a good result. How-
ever, Aε and the counter term δA both diverges like ε−1 as
ε → 0. A small ε leads to a numerically dissatisfying oper-
ation, in which two big numbers cancels, yielding a small
result and a great loss of significance. This problem becomes
catastrophic for the dynamic fields when γ → 0+. In order
to overcome the potentially catastrophic cancellation, we use
linear extrapolation near ε = 0, in which for each γ , Areg

is numerically calculated for several different values of ε.
The limit of ε → 0 is then obtained by linearly extrapolate
the series of results with respect to ε. In this approach, the
error due to extrapolation can also be obtained by estima-
tion of the parameters in linear regression. Furthermore, in
our application the numerator and denominator in Eq. (13)
scales as γ −2 when γ → +∞, so that for a fixed ε, at large
γ the regularised integrand is dominated by the regulator on
the denominator. This is overcome by scaling ε accordingly,
such that the subtraction term in Eq. (13) remains constant
with respect to γ .

3.2 Constant electric field

For a constant electric field, the worldline instanton is a circle
of radius R = m/(eE), given by [13,14]

x0 = R sin(u), x1 = R cos(u), u ∈ [−π,π], (26)

where the zeroth component x0 denotes the Euclidean time.
The instanton action for single pair production is obtained
by substituting this solution into Eq. (3), yielding

S0 = πm2

eE
. (27)

The weak-field condition m
√∫ 1

0 du ẋ2 � 1 [14] implies

E � 2πEs, (28)

where Es is defined in Eq. (11).
On the other hand, the integral in Eq. (13) and the perime-

ter law in Eq. (18) can be evaluated explicitly as

A = 2π2
(

2R2 + ε2

ε
√

4R2 + ε2
− 1

)
, δA = −2π2 R

ε
. (29)

Hence the regularised Wilson loop for a single scalar pair can
be recovered as [13]

〈W 〉reg = exp

(
e2

4

)
, (30)
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and the production rate is given by

Γ ∼ exp

(
−πm2

eE
+ e2

4

)
, (31)

from which the critical field for vacuum cascade can be esti-
mated by

Ec = Es

α
≈ 137Es, α := e2

4π
. (32)

One sees that Ec is much greater than the Schwinger limit and
breaks the weak field condition in Eq. (28), as have been noted
in e.g. [15]. Therefore, the obtained results are not valid when
the field goes close to the critical limit, and cannot answer the
question whether a vacuum cascade happens near the critical
field strength.

3.3 Single-pulse field E(t) = E sech2(ωt)

For a generic 1D dynamic field, we assume that the Wilson
loop is of the following form

〈W (γ )〉 = exp

[
e2

4
λ(γ )

]
, γ = mω

eE
, (33)

where λ(γ ) is an enhancement factor with respect to the case
of a constant external field in Eq. (30). This name of λ(γ ) is
seen to be appropriate from the fact that λ(γ ) is a monotoni-
cally decreasing function and tends to unit at adiabatic limit
γ → 0.

Before applying nonlinear approximation schemes as we
discussed in Sect. 3.1 to single-pulse field, we apply it to
the case of a constant field. The integrand after t-expansion
becomes

− R2
(
t2 − 2

)
2
(
R2t2 + ε2

)

while the subtracting term Eq. (29) will not change. Then
repeating the similar procedure, one gets

λ̃ = 1 + 2

π2

which leads to a 2/π2 deviation compared to Eq. (30). This
term comes from −4 in 2A(0) and does not depend on the
specific form of worldline path. Later we will see that this
2/π2 deviation happens in both cases considered in 2nd-
order t-expansion, which is caused by accuracy of estimation
method, thus it approaches to zero as the approximation order
increases, see Fig. 1. In other words, the emergence of finite
terms are expected for each orders, and the higher-order con-
tribution should cancel 2/π2 from the 2nd-order. Based on

Fig. 1 First seven orders of λ̃tn and their deviation from λ for a constant
electric field. Because of symmetry of the integrals, all the odd orders
vanish

this consideration we remove 2/π2 derivation directly in the
final results, which should not be confused with the counter
term Eq. (19).

Let us see the first nontrivial example, pair production in
the single-pulse field [14,29]. The instanton has been evalu-
ated explicitly to be

x0 = 1

ω
arcsin

[
γ√

1 + γ 2
sin(u)

]
,

x1 = 1

ω

1√
1 + γ 2

arsinh
[
γ cos(u)

]
,

(34)

and the worldline action for this path reads

S0 = πm2

eE

2

1 +√1 + γ 2
. (35)
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The weak-field condition leads to

E � 2πEs√
1 + γ 2

. (36)

At the nonperturbative region [11] γ � 1, the weak-field
condition reduces to E � 2πEs. In other words, the dynam-
ics of field also decreases the upper limit of weak-field con-
dition.

Now we turn to the the Wilson loop. The corresponding
perimeter law has a closed form

δA = 2π2η

ωε
, η = γ√

1 + γ 2
. (37)

With the t-expansion up to O
(
t2
)
, Eq. (13) reads

2A ≈ π

ωεγ
√

1 + γ 2

{
− πωεγ

(
2 + γ 2

)

+
[
γ 2
(

ω2ε2
√

1 + γ 2 + 4

)
+ 2ω2ε2

√
1 + γ 2

]

×arctan

(
πγ

ωε
√

1 + γ 2

)}
.

(38)

which leads to

λ̃(γ ) = 1

2

(
2 + γ 2√
1 + γ 2

+ 4

π2

)
.

One may note that λ̃ → 1 + 2/π2 as γ approaches zero. The
2/π2 derivation is predicted and has to be subtracted, i.e. the
enhancement factor is then in the weak-field condition

λ(γ ) = 1

2

(
2 + γ 2√
1 + γ 2

)
. (39)

This operation guarantees the condition: λ → 1 as γ → 0.
Since λ(0) > 1, the factor amplifies the contribution from
the Wilson loop in Eq. (30), so that the pair-production rate
is no longer exponentially suppressed, see Fig. 2.

Alternatively, the γ -expansion can be worked out as a
power series of γ , where Eq. (34) has been used by replacing
ω = γ /R. After removing the poles at each order of λ, one
obtains

λ(γ ) = 1 + 1

18
γ 4 − 1

18
γ 6 + 443

8640
γ 8 + O

(
γ 10
)
. (40)

The exponential factor in the production rate is evaluated
as

Γ ∼ exp

(
−πEs

E

2

1 +√1 + γ 2
+ πα

2

2 + γ 2√
1 + γ 2

)
(41)

(a)

(b)

Fig. 2 The dependence of enhancement factor λ on γ in a single-pulse
field, showing a comparison of numerical result with estimation of t-
expansion as well as γ -expansions. The shadow indicates the numerical
error in extrapolating ε → 0+ with 95% confidence

The first part is the main contribution from instanton action,
the second part arises due to the Wilson loop correction from
t-expansion. If the critical field is defined as saddle point, at
which the exponential suppression is precisely zero, then one
could have

Ec = Es

α

4
√

γ 2 + 1(
γ 2 + 2

) (√
γ 2 + 1 + 1

) < 137Es. (42)

On the one hand, as in the case with constant field, Eq.
(42) also breaks the weak-field condition at nonperturbative
region γ � 1. On the other hand, in contrast with the case
in constant field, the exponential factor of Wilson loop is no
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longer constant, such that for given E its contribution for
production rate becomes dominant as γ increases. In addi-
tion, both estimation Eq. (41) (or Eq. (39)) and numerical
result seem to be divergent as γ approaches +∞, even if the
pre-exponential factor of Feynman integral were taken into
account [30]. It implies that Wilson loop ought to be of a pole
at γ → +∞, and loses its meaning at this point, where the
instanton trajectory collapses to a singular point.

3.4 Sinusoidal field E(t) = E cos(ωt)

The second example is a sinusoidal field [14,29,31]. The
coordinates of the instanton can be represented by special
functions as

x0 = 1

ω
arsinh

[
η sd

(
2

π
K
(
η2
)

u

∣∣∣∣η2
)]

,

x1 = 1

ω
arcsin

[
η cd

(
2

π
K
(
η2
)

u

∣∣∣∣η2
)]

,

(43)

where K (·) is the complete elliptic integral, sd(·) and cd(·)
are Jacobi elliptic functions. The instanton action is given by

S0 = m2

eE

4
√

1 + γ 2

γ 2

[
K
(
η2
)

− E
(
η2
)]

. (44)

Repeating the procedure above, one obtains the correspond-
ing perimeter law in a closed form

δA = 4πη

ωε
K
(
η2
)
. (45)

The exponent in the t-expansion reads

A ≈ 8η

ωε
K
(
η2
)

arctan

[
2η

ωε
K
(
η2
)]

+ E
[
am
(

2K
(
η2
)
|η2
)
|η2
]

×
{

2ωε

η
arctan

[
2η

ωε
K
(
η2
)]

− 4K
(
η2
)}

,

(46)

in which am(·) is the Jacobi amplitude function. Thus at the
week-field approximation E � 4Es K

(
η2
)
/
√

1 + γ 2 [14],
one has

λ(γ ) = 2

π2 K
(
η2
)

E
[
am
(

2K
(
η2
)
|η2
)
|η2
]
. (47)

Where the deviation 2/π2 has been subtracted. In this case,
λ(γ ) is also greater than unity and a non-trivial function
depending on external field, and it tends to 1 as γ approaches
zero. Alternativeszaly, the γ -expansion is implemented by

(a)

(b)

Fig. 3 The dependence of enhancement factor λ on γ in a sinusoidal
field, showing a comparison of numerical result with estimations of
t-expansion and fourth-order γ -expansions. The shadow indicates the
numerical error in extrapolating ε → 0+ with 95% confidence

expanding in η first. Removing the divergences in ε, one
obtains

λ = 1 + γ 4

72
− γ 6

72
+ 217γ 8

17280
+ O

(
γ 10
)
. (48)

The results are shown in Fig. 3.
In addition, similar to the example in the last subsection λ

is also divergent as γ → ∞, even if the pre-exponential fac-
tor is considered [30]. The exponent factor in the production
rate is then given by
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Γ ∼ exp

{
− Es

E

4
√

1 + γ 2

γ 2

[
K
(
η2
)

− E
(
η2
)]

+ 2α

π
K
(
η2
)

E
(

am
(

2K
(
η2
)
|η2
)
|η2
)}

,

(49)

For small γ , one gets

Ec ∼ Es

α

(
1 − γ 2

8

)
+ O(γ 4) < 137Es, (50)

which breaks the weak-field condition at nonperturbative
region as well.

From above three examples, one may note that, first, the
weak-field condition in the non-perturbative ranges γ < 1 is
inevitably broken at strong coupling, which makes the vac-
uum cascade around the critical field ambiguous [15]; and
second, the correction due to the Wilson loop in dynamic
fields is a monotonically increasing function with respect to
γ and diverges as γ → ∞.

4 Holographic Schwinger effect with dynamic field

In order to answer the question, if the vacuum cascade for
strong coupling happens as the strength of time-dependent
field goes close to the critical limit [15], we consider a similar
effect in the context of gauge/gravity duality, where the gauge
field theory refers to an N = 4 SU(N + 1) supersymmet-
ric Yang–Mills theory on the 4D boundary of an AdS5 × S5

space, and the quantum gravity is a type IIB superstring the-
ory in the bulk of the AdS5 × S5. The same as the case with
constant field, we expect that the string theory could shed
some light on the catastrophic vacuum cascade through the
duality principle.

According to the Semenoff and Zarembo’s holographic
setup [7,16,17,32–34], the exponential factor in the produc-
tion rate of the gauge field is obtained from the superstring
counterpart by the area of the string worldsheet attached to a
probe D3–brane, i.e.

Γ ∼ exp
(−SNG − SB2

)
, (51)

where SNG is the Nambu–Gotō (NG) action [35,36]

SNG = TF

∫
d2σ

√∣∣det Gαβ

∣∣ (52)

depending on the induced metric

Gαβ = gM N
∂x M

∂σα

∂x N

∂σβ
, (53)

and SB2 is the Kalb–Ramond [37] 2-form (or NS–NS, where
NS is the abbreviation of Neveu–Schwarz [38]) as an string
interaction term,

SB2 = −TF

∫
d2σ BM N

∂x M

∂σ

∂x N

∂τ
. (54)

In Eqs. (52) and (54), σα = (τ, σ ) are the coordinates on
the string worldsheet, x M = (xν, r, φa) are the coordinates
of the 10-D AdS5 × S5 space with metric gM N , and Gαβ is
the induced metric.

In the Semenoff–Zarembo construction, the worldsheet
ends on the probe D3–brane with a boundary, taking the
same shape as the worldline instanton. Hence the essential
problem is converted to compute the on-shell action of string
in Euclidean AdS5 with the given boundary. Note that the
Nambu–Gotō action is proportional to the worldsheet area,
and extremising the area leads to a minimal surface. In other
words, calculation of the exponential factor now corresponds
to a Plateau’s problem in the framework of gauge/gravity
duality.

4.1 Constant electric field

The worldline instanton in a constant field is a circle, thus
the worldsheet can be parametrised by

x0 = σ cos(τ ), x1 = σ sin(τ ), (55)

which is different than the choice in [15], and the two param-
eterisations have different chirality, i.e. sgn(J ) = −1, where
J is the Jacobian. Therefore, the orientation of the Kalb–
Ramond coupling is also reversed. The Nambu–Gotō action
in our parameterisation becomes

SNG = TF

∫ 2π

0
dτ

∫ R

0
dσ

√∣∣det Gαβ

∣∣, (56)

where R ≡ σ(r0), r0 is the location of the probe D3–brane.
r(σ ) can be analytically as [39]

r = L2√
L4

r2
0

+ f (σ )

, (57)

where f (σ ) = R2 − σ 2 = 0 is the worldline instanton on
the D3–brane. Substituting it into the Nambu–Gotō action,
one obtains

SNG = 2πTF L2

√
L4

r2
0

+ R2

∫ R

0

σ dσ(
L4

r2
0

+ R2 − σ 2

)3/2

= 2πL2TF

⎛
⎝
√

r2
0 R2

L2 + 1 − 1

⎞
⎠ . (58)
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Furthermore, the NS–NS term reads

SB2 = sgn(J )

∫ 2π

0
dτ

∫ R

0
dσ E0σ = −πE0 R2, (59)

where R can be fixed by extremising the total action, yielding

R = L2

r0

√
E2

c

E2
0

− 1, Ec = TF
r2

0

L2 . (60)

Where Ec is defined as critical values. The exponential factor
in the production rate can now be solved as

Γ ∼ exp

⎡
⎣−

√
g

2

(√
Ec

E0
−
√

E0

Ec

)2⎤
⎦, (61)

in which the string and spacetime parameters have been
replaced by the ones of the gauge field via TF = √

g/(2πL2).
This is the result obtained in [7] and agrees with the
Schwinger’s formula in the weak-field limit.

4.2 Estimation of single-pulse field E(t) = E sech2(ωt)

The instanton path as the worldsheet boundary on the D3–
brane in a single-pulse field has been shown in Eq. (34). Thus
one can parametrise the worldsheet by using σ and u, i.e.

x0 = σ

γ
arcsin

[
γ√

1 + γ 2
sin(u)

]
,

x1 = σ

γ
√

1 + γ 2
arsinh

[
γ cos(u)

]
,

(62)

where γ is regarded as initial information and not relevant
to the scale r . The simplicity of Semenoff–Zarembo con-
struction for constant field led us to speculate that the sim-
ilar production rates could have been obtained by repeating
above procedure. However, it is not anything like worldline
instanton, the string worldsheets are not exactly integrable for
dynamic fields in our cases. Thus to make an effect estima-
tion, we expand the instanton at adiabatic limit, i.e. γ → 0,

x0 ∼ σ sin(u) − σ
γ 2

6
cos(u)

[
cos2(u) + 3

]
+ O

(
γ 4
)
,

x1 ∼ σ cos(u) − σ
γ 2

24
[9 sin(u) + sin(3u)] + O

(
γ 4
)
,

(63)

namely the zeroth order of γ is just the circle boundary Eq.
(55). Therefore, we will treat the complete worldline bound-
ary as perturbation around the circle. The r component can
be estimated by noting that

r = L2√
L4

r2
0

+ f (x0, x1)

, (64)

where f (x0, x1) = 0 is the instanton path. In a single-pulse
field, it reads

f (x0, x1) = σ 2
0

2γ 2

[
γ 2 +

(
1 + γ 2

)
cos

(
2γ

σ0
x0

)

−cosh

(
2γ
√

1 + γ 2

σ0
x1

)]
.

(65)

In the limit γ → 0, f (x0, x1) reduces to a circle

f (x0, x1) ∼ σ 2
0 − x2

0 − x2
1 + γ 2

3σ 2
0

(
x2

0 + x2
1

)

×
(
−3σ 2

0 + x2
0 − x2

1

)
+ O

(
γ 4
)
.

(66)

Hence the Nambu–Gotō action is formulated as

SNG = S0
NG − πTF

γ 2r0σ
2
0√

L4

r2
0

+ σ 2
0

, (67)

where S0
NG is given in Eq. (58). On the other hand, the NS–NS

part right now becomes

SB2 = S0
B2

+ 3

2
πE0γ

2σ 2
0 . (68)

The σ0 is fixed as the stationary point of the total action,

σ0 ∼ L2

r0

√
E2

c

E2
0

− 1 + γ 2 L2

2r0

2E2
c

E2
0

− 1
√

E2
c

E2
0

− 1

+ O
(
γ 3
)

. (69)

The exponential factor in the production rate with correction
up to the second order of γ is

Γ ∼ exp

⎡
⎣−

√
g

2

(√
E0

Ec
−
√

Ec

E0

)2

−γ 2
√
g

4

(
Ec

E0
− E0

Ec

)
+ O

(
γ 4
)]

.

(70)

here g = g2
YM N denotes the effective coupling at large ’t

Hooft limit. In Eq. (70), the first part in the exponent comes
from the circular boundary, while the second term arises from
the deformation, see Fig. 4.
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Fig. 4 The exponents of the vacuum decay rate, where the critical field
is defined by the maxima, which are emphasised by dots. For constant
field, the exponent is given by Eq. (61) and plotted in blue. For single-
pulse field in Eq. (70), the colour is red. For sinusoidal field shown in
Eq. (79), it is plotted in brown

If one defines the critical field as stationary point of
exponent, the correction (up to O(γ 2)) due to the time-
dependence of the background field leads a lager critical
value comparing with constant field, which is fixed by

E0 → Ec

√
2 + γ 2

2 − γ 2 , (71)

beyond which the decay rate decreases as the similar as Eq.
(61). The enhancement up to O(γ 2) can also be noted from
the negative sign of γ 2 in Eq. (70). In other words, the cor-
rection plays a role of suppression of pair production.

4.3 Estimation of sinusoidal field E(t) = E cos(ωt)

The worldline instanton in this case can be parametrised as

x0 = σ

γ
arsinh

[
η sd

(
2

π
K
(
η2
)

u

∣∣∣∣η2
)]

,

x1 = σ

γ
arcsin

[
η cd

(
2

π
K
(
η2
)

u

∣∣∣∣η2
)]

,

(72)

where η has been defined in Eq. (37). The Maclaurin series
of Jacobian elliptic functions in γ gives

x0 ∼ σ sin(u) − σ
γ 2

48
[9 sin(u)

+ sin(3u) + 12u cos(u)] + O
(
γ 4
)
,

x1 ∼ σ cos(u) − σ
γ 2

48
[−12u sin(u)

+ 15 cos(u) + cos(3u)] + O
(
γ 4
)
.

(73)

The instanton path on the D3–brane in this case is

f (x0, x1) = σ 2
0

2γ 2
(
1 + γ 2

)
[
γ 4 +

(
1 + γ 2

)2
cos

(
2γ

σ0
x0

)

+
(

21 + γ 2
)

cosh

(
2γ

σ0
x1

)
− 2(1 + γ 2)

]

(74)

and its expansion for small γ reads

f (x0, x1) ∼ σ 2
0 − x2

0 − x2
1 + γ 2

×
(

x4
0 − x4

1

3σ 2
0

− x2
0 − x2

1

)
+ O

(
γ 4
)
.

(75)

The second order terms for the Nambu–Gotō action

S(2)
NG = πTFγ 2

2L4
√

L4 + r2
0 σ 2

0

(r4
0 σ 4

0 − L8

− 2L4r2
0 σ 2

0 + L6
√

L4 + r2
0 σ 2

0 ),

(76)

and the NS–NS term are

S(2)
B2

= πγ 2 E0σ
2
0 . (77)

Up to the second order of γ , σ0 is given by

σ0 = L2

r0

√
E2

c

E2
0

− 1 + γ 2 L2

2r0

3E4
c

2E4
0

− 1
√

E2
c

E2
0

− 1

+ O(γ 4). (78)

Finally, the exponential factor in the production rate is given
by

Γ ∼ exp

⎡
⎣−

√
g

2

(√
E0

Ec
−
√

Ec

E0

)2

−γ 2
√
g

4

(
E3

c

E3
0

− 2
Ec

E0
+ 1

)
+ O

(
γ 4
)⎤⎦ ,

(79)

see Fig. 4. The critical field should be greater than Ec =
TFr2

0 /L2, i.e.

E0 →
√

1 − γ 2 +√γ 4 + 41 + γ 2

√
2

Ec (80)

and one sees that dynamics of the external field also enhances
the critical field as before.
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5 Conclusion and discussion

In this paper, the scalar Schwinger effect for dynamic fields at
strong coupling and weak-field limit has been studied, by first
using the field-theoretical method of worldline instantons. A
non-trivial contribution to the production rate is discovered
by evaluating the Wilson loop along the instanton path, which
depends on the Keldysh adiabaticity parameter γ . Thus one
may expect that such correction may save the weak-field con-
dition in strong coupling. However after computations, we
find that the introduction of the correction term also leads to
a contradiction to the weak-field condition near the critical
field strength.

We note also that the correction from Wilson loop is a
monotonically increasing function with respect to γ , which
makes the contribution for production rate from Wilson loop
become dominant as γ increases. Moreover both t-expansion
and numerical calculation suggest a divergent value as γ

approaches infinity, even if the pre-exponential factor of
Feynman integral is considered. One possible explanation
is that the Wilson loop loses its meaning at γ → ∞, because
the instanton trajectory collapses to a singular point.

In order to clarify the vacuum cascade beyond the weak-
field condition, in the context of an N = 4 supersymmet-
ric Yang–Mills theory, the production rate is calculated by
the gauge/gravity duality, according to which the instanton
action has a string counterpart of the classical string action in
Euclidean AdS3, where the boundary on the probe D3–brane
is given by the instanton path. Thus the problem is converted
to solving the classical motion of string with Dirichlet bound-
ary conditions. However the string worldsheets for dynamic
fields are not integrable as in the worldline instantons. To pro-
vide an explicit estimation, we treat the specific worldsheets
as perturbations around the one with circle boundary, which
had been solved exactly. Such an expansion is an adiabatic
approximation, it is practical and realistic, because only low-
frequency laser (comparing with electron mass) is currently
operational. The obtained decay rates in the two examples
with dynamic fields are similar concave functions as in the
case with constant field, but the critical fields increase con-
siderably. In other words, up to O(γ 2) the correction due to
the dynamics of electric field suppresses the pair production,
which is opposite to cases of worldline instantons.
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Appendix A: the validity of t-expansion

For an approximation theory {gn(x)} of full function f (x),
we say it is valid if limn→∞ gn = f in some domain. The
purpose of t-expansion is to provide a nonlinear approxi-
mation for Aε(γ ) by establishing a sequence of functions
{nAε(γ )}, which satisfies limn→∞ nAε = Aε.

In order to establish nonlinear approximation, we note that
the integrand of Aε can be expanded as

T (t) = x ′(s) · x ′(s + t)

[x(s + t) − x(s)]2 + ε2

=
∑∞

k=0 aktk

ε2 +∑∞
k=2 cktk

,

(A.1)

where the coefficients in the expansion are separately

ak = 1

k! x ′(s) · x (k+1)(s),

ck =
k−1∑
m=1

1

m!(k − m)! x (m)(s) · x (k−m)(s),
(A.2)

and for given any closed and smooth instanton trajectories,
both Taylor expansions in the denominator and numerator
are of infinite radius of convergence separately. Therefore
both expansions are uniformly convergent separately, see 8.1
theorem in [40].

Then one can define the n-th order of t-expansion by the
integral of rational series with type [n, n]

nAε :=
∫ π

−π

ds
∫ π

−π

dt Tn(t),

Tn(t) =
∑n

k=0 aktk

ε2 +∑n
k=2 cktk

,

(A.3)

where the integrand is uniformly convergent to Eq. (A.1) due
to the quotient law of convergent sequences and absence of
poles for ε �= 0. The uniform convergence can be shown by
using theorem 7.9 in [40]. Generally for given two uniformly
convergent sequences gn → g, fn → f and gn does not
have zeroes in considering domain, then the quotient fn/gn
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is uniformly convergent to f/g. Namely the supremum of
| f/g − fn/gn|
∣∣∣∣ f

g
− fn

gn

∣∣∣∣ ≤ | f |
|ggn| |g − gn| + | f − fn|

|gn| (A.4)

approaches zero as n → ∞, because both sequences are uni-
form convergent. Thus the interchange of limit and integral
operations is valid in the corresponding domain (see 7.16
theorem in [40]), i.e.

lim
n→∞

∫ π

−π

ds
∫ π

−π

dt

∑n
k=0 aktk

ε2 +∑n
k=2 cktk

=
∫ π

−π

ds
∫ π

−π

dt lim
n→∞

∑n
k=0 aktk

ε2 +∑n
k=2 cktk

(A.5)

which is exactly what we expect limn→∞ nAε = Aε.
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