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Quantum mechanically, photoionization can be fully described by the complex photoionization
amplitudes that describe the transition between the ground state and the continuum state. Knowledge
of the value of the phase of these amplitudes has been a central interest in photoionization studies and newly
developing attosecond science, since the phase can reveal important information about phenomena such as
electron correlation. We present a new attosecond-precision interferometric method of angle-resolved
measurement for the phase of the photoionization amplitudes, using two phase-locked extreme ultraviolet
pulses of frequency ω and 2ω, from a free-electron laser. Phase differences Δη̃ between one- and two-
photon ionization channels, averaged over multiple wave packets, are extracted for neon 2p electrons as a
function of the emission angle at photoelectron energies 7.9, 10.2, and 16.6 eV. Δη̃ is nearly constant for
emission parallel to the electric vector but increases at 10.2 eV for emission perpendicular to the electric
vector. We model our observations with both perturbation and ab initio theory and find excellent
agreement. In the existing method for attosecond measurement, reconstruction of attosecond beating by
interference of two-photon transitions (RABBITT), a phase difference between two-photon pathways
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involving absorption and emission of an infrared photon is extracted. Our method can be used for extraction
of a phase difference between single-photon and two-photon pathways and provides a new tool for
attosecond science, which is complementary to RABBITT.

DOI: 10.1103/PhysRevX.10.031070 Subject Areas: Atomic and Molecular Physics

I. INTRODUCTION

The age of attosecond physics was ushered in by the
invention of methods for probing phenomena on a timescale
less than femtoseconds [1]. A phenomenon occurring on this
timescale is photoemission delay.When the photon energy is
far from resonance, the photoemission delay for single-
photon ionization can be associated with the Wigner delay
experienced by an electron scattering off the ionic potential
[2]. Quantum mechanically, the photoionization process is
fully described by the complex photoionization amplitudes
describing transitions between the ground state and the
continuum state. The photoemission delay can be expressed
as the energy derivative of the phase of the photoionization
amplitude, and, therefore, measuring the photoemission
delay and the energy-dependent phase of the photoionization
amplitude are practically equivalent. Their measurement is
one of the central interests in attosecond science [3–14],
because they are a fundamental probe of the photoionization
process and can reveal important information about, for
example, electron-electron correlations (see, e.g., Ref. [15]).
Currently, two methods are available to measure these

quantities: streaking and reconstruction of attosecond beat-
ing by interference of two-photon transitions (RABBITT),
both of which require the use of an IR dressing field. We
present a new interferometric method of angle-resolved
measurement for the photoionization phase, using two
phase-locked extreme ultraviolet (XUV) pulses of fre-
quency ω and 2ω, from a free-electron laser (FEL), without
a dressing field.
In attosecond streaking [16], an ultrafast, short-wave-

length pulse ionizes an electron, and a femtosecond IR pulse
acts as a streaking field, by changing the linear momentum
of the photoelectron. In this technique, one can extract the
photoemission delay difference between two photoemission
lines at two different energies, arising, for example, from
two different subshells [16] or the main line and satellites
[15]. Generally, time-of-flight electron spectrometers
located in the streaking direction (the direction of linear
polarization) are used, so that this method does not give
access to angular information. A related method is the
attosecond clock technique [17–20], in which streaking by
the circularly polarized laser pulse is in the angular direction.
The second technique for measuring photoemission

delays, RABBITT, is interferometric: It uses a train of
attosecond pulses dressed by a phase-locked IR pulse [21].
In the RABBITT technique, the phase difference between a
pair of two-photon pathwayswhose final energy is separated
by multiples of an infrared photon energy is extracted.

The extracted value is related to the phase difference of the
two-photon ionization amplitudes at the pair of energies. For
two energy points separated by twice the IR photon energy,
the phase difference divided by twice the IR photon energy
can be regarded as a finite difference approximation to the
energy derivative of phase of the two-photon ionization
amplitude. The pulse duration requirements are relaxed: For
example, pulse trains and IR pulses of 30 fs duration may be
used [6]. Usually, the IR pulse is the fundamental of the odd
harmonics in the pulse train, although Loriot et al. [22]
report a variant using the second harmonic. Recent work on
phase retrieval includes methods based on photorecombi-
nation [13,23], two-color, two-photon ionization via a
resonance [24], and a proposal to use successive harmonics
of circularly polarized light [25].
The phase of the photoionization amplitude depends on

photoelectron energy ϵ, and it may also depend on the
electron emission direction. There is a physical origin for
the directional anisotropy of the amplitude: An electron
wave packet may consist of two or more partial waves, with
different angular momenta and phases. There has been
significant theoretical work on the angle-dependent time
delay, for example, Refs. [26–32], but fewer related exper-
imental reports [12,28,33], all using the RABBITT
technique. The Wigner delay is theoretically isotropic for
single-photon ionization of He, but Heuser et al. [28]
observed an angular dependence in photoemission delay,
attributed to the XUVþ IR two-photon ionization process,
inherent in RABBITT interferometry.
In the present work, we demonstrate interferometric

measurements of the relative phase of single-photon and
two-photon ionization amplitudes. The interference is
created between a two-photon ionization process driven
by a fundamental wavelength and a single-photon ioniza-
tion process driven by its phase-locked, weaker, second
harmonic, in a setup like that demonstrated at visible
wavelengths [34]. Using short-wavelength, phase-locked
XUV light, we measure angular distributions of photo-
electrons emitted from neon and determine the phase
difference for one- and two-photon ionization wave pack-
ets. The extremely short (attoseconds) pulses required for
streaking or attosecond pulse trains for RABBITT are not
needed, and, instead, access to the photoemission phase
with attosecond precision is provided by optical phase
control with a precision of a few attoseconds, which is
available from the free-electron laser FERMI [35].
The rest of the manuscript is structured as follows:

In Sec. II, we introduce the necessary notation and the basic
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processes that may be active in the experiment; in Secs. III
and IV, we describe, respectively, the experimental and
theoretical methods used. In Sec. V, we present and
compare experimental and theoretical results. We discuss
in Sec. VI the relationship between our data, namely, the
angular distribution of photoelectrons created by colline-
arly polarized biharmonics, and the time-delay studies
described in the introductory section. Section VII presents
our summary and outlook, and the Appendix gives details
of the derivation of some equations.

II. NOTATION AND BASIC PROCESSES

We use Hartree atomic units unless otherwise stated and
spherical coordinates r ¼ fr; θ;φg relative to the direction
of polarization of the bichromatic field (linear horizontal in
the experiment). We assume the electric dipole approxi-
mation, and the experiment is cylindrically symmetric
about the electric vector, so that there is no dependence
on the azimuthal angle φ. The bichromatic electric field is
described by

EðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
IωðtÞ

p
cosωtþ

ffiffiffiffiffiffiffiffiffiffiffiffi
I2ωðtÞ

p
cos ð2ωt − ϕÞ; ð1Þ

where ω and 2ω are angular frequencies, IωðtÞ and I2ωðtÞ
are the pulse intensity envelopes, and ϕ denotes the ω-2ω
relative phase.
We can consider the experimental sample as an ensemble

of identical atoms of infinitesimal size, so we can reduce the
theoretical treatment to that of a single atom centered at the
coordinates’ origin. The general form (omitting as implicit
the dependence on θ;φ) of an electron wave packet
sufficiently far away from the origin is

Z
∞

0

cðϵÞe−iϵtei½
ffiffiffiffi
2ϵ

p
rþfðr;ϵÞþηðϵÞ�dϵ; ð2Þ

where ϵ is the photoelectron kinetic energy, cðϵÞ the real-
valued amplitude, and ηðϵÞ the phase and the term fðr; ϵÞ ¼
ðZ= ffiffiffiffiffi

2ϵ
p Þ ln ffiffiffiffiffi

8ϵ
p

r accounts for the Coulomb field of the
residual ion with charge Z. In our case, Z ¼ þ1.
In the ω-2ω process, i.e., one driven by the field in

Eq. (1), the wave packet can be expressed as

Z
∞

0

e−iϵtei½
ffiffiffiffi
2ϵ

p
rþfðr;ϵÞ�

× fcωðϵÞeiηωðϵÞ þ c2ωðϵÞei½η2ωðϵÞþϕ�gdϵ: ð3Þ

The photoelectron yield as a function of optical phase ϕ
(we omit the spatial coordinates on the right-hand side) is
given by

Iðθ;φ;ϕÞ ≐ Iðθ;ϕÞ

¼
Z

∞

0

n
cωðϵÞ2 þ c2ωðϵÞ2 þ 2cωðϵÞc2ωðϵÞ

× cos½ϕ − ΔηðϵÞ�
o
dϵ

≡ A0 þ A cos½ϕ − Δηðϵ̄Þ�; ð4Þ

where ϵ̄ is the average kinetic energy of the wave packet
and ΔηðϵÞ≡ ηωðϵÞ − η2ωðϵÞ is the phase of the two-photon
ionization relative to the single-photon ionization.
This treatment may be generalized to the case of multiple

wave packets, that is to say, with more than one magnetic
quantum number m of the residual ion. Wave packets with
each value of m interfere separately and then incoherently
add. In particular, expressing the photoionization yield as in
Eq. (4)

Iðθ;ϕÞ ¼ A0 þ A cos ðϕ − Δη̃Þ
¼

X
m

½A0;m þ Am cosðϕ − ΔηmÞ�; ð5Þ

where summation is over the wave packets, leads to

A0 ¼
X
m

A0;m; AeiΔη̃ ¼
X
m

AmeiΔηm: ð6Þ

The second equation defines an average phase difference
Δη̃ of fΔηmg, weighted in terms of the corresponding
phase factors. Equations (4) and (5) indicate that the yield
of photoelectrons emitted by a bichromatic pulse in a
particular direction oscillates sinusoidally as a function of
the optical phase ϕ.

III. EXPERIMENTAL METHODS AND SETUP

The experimental methods are described elsewhere [35],
and, here, we summarize the main aspects and the para-
meters used. The experiment is carried out at the low
density matter beam line [36,37] of the FERMI free-
electron laser [38], using the velocity map imaging
(VMI) spectrometer installed there. The VMI measures
the projection of the photoelectron angular distribution
(PAD) onto the planar detector (horizontal); the PAD is
obtained as an inverse Abel transform of this projection,
using the BASEX (basis set expansion) method [39]. The
images are divided into two halves along the line of the
electric vector, labeled “left” and “right,” and analyzed
separately. The PADs from the two halves agree generally,
but the detector for the right half shows a small nonun-
iformity in detection efficiency. Therefore, the PADs
are analyzed using the left half of the detector, denoted
as 0°–180° below.
The sample consists of a mixture of helium and neon,

and the helium PAD is used to calibrate the phase difference
between the ω and 2ω fields. The atomic beam is produced
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by a supersonic expansion and defined by a conical
skimmer and vertical slits. The length of the interaction
volume along the light propagation direction is approx-
imately 1 mm. In other experiments [5,7], the use of two
gases allows referencing of the photoemission delay of one
electron to that of another. In the present case, we use the
admixture of helium to provide a phase reference. When the
free-electron laser wavelength is changed, the mechanical
settings of the magnetic structures (undulators) creating the
light are changed. This change may introduce an unknown
phase error between fundamental and second harmonic
light. We have recently shown that the PAD of helium 1s
electrons can be used to determine the absolute optical
phase difference between the ω and 2ω fields, with an input
of only a few theoretical parameters [40].
The light beam consists of two temporally overlapping

harmonics with controlled relative phase ϕ [Eq. (1)] and
irradiates the sample, as shown schematically in Fig. 1. The
intense fundamental radiation causes two-photon ioniza-
tion, while the weak second harmonic gives rise to single-
photon ionization. The energies of the photoelectrons

created coherently in the two channels are identical, and
electrons with the same linear momentum interfere [24].
The PAD Iðθ;ϕÞ is measured as a function of the phase ϕ;
from the component oscillating with ϕ, the scattering
phases are extracted, as shown in Sec. V. The wavelength
is then changed and the measurement repeated.
The relative phase of the two wavelengths is controlled

by means of the electron delay line or phase shifter [35,41]
used previously. It has been calculated that the two pulses
have good temporal overlap with slightly different dura-
tions and only a small mean variation of the relative phase
of two wavelengths within the full width at half maximum
of the pulses, for example, 0.07 rad for a fundamental
photon energy of 18.5 eV [35].
The intensities of the twowavelengths for the experiments

are set as follows. With the last undulator open (that is,
inactive), the first five undulators are set to the chosen
wavelength of the first harmonic.A small amount of spurious
second harmonic radiation (intensity of the order of 1%of the
fundamental) is produced by the undulators [42], and, to
absorb this radiation, the gas filter available at FERMI is
filled with helium. Helium is transparent at all of the
fundamental wavelengths used in this study. The two-photon
photoelectron signal from the neon and helium gas sample is
observed with the VMI spectrometer. The last undulator is
then closed to produce the second harmonic, and the
photoelectron spectrum of the combined beams is observed.
The single-photon ionization by the second harmonic is at
least an order of magnitude stronger than the two-photon
ionizationby the fundamental. The heliumgas pressure in the
gas filter is then adjusted to achieve a ratio of the ionization
rates due to two-photon and single-photon ionization of 1∶2
for kinetic energies of 7.0 and 10.2 eV. For the kinetic energy
of 15.9 eV, the ratio is set to 1∶4. The bichromatic beam is
focused by adjusting the curvature of the Kirkpatrick-Baez
active optics [43] and verified experimentally by measuring
the focal spot size of the second harmonic with a Hartmann
wavefront sensor. This instrument is not able to measure the
spot size of the beams at the fundamentalwavelengths, so it is
calculated [44]. The measured spot is elliptical with a size
of ð4.5� 1Þ × ð6.5� 1Þ μm2 (FWHM), and the estimated
pulse duration is 100 fs.
Table I summarizes the experimental parameters: fun-

damental photon energy (ℏω), kinetic energy (Ek ¼
2ℏω − 21.6 eV) of the Ne photoelectrons emitted via

FIG. 1. Scheme of the experiment: Bichromatic, linearly
polarized light (red and blue waves), with momentum kγ and
electric vector Eγ, ionizes neon in the reaction volume. The
electron wave packets (yellow and magenta waves) are emitted
with electron momentum k. Them-averaged phase difference Δη̃
between wave packets created by one- and two-photon ionization
depends on the emission angle. The photoelectron angular
distribution depends on the relative (optical) ω-2ω phase ϕ.
Lower figures: Polar plots of photoelectron intensity at Ek ¼
16.6 eV for coherent harmonics (asymmetric, colored plot) and
incoherent harmonics (symmetric, gray plot).

TABLE I. Experimental parameters. Ek is the kinetic energy of the Ne 2p photoelectrons. The pulse energies at the
sample are calculated by multiplying the values at the source by the transmission of the beam line [37], which takes
account of reflection and geometric losses. Pulse energies and irradiance are those of the fundamental.

Pulse energy, μJ Beam line Pulse energy, μJ Average irradiance
ℏω, eV Ek, eV (at source) Transmission (at sample) W=cm2

14.3 7.0 45 0.10 4.5 2.3 × 1014

15.9 10.2 95 0.13 12.4 6.2 × 1014

19.1 16.6 84 0.23 19.3 9.5 × 1014
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single-photon (2ω) or two-photon (ωþ ω) ionization,
average pulse energy of the first harmonic at the source
and at the sample, beam line transmission, and average
irradiance at the sample calculated from the above spot
sizes and pulse durations. The estimate of the pulse energy
at ℏω ¼ 14.3 eV is indirect, since the FERMI intensity
monitors do not function at this energy, because they are
based on ionization of nitrogen gas, and the photon energy
is below the threshold for ionization. The method employed
is to first use the in-line spectrometer to measure spectra at
15.9 eV energy and, simultaneously, the pulse energies
from the gas cell monitors, which gives a calibration of the
spectrometer intensity versus pulse energy at this wave-
length. Then, spectrometer spectra are measured at 14.3 eV,
and corrected for grating efficiency and detector sensitivity,
to yield pulse energies.

IV. THEORY

We now consider the physics of the experiment from two
theoretical points of view: real-time ab initio simulations,
which are very accurate but computationally expensive, and
perturbation theory, which allows us to explore the physics
analytically and gain insights with relatively low computa-
tional costs.

A. Real-time ab initio simulations

We numerically compute the photoionization of Ne irra-
diated by two-color XUV pulses, using the time-dependent
complete-active-space self-consistent field (TD-CASSCF)
method [45,46] and the parameters in Table II. The pulse
length is chosen to be 10 fs for reasons of computational
economy. It has been shown that the pulse length does not
affect the result, provided the photoionization is nonreso-
nant, i.e., no resonances occur within the photon bandwidth
[47,48]. As a further check, we also calculate the phase
shift difference at 14.3 eV photon energy for pulse
durations of 5, 10, and 20 fs and find identical results.
Thus, we can safely scale the results to the present longer
experimental pulses.
Neither the absolute intensity nor the ratio of intensities

of the harmonics influences the calculated phase, as we
show below. The dynamics of the laser-driven multielectron
system is described by the time-dependent Schrödinger
equation (TDSE):

i
∂ΨðtÞ
∂t ¼ ĤðtÞΨðtÞ; ð7Þ

where the time-dependent Hamiltonian is

ĤðtÞ ¼ Ĥ1ðtÞ þ Ĥ2; ð8Þ

with the one-electron part

Ĥ1ðtÞ ¼
XZ
i¼1

ĥðri; tÞ ð9Þ

and the two-electron part

Ĥ2 ¼
XZ
i¼1

X
j<i

1

jri − rjj
: ð10Þ

We employ the velocity gauge for the laser-electron
interaction in the one-body Hamiltonian:

ĥðr; tÞ ¼ k2

2
þAðtÞ · k −

Z
jrj ; ð11Þ

whereAðtÞ ¼ −
R
EðtÞdt is the vector potential,EðtÞ is the

laser electric field [see Eq. (1)], and Z (¼ 10 for Ne) the
atomic number.
In the TD-CASSCF method, the total electronic wave

function is given in the configuration interaction (CI)
expansion:

Ψðx1; x2;…; xN; tÞ ¼
X
I

CIðtÞΦIðx1; x2;…; xN; tÞ; ð12Þ

where xn ¼ frn; σng is the joint designation for spatial and
spin coordinates of the nth electron. The electronic con-
figuration ΦIðx1; x2;…; xN; tÞ is a Slater determinant com-
posed of spin orbital functions fψpðr; tÞ × sðσÞg, where
fψpðr; tÞg and fsðσÞg denote spatial orbitals and spin
functions, respectively. Both the CI coefficients fCIg and
orbitals vary in time.
The TD-CASSCF method classifies the spatial orbitals

into three groups: doubly occupied and time-independent
frozen core (FC), doubly occupied and time-dependent
dynamical core (DC), and fully correlated active orbitals:

Ψ ¼ Â

�
ΦfcΦdc

X
I

ΦICI

�
; ð13Þ

where Â denotes the antisymmetrization operator, Φfc and
Φdc the closed-shell determinants formed with numbers nfc
FC orbitals and ndc DC orbitals, respectively, and fΦIg the
determinants constructed from na active orbitals. We
consider all the possible distributions of active electrons
among active orbitals. Thanks to this decomposition, we

TABLE II. Parameters used for theoretical calculations. Iω and
I2ω are the peak intensities of the fundamental and second
harmonic, respectively.

ℏω, eV Iω, W=cm2 I2ω, W=cm2

14.3 1 × 1013 2.32 × 108

15.9 1 × 1013 1.18 × 108

19.1 1 × 1013 2.82 × 108
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can significantly reduce the computational cost without
sacrificing the accuracy in the description of correlated
multielectron dynamics. The equations of motion that
describe the temporal evolution of the CI coefficients
fCIg and the orbital functions fψpg are derived by use
of the time-dependent variational principle [45]. The
numerical implementation of the TD-CASSCF method
for atoms is detailed in Refs. [46,49].

B. Extraction of the photoelectron angular
distribution and the phase shift difference

From the obtained time-dependent wave functions,
we extract the angle-resolved photoelectron energy spec-
trum (ARPES) by use of the time-dependent surface flux
(tSURFF) method [50]. This method computes the ARPES
from the electron flux through a surface located at a certain
radius Rs, beyond which the outgoing flux is absorbed by
the infinite-range exterior complex scaling [49,51].
We introduce the time-dependent momentum amplitude

apðk; tÞ of orbital p for photoelectron momentum k,
defined by

apðk; tÞ ¼ hχkðr; tÞjuðRsÞjψpðr; tÞi

≡
Z
r>Rs

χ�kðr; tÞψpðr; tÞd3r; ð14Þ

where χkðr; tÞ denotes the Volkov wave function and uðRsÞ
the Heaviside function which is unity for r > Rs and
vanishes otherwise. The use of the Volkov wave function
implies that we neglect the effects of the Coulomb force
from the nucleus and the other electrons on the photo-
electron dynamics outside Rs, which is confirmed to be a
good approximation [52]. The photoelectron momentum
distribution ρðkÞ is given by

ρðkÞ ¼
X
pq

apðk;∞Þa�qðk;∞ÞhΨðtÞjÊq
pjΨðtÞi; ð15Þ

with Êq
p ≡P

σ â
†
qσâpσ . One obtains apðk;∞Þ by numeri-

cally integrating:

−i
∂
∂tapðk;tÞ¼hχkðtÞj½ĥs;uðRsÞ�jψpðtÞi

þ
X
q

aqðk;tÞfhψqðtÞjF̂jψpðtÞi−Rq
pg; ð16Þ

where ĥs ¼ k2=2þAðtÞ · k, Rq
p ¼ ihψqj _ψpi − hψqjĥjψpi

and F̂ denotes a nonlocal operator describing the contri-
bution from the interelectronic Coulomb interaction
[46,49]. The numerical implementation of tSURFF to
TD-CASSCF is detailed in Ref. [52].
We evaluate the photoelectron angular distribution

Iðθ;ϕÞ as a slice of ρðkÞ at the value of jkj corresponding
to the photoelectron peak and as a function of the optical

phase ϕ. Then, employing a fitting procedure very similar
to that used for the experimental data, we extract the phase
shift difference Δη̃ between single-photon and two-photon
ionization at photoelectron energies 7.0, 10.2, and 16.6 eV.
The results are shown in Fig. 2.

C. Perturbation theory

In the experiment, the number of optical cycles in
the pulse is of the order of 400 for the fundamental,
and, therefore, we can treat the field as having constant
amplitude and omit the initial phase of the field with respect
to the envelope (carrier-envelope phase). Within the per-
turbation theory, we check that our final results with an
envelope including 100 optical cycles or more differ only
within the optical linewidth from those obtained with the
constant amplitude field. The bichromatic electric field is
then described by Eq. (1), with time-independent Iω and
I2ω. The calculations described below are carried out for
384 optical cycles and a peak intensity of 1 × 1012 W=cm2.
However, neither the absolute intensity nor the ratio of
intensities of the harmonics influences the calculated phase,
as we show below.
We make two main assumptions: the dipole approxima-

tion for the interaction of the atom with the classically
described electromagnetic field and the validity of the
lowest nonvanishing order perturbation theory with respect
to this interaction. These approximations are well fulfilled
for neon in the FEL spectral range and intensities of interest
here. We expand the amplitudes in the lowest nonvanishing
order of perturbation theory in terms of matrix elements of
the operator of evolution [53]. The expansion implies
that, in the second-order amplitude, all virtual intermediate
states are taken into account. Excitations of the seven
lowest and most important intermediate dipole-allowed
states originating from configurations (2p5 3s, 4s, 3d)
are accounted for accurately within the multiconfiguration
intermediate-coupling approximation with relativistic
Breit-Pauli corrections in the atomic Hamiltonian. All other
virtual states (of infinite number), including those in the
continuum, are accounted for by a variationally stable
method [54,55] in the Hartree-Fock-Slater approximation.
More details can be found in Ref. [56]. Further derivations
within the independent particle approximation are given in
the Appendix.

V. RESULTS

We extract Δη̃ðθÞ from the measured PADs at three
combinations of ω and 2ω (corresponding to photoelectron
kinetic energies of 7.0, 10.2, and 16.6 eV), at each 5°
interval of the polar angle. The spatial and temporal
symmetry properties of the system impose constraints on
the oscillatory behavior of the two emission hemispheres.
Upon reflection in a plane perpendicular to the electric
vector (θ → π − θ), the electric field defined in Eq. (1) is
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inverted: EðtÞ → −EðtÞ, and the ω-2ω relative phase
becomes ϕþ π. From the arguments above, Eq. (5)
becomes

Iðπ − θ;ϕþ πÞ ¼ A0 þ A cos ½ϕþ π − Δη̃ðπ − θÞ�
¼ A0 − A cos ½ϕ − Δη̃ðπ − θÞ�; ð17Þ

where we omit the argument ϵ̄ and include explicitly the
argument θ. Comparison with Eq. (4) indicates that the
intensities at the two opposite angles oscillate in antiphase,
that is, Δη̃ðπ − θÞ ¼ Δη̃ðθÞ þ π. It can be seen in Figs. 2(a)
and 2(b) that the experimental data do indeed oscillate in
antiphase for each angular interval over θ. Since this is a
symmetry constraint, it is imposed in the analysis of the data.
In Figs. 2(c)–2(e), it can be seen that there is a significant

increase of Δη̃ðθÞ at approximately 90°, especially for
10.2 eV. The angular-dependent variations of Δη̃ðθÞ at 7.0
and 16.6 eV are similar. We perform calculations for the
phase shift differences Δη̃ðθÞ using both perturbation

theory and real-time ab initio methods (see Sec. IV and
the Appendix), and both theories reproduce well the
observed behavior; see Figs. 2(c)–2(e). The perturbation
theory result at the intermediate angles is very sensitive to
the contribution of the p-d-f two-photon ionization path,
which may not be accurately reproduced by the local-
potential approximation in summation over the Rydberg
and continuum d states.
Figure 3 shows the theoretical dependence of Δη̃ðθÞ on

electron kinetic energy and polar angle θ, calculated using
perturbation theory. There is a single-photon 2p → 3s
resonance of the fundamental wavelength at 16.7 eV
photon energy (12 eV kinetic energy for the two-photon
or second harmonic). The behavior of Δη̃ in the region of
the resonance is complicated: We can clearly see thatΔη̃ðθÞ
at θ ∼ 90° increases near the resonance around 12 eV and
then returns to a value similar to that at approximately 7 eV.
This result indicates that the large phase shift difference
observed at 10.2 eV in Fig. 2(d) is due to the influence of
the resonance at 12.0 eV [32,33] and suggests that future
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FIG. 2. Upper: Typical photoelectron yields Iðθ;ϕÞ as a function of optical phase ϕ at intervals of polar angles θ. The signal is
integrated over the 5° intervals shown on the right. The curves are not shifted; thus, their vertical position reflects directly the value A0 in
Eq. (4). The photoelectron kinetic energy is 7.0 eV. Circles are experimental results; lines are sinusoidal fits of the experimental results.
Lower: Extracted phase shift differences as a function of the polar angles, for four datasets and three photoelectron kinetic energies: left
(c), 7.0 eV; middle (d), 10.2 eV; right (e), 16.6 eV. Circles are experimental results; shaded areas show their uncertainties. Dashed lines,
perturbation theory; solid lines, real-time ab initio theory. Note that the curves in (a) and (b) oscillate in antiphase, because they
correspond to emission directions on opposite sides of the photon propagation direction.
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experiments should explore this region in fine detail, to
observe the predicted rapid changes in Δη̃. Both theories
reproduce this behavior well, with the time-dependent
ab initio method exhibiting excellent agreement, validating
the present experimental method.
We show in the Appendix that the method is independent

of the relative intensities of the fundamental and second
harmonic radiation; see Eqs. (A5)–(A9). This advantage is
considerable from an experimental point of view, as it is not
necessary to measure precisely the intensity and focal spot
shape. Furthermore, there are no effects due to volume
averaging over the Gaussian spot profile or over the
duration of the pulses. We verify this conclusion exper-
imentally for the kinetic energy of 16.6 eV [Fig. 2(d)],
where the ratio of ionization rates is 1∶4 (rather than 1∶2
used for the other energies), and the experiment and theory
agree well.

VI. DISCUSSION

In this section, we elucidate the relationship of our
data, i.e., photoelectron angular distributions created by
collinearly polarized biharmonics, to time-delay studies
described in the introduction. We limit ourselves to the case
where any discrete state in the continuum (autoionizing
state) or in the discrete spectrum lies outside the bandwidth
of the pulses (<0.02 eV in the present case). These
conditions are well fulfilled in our experiments. The
resonant case is discussed elsewhere [10].
We first consider the simple situation of photoionization

from a spherically symmetric orbital s. The present method
can be extended straightforwardly to inner shell ionization

of atoms, such as 1s2 of Ne. Single-photon ionization leads
to a continuum state with angular momentum p, while two-
photon ionization leads to two final quantum states s and d.
Then, the PAD IeðθÞ is described by

IeðθÞ ¼ jcseiηsY00ðθ;φÞ þ cpeiðηpþϕÞY10ðθ;φÞ
þ cdeiηdY20ðθ;φÞj2; ð18Þ

where cs, cp, and cd are real-valued partial-wave ampli-
tudes and ηs, ηp, and ηd are the corresponding arguments.
IeðθÞ can also be expressed as

IeðθÞ ¼ ðc2s þ c2p þ c2dÞ
�
1þ

X4
l¼1

βlPlðcos θÞ
�
; ð19Þ

where Plðcos θÞ are the Legendre polynomials describing
the angular distributions and βl are the corresponding
asymmetry parameters. After some algebra, we have [40]

β3 ¼
6

ffiffiffiffiffi
15

p
cdcp cos ð−ηd þ ηp þ ϕÞ
5ðc2d þ cp2 þ c2sÞ

≡ ½β3�0 cos ½ϕ − ðηd − ηpÞ�; ð20Þ

β1 −
2

3
β3 ¼

2
ffiffiffi
3

p
cpcs cos ðηp − ηs þ ϕÞ
c2d þ cp2 þ c2s

≡
�
β1 −

2

3
β3

�
0

cos ½ϕ − ðηs − ηpÞ�; ð21Þ

where ½β3�0 and ½β1 − 2
3
β3�0 are constants. Thus, if we

record PADs as a function of ϕ and extract βl (l ¼ 1–4), we
can directly read off ηd − ηp and ηs − ηp from the oscil-
lations of β3 and β1 − 2

3
β3 using Eqs. (20) and (21). Let us

recall that the Wigner delay of each partial wave, τl,
corresponds to the energy derivative of the argument of
the amplitude [note that Yl0ðθ;φÞ are real], τlðϵÞ ¼
ðdηlðϵÞ=dϵÞ [2]. By measuring ηd − ηp and ηs − ηp as a
function of the energy, one can take the energy derivative
and obtain the Wigner delay differences τlðϵÞ − τpðϵÞ with
l ¼ s and d. In simple models, like the Hartree-Fock
approximation, ðdηlðϵÞ=dϵÞ ¼ ðdδlðϵÞ=dϵÞ, where δlðϵÞ
is the scattering phase, while in more complicated cases,
an extra energy-dependent phase may be acquired by the
partial amplitude [27].
We now group the s and d waves as a two-photon-

ionization wave packet. Then, the photoelectron wave
packet in a given direction θ sufficiently far from the
nucleus and the corresponding PAD are expressed as
Eqs. (3) and (4), respectively. The energy derivative of
ΔηðθÞ≡ ηωðθÞ − η2ωðθÞ is a difference between the group
delays of the two wave packets, generated by two-
and single-photon ionization, respectively. In the original
photoemission delay experiment [16] with attosecond

FIG. 3. Phase shift differences Δη̃ of two-photon ionization
relative to single-photon ionization, calculated by perturbation
theory, as a function of the polar angle θ and photoelectron
kinetic energy. The large variation near 12.0 eV kinetic energy is
due to the 2p → 3s resonance.
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streaking, for example, Ne 2s and 2p electrons are ionized
by an attosecond pulse to different final kinetic energies.
As a result, the more energetic photoelectron from 2p
arrives at the detector much earlier than that from 2s,
regardless of the measured delay. The situation is similar
for subsequent measurements using streaking and
RABBITT. In great contrast, in the present case, both
single- and two-photon ionization result in the same
photoelectron energy. Therefore, the single- and two-
photon-ionization wave packets actually reach a given
distance with a relative (group) delay given by ∂Δη=∂ϵ.
By comparing Eqs. (4) and (18), we can describe the

phase factor eiΔηðθÞ with ΔηðθÞ≡ ηωðθÞ − η2ωðθÞ being the
angle-resolved phase difference between the two-photon
and single-photon ionization amplitudes as

AðθÞeiΔηðθÞ
¼ 2cpY10ðθ;φÞ½cdY20ðθ;φÞeiðηd−ηpÞ þ csY00ðθÞeiðηs−ηpÞ�:

ð22Þ

Thus, thephase factoreiΔηðθÞ is the coherent (i.e., with respect
to amplitudes) average of eiðηd−ηpÞ (d-p interference) and
eiðηs−ηpÞ (s-p interference) with the relative weight

WðθÞ ¼ BgðθÞ; B ¼ cd
cs

;

gðθÞ ¼ Y20ðθ;φÞ
Y00ðθ;φÞ

¼
ffiffiffi
5

p

4
½3 cosð2θÞ þ 1�: ð23Þ

In other words, ΔηðθÞ can be regarded as a vectorial
average of ηs − ηp and ηd − ηp with the relative weight
WðθÞ. Equivalently, ΔηðθÞ may be presented as

tanΔηðθÞ ¼ cosðηs − ηpÞ þWðθÞ cosðηd − ηpÞ
sinðηs − ηpÞ þWðθÞ sinðηd − ηpÞ

: ð24Þ

The energy derivative of ΔηðθÞ does not give us additional
information about the photoionization amplitudes but
provides us with the group delay and may enhance the
sensitivity to the energy-dependent behavior of the two-
photon ionization amplitudes, as described below.
Note two important characteristics of ΔηðθÞ: (i) ΔηðθÞ

exhibits a quasicosine shape and monotonic dependence on
θ due to the geometric factor gðθÞ [see Figs. 2(c)–2(e) and
the Appendix), and (ii) ΔηðθÞ is sensitive to the two-photon
ionization dynamics due to the dynamical factor B. For
example, if the two-photon pathways are close to an
intermediate discrete resonance (but still well outside the
bandwidth), the group delay difference ð∂Δη=∂ϵÞðθÞ is
sensitive to it through rapid change in B, while dηs=dϵ,
dηp=dϵ, and dηd=dϵ are small individually, as can be seen
in Fig. 3.

We now turn to photoionization from a p orbital, which
includes the present case of Ne 2p ionization and is more
complicated. The complexity arises from two sources. We
have three incoherent contributions fromm ¼ 0 and�1 for
the magnetic sublevels of the remaining ion core Neþ and
four contributions of partial waves s, p, d, and f in the
photoelectron wave packet. Detailed derivations of the
equations describing the PADs are given in the Appendix,
and, here, we describe only the results relevant to the
present discussion. For m ¼ �1, we have a pair of two-
photon pathways via d intermediate states, i.e., p → d → p
and p → d → f, together with the single-photon pathway
p → d. Thus, only three partial waves are involved, and,
therefore, a discussion similar to that above for s ioniza-
tion holds.
For m ¼ 0, we have two-photon pathways via s and d

intermediate states, leading to p and f final states, together
with single-photon ionization that leads to s and d final
states. Thus, there are four partial waves involved.
Although we can derive equations similar to Eqs. (20)
and (21) [see Eqs. (A14)–(A17)], what we can extract from
the measurement is only a vectorial average of phase
differences ηl − ηl0 between even and odd different partial
waves l and l0. We can define the angle-resolved phase
difference ΔηmðθÞ for each m [see Eq. (5)], which is also a
vectorial average of ηl − ηl0 . Similar to ionization from the s
state, the energy derivative of ΔηmðθÞ may be regarded as
an angle-resolved group delay between single- and two-
photon wave packets for each m.
In the experiment, we measure an (incoherently)

weighted average Δη̃ of angle-resolved phase differences
Δηm of different m as defined in Eqs. (5) and (6). One can
introduce the energy derivative of the weighted average
phase difference Δη̃ðθÞ and may call it generalized delay,
but this definition of time delay is different from that
commonly employed for the time delay of an incoherent
sum of wave packets. Usually, the phase of each wave
packet is first differentiated with respect to energy and then
averaged over m [57], while, in this study, ðdΔη̃=dϵÞðθÞ
first averages the wave packet phase over m and then
differentiates it with respect to the photoelectron energy.

VII. SUMMARY AND OUTLOOK

In this work, we have described a new method to
determine the angle-resolved relative phase between single-
and two-photon ionization amplitudes and used it to
measure the 2p photoionization of Ne. Our approach
allows us to explore the phase difference between different
ionization pathways, e.g., those of odd and even parities,
with the same photoelectron energy.
The method is based on FEL radiation, so that it can be

extended to shorter wavelengths, eventually to inner shells,
which lie in a wavelength region where optical lasers have
reduced pulse energy. This method is an important addition
to the armory of techniques available to attosecond science
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and gives access to the phase difference between single-
(odd-parity) and two-photon (even-parity) transition ampli-
tudes or the energy variation of the phase of two-photon
ionization amplitudes affected by the intermediate reso-
nances, as seen in the Ne 2p photoionization. For ns2

subshells of atoms, e.g., 1s2 of He, 1s2 and 2s2 of Ne, etc.,
in particular, one can extract the eigenphase differences for
s, p, and d partial waves of electron-ion scattering, and
their energy derivatives correspond to the Wigner delay
difference of the partial waves. This method is also
applicable to molecules.
While it does not yet appear to be feasible with present

high-harmonic generation (HHG) sources, it may become
possible in the future, but there are many technical
challenges. Since HHG sources produce a frequency comb,
the chief technical challenges are to filter the beam to
achieve bichromatic spectral purity, maintain attosecond
temporal resolution, and provide enough pulse energy at
the fundamental wavelength to initiate two-photon ioniza-
tion. Furthermore, HHG sources have not yet demonstrated
the level of phase control which we have at our disposal.
Given the rapid progress in HHG sources, these conditions
may eventually be met, in which case our method will
become more widely accessible.
The information obtained by this method is comple-

mentary to that of streaking and RABBITT methods, in the
sense that different phase differences are measured. We
have directly measured the angle-resolved average phase
difference Δη̃ðθÞ of two-photon amplitude relative to the
single-photon ionization amplitude. The basic physics
giving rise to its angular dependence is related to interfer-
ence between photoelectron waves emitted in one- and two-
photon ionization, consisting of partial photoelectron
waves with opposite parities. We have shown that the
overall shape of Δη̃ðθÞ versus the angle can be understood
qualitatively.
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APPENDIX: PERTURBATION THEORY.
DERIVATION OF EQUATIONS IN THE
INDEPENDENT PARTICLE MODEL

In addition to the approximations described in Sec. IV C
(the dipole approximation, the validity of the lowest
nonvanishing order perturbation theory), here, we add
the LS-coupling approximation within the independent
particle model. The photoelectron angular distribution
Iðθ;ϕÞ of a Ne 2p electron can be derived by standard
methods [58] in the form

Iðθ;ϕÞ ¼ I0
X

m¼0;�1

����
X

ξ
Cm
ξ ðϕÞYlξmðθ;φÞ

����
2

; ðA1Þ

where m is the magnetic quantum number of the initial 2p
electron, Ylmðθ;φÞ is a spherical harmonic in the Condon-
Shortley phase convention, and I0 is a normalization factor
irrelevant to further discussion; note that the dependence on
φ cancels out. The complex coefficients Cm

ξ ðϕÞ depend on
ionization amplitudes, and the index ξ denotes the ioniza-
tion path. For single-photon ionization, ξ ¼ lξ, where lξ is
the orbital momentum of the photoelectron with possible
values lξ ¼ s, d. For two-photon ionization, ξ ¼ flξ;l0

ξg,
where l0

ξ is the orbital momentum of the virtual inter-
mediate state, with possible combinations ξ ¼ ps, pd, fd.
After applying the Wigner-Eckart theorem [59] to factor

out the dependence on the projection m, the coefficients
Cm
ξ ðϕÞ may be expressed as (for brevity, we omit the

argument ϕ when writing the coefficients)
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C0
s ¼−

1ffiffiffi
3

p Dseiϕ; C0
d¼

ffiffiffiffiffi
2

15

r
Ddeiϕ; C�1

d ¼ 1ffiffiffiffiffi
10

p Ddeiϕ;

ðA2Þ

C0
ps ¼ −

1

3
Dps; C�1

ps ¼ 0;

C0
pd ¼ −

2

15
Dpd; C�1

pd ¼ −
1

10
Dpd;

C0
fd ¼

ffiffiffi
2

p

5
ffiffiffi
7

p Dfd; C�1
fd ¼ 2

5
ffiffiffiffiffi
21

p Dfd: ðA3Þ

Here,

Dξ ¼ dξeiηξ ðA4Þ

are complex reduced matrix elements, independent of m,
withmagnitudedξ ¼ jDξj and phase ηξ. Note that one- (first-
order) and two-photon (second-order)matrix elements (A4),
both marked by a single index ξ, are, respectively, propor-
tional to the square root of intensity and to the intensity of the
associated field.
Equation (A1) can be readily cast into the form (4),

where

A0 ¼
I0
4π

X
λ¼0;2;4

ZλPλðcos θÞ; ðA5Þ

A ¼ I0
4π

N; ðA6Þ

cosΔη̃ ¼ N−1
X
λ¼1;3

ReZ0
λPλðcos θÞ; ðA7Þ

sinΔη̃ ¼ N−1
X
λ¼1;3

ImZ0
λPλðcos θÞ; ðA8Þ

N ¼
����
X
λ¼1;3

Z0
λPλðcos θÞ

����; ðA9Þ

Zλ ¼
X
m¼0;�1

ξ¼s;d;ps;pd;fd
ξ̄¼s;d;ps;pd;fd

ð−1ÞmCm
ξ C

m�
ξ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lξ þ 1Þð2lξ̄ þ 1Þ

q

× ðlξm;lξ̄ −mjλ0Þðlξ0;lξ̄0jλ0Þ; ðA10Þ

where ðj1m1; j2m2jjmÞ are Clebsch-Gordan coefficients
[59] and Z0

λ ¼ Zλjϕ¼0. In particular,

Z0 ¼
1

30

�
10ðd2d þ d2sÞ þ

4

5
d2fd þ

17

15
d2pd þ

10

3
d2ps

þ 8

3
dpddps cosðηpd − ηpsÞ

�
: ðA11Þ

Equations (A2)–(A10) define Δη̃, provided the reduced
matrix elements (A4) are calculated. The intensities of the
fundamental and of the second harmonic are factored out in
the coefficients Z0

λ; therefore, they cancel out in Eqs. (A7)
and (A8), and the phases Δη̃ are independent of the
intensities of the harmonics.
Note that the angle-resolved average phase differenceΔη̃

between one- and two-photon ionization implies not less
than two ionization channels, which is reflected in the
nonvanishing sum over channels in Eq. (A10). Therefore,
Δη̃ and its energy derivative, or as we called it, generalized
delay, is always angle dependent.
The coefficients (A10) are directly related to the

anisotropy parameters βλ in the angular distribution of
photoelectrons (A1) written in the form

Iðθ;ϕÞ ¼ W0

4π

�
1þ

X4
λ¼1

βλPλðcos θÞ
�
; ðA12Þ

where

βλ ¼
Zλ

Z0

ðA13Þ

and W0 ¼ I0Z0. Substituting Eqs. (A2), (A3), and (A10)
into (A13), one can express the anisotropy parameters in
terms of reduced matrix elements (A4):

β1 ¼
1

15Z0

�
12

ffiffiffi
3

p

5
dddfd cosðηfd − ηd − ϕÞ

−
17

ffiffiffi
2

p

5
dddpd cosðηpd − ηd − ϕÞ

− 4
ffiffiffi
2

p
dddps cosðηps − ηd − ϕÞ

þ 4dsdpd cosðηpd − ηs − ϕÞ

þ 10dsdps cosðηps − ηs − ϕÞ
�
; ðA14Þ

β2 ¼
1

210Z0

�
70d2d þ

32

5
d2fd þ

49

15
d2pd þ

140

3
d2ps

− 140
ffiffiffi
2

p
ddds cosðηd − ηsÞ

−
48

ffiffiffi
6

p

5
dfddpd cosðηfd − ηpdÞ

− 12
ffiffiffi
6

p
dfddps cosðηfd − ηpsÞ

þ 112

3
dpddps cosðηpd − ηpsÞ

�
; ðA15Þ
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β3 ¼
1

30Z0

�
16

ffiffiffi
3

p

5
dddfd cosðηfd − ηd − ϕÞ

−
6

ffiffiffi
2

p

5
dddpd cosðηpd − ηd − ϕÞ

− 12
ffiffiffi
2

p
dddps cosðηps − ηd − ϕÞ

− 4
ffiffiffi
6

p
dsdfd cosðηfd − ηs − ϕÞ

�
; ðA16Þ

β4 ¼
4

35Z0

�
1

5
d2fd −

ffiffiffi
2

p

5
ffiffiffi
3

p dfddpd cosðηfd − ηpdÞ

−
2

ffiffiffi
2

p
ffiffiffi
3

p dfddps cosðηfd − ηpsÞ
�
: ðA17Þ

The terms containing cosine functions describe the
contribution from the phase difference between two-photon
and single-photon ionization channels. For example,
cosðηfd − ηd − ϕÞ in Eq. (A14) corresponds to the phase
difference between p → d → f two-photon-ionization
(TPI) and p → d single-photon-ionization (SPI) channels
as well as the relative phase of the harmonics ϕ. Note that
β2 and β4 do not depend on ϕ.
It immediately follows from Eqs. (A7) and (A8) that

tanΔη̃ ¼ ImZ0
1P1ðcos θÞ þ ImZ0

3P3ðcos θÞ
ReZ0

1P1ðcos θÞ þ ReZ0
3P3ðcos θÞ

¼ ImZ0
1 þ fðθÞImZ0

3

ReZ0
1 þ fðθÞReZ0

3

; ðA18Þ

where the function fðθÞ ¼ 1
4
½5 cosð2θÞ − 1� is displayed

in Fig. 4. This result qualitatively explains the quasi-
cosine shape and monotonic dependence of Δη̃ on θ
[Figs. 2(c)–2(e)]. Z0

λ are independent of ϕ, so that Δη̃
and the generalized delay are independent of the relative
phase between the harmonics.
The functional form of Eq. (A18) is very general and

valid, within the perturbation theory and the dipole approxi-
mation, for randomly oriented atoms and molecules, pro-
vided corresponding expressions for the coefficients Zλ in

terms of the ionization amplitudes are used. Moreover, it
holds for circularly polarized collinear photon beams
(except for chiral targets), provided the angle θ is measured
from the direction of the beam propagation.
Expression (A18) may be written in an equivalent form

in terms of θ-independent “average partial” TPI-SPI phase
differences Δη̃λ (λ ¼ 1, 3). Indeed, we can write Eq. (A12)
explicitly in the form [see Eqs. (5) and (6)]

4πW−1
0 Iðθ;ϕÞ ¼ ½1þ β2P2ðcos θÞ þ β4P4ðcos θÞ�

þ ½γ1 cosðϕ − Δη̃1ÞP1ðcos θÞ
þ γ3 cosðϕ − Δη̃3ÞP3ðcos θÞ�

¼ A0ðθÞ þ AðθÞ cos½ϕ − Δη̃ðθÞ�: ðA19Þ

Here, the prefactors γ1 and γ3 and phases Δη̃1 and Δη̃3 are
independent of θ and ϕ. It follows from Eq. (A19) that
Δη̃ðθÞ can be viewed as a “vectorial” average of Δη̃1 and
Δη̃3 with weights γ1P1ðcos θÞ and γ3P3ðcos θÞ, in the sense
that Δη̃ðθÞ is the directional angle of vector

½γ1P1ðcos θÞ cosΔη̃1
þ γ3P3ðcos θÞ cosΔη̃3; γ1P1ðcos θÞ sinΔη̃1
þ γ3P3ðcos θÞ sinΔη̃3�; ðA20Þ

satisfying

tanΔη̃ðθÞ ¼ γ1P1ðcos θÞ sinΔη̃1 þ γ3P3ðcos θÞ sinΔη̃3
γ1P1ðcos θÞ cosΔη̃1 þ γ3P3ðcos θÞ cosΔη̃3

:

ðA21Þ

There are simple relations between the “average partial”
TPI-SPI phase differences and parameters of Eq. (A18):

sinΔη̃λ ¼
ImZ0

λ

jZ0
λj

; cosΔη̃λ ¼
ReZ0

λ

jZ0
λj

ðλ ¼ 1; 3Þ ðA22Þ

and also

γ1 ¼ jZ0
3j−1; γ3 ¼ jZ0

1j−1: ðA23Þ

As stated above, we can use the fact that the parity of
Legendre polynomials obeys Pnð−xÞ ¼ ð−1ÞnPnðxÞ, so
that the vector defined by Eq. (A20) changes sign upon
performing the substitution θ → π − θ; i.e., the two halves
of the VMI image oscillate in antiphase: Δη̃ðθÞ ¼
Δη̃ðπ − θÞ þ π.

[1] F. Krausz and M. Ivanov, Attosecond Physics, Rev. Mod.
Phys. 81, 163 (2009).

[2] E. P. Wigner, Lower Limit for the Energy Derivative of the
Scattering Phase Shift, Phys. Rev. 98, 145 (1955).

FIG. 4. Plot of ð5 cos 2θ − 1Þ=4 as a function of θ.

DAEHYUN YOU et al. PHYS. REV. X 10, 031070 (2020)

031070-12

https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/PhysRev.98.145


[3] S. Pabst and J. M. Dahlström, Eliminating the Dipole Phase
in Attosecond Pulse Characterization Using Rydberg Wave
Packets, Phys. Rev. A 94, 013411 (2016).

[4] K. Klünder, J. M. Dahlström,M. Gisselbrecht, T. Fordell, M.
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