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a b s t r a c t 

With increased longevity of patients suffering from cystic fibrosis, and widespread lung transplantation 

facilities, the sequelae of defective CFTR in other organs than the airways come to the fore. This minire- 

view highlights recent scientific progress in the understanding of CFTR function in the pancreas, the in- 

testine and the kidney, and explores potential therapeutic strategies to combat defective CFTR function in 

these organs. 

© 2023 The Authors. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

s

p

t

t

s

s

S

d

2

p

c

p

l  

p

l

h

1

(

. Introduction 

The organizers of the 2022 ECFS basic science conference 

cheduled a session in which important new aspects of the patho- 

hysiological role of a dysfunctional CFTR channel and poten- 

ial new treatment strategies in the pancreas, the intestine and 

he kidney were highlighted. These three presentations are briefly 

ummarized in this minireview. 
Abbreviations: NHE3, Na + /H 

+ exchanger 3 isoform; DIOS, distal intestinal ob- 

truction syndrome. 
✩ This paper is part of a supplement supported by the European Cystic Fibrosis 

ociety (ECFS). 
∗ Corresponding author at: Department of Gastroenterology, Hepatology and En- 

ocrinology, Hannover Medical School, Carl Neuberg Straße 1, D 30625 Germany. 

E-mail address: seidler.ursula@mh-hannover.de (U. Seidler) . 
1 These three authors contributed equally. 
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. CFTR and pancreatitis 

Pancreatic ductal cells play an extremely important role in the 

hysiological function of the pancreas [1] . The pancreatic acinar 

ells produce more than 200 bioactive substances, including the 

ancreatic enzymes responsible for digestion such as trypsin, amy- 

ase or lipase [2] . It is important to note that these enzymes are

roduced by the acinar cells in an inactive form and are physio- 

ogically activated only in the small intestine. In order to maintain 

hese enzymes in an inactive state within the pancreas, it is crucial 

hat the trypsinogen produced by the acini remains in an inactive 

orm. This is ensured by the pancreatic secretory trypsin inhibitor 

SPINK1), which inhibits trypsinogen activation produced by acinar 

ells [3] , and by the fluid and HCO 3 
− secretion produced by pan- 

reatic ductal cells [4] . The latter is important because the acinar 

ells also secrete protons, which creates an acidic medium for the 

nzymes which accelerates trypsinogen autoactivation at pH be- 

ow 7 [4] . It is well documented that the SLC26A6 Cl - /HCO 3 
− ex- 
ibrosis Society. This is an open access article under the CC BY-NC-ND license 
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hangers regulate CFTR activity, and that the well-coordinated in- 

eraction of these transporters and channels ensures the necessary 

CO 3 
− concentration in the lumen of the pancreatic duct [5] . 

Mutations in the SLC26A6 transporter were found not to be as- 

ociated with the development or risk of chronic pancreatitis [6] , 

ut mutations in the CFTR channel clearly increase the risk of de- 

eloping pancreatitis or exacerbate its progression in both animal 

nd human studies [ 7 , 8 ]. 

Extensive research over the last 15 years has shown that toxic 

ubstances involved in the induction of pancreatitis, such as bile 

cids [9] , tobacco [10] , alcohol or fatty acids [ 11 , 12 ] inhibit both

he SLC26A6 transporter as well as the CFTR Cl − channel. In the 

atter case, not only is the activity of the channel inhibited, but 

he folding and translocation of the channel to the membrane 

s severely impaired [11] . The link between CFTR and pancreati- 

is is well proven by the fact, that the early phase of both acute 

nd chronic pancreatitis can be characterized by a decrease of 

uid and bicarbonate secretion, intraductal acidosis and eleva- 

ion of mucoprotein levels. These physiological dysfunctions are 

dentical to those seen in the presence of a mutated CFTR chan- 

el [13] . In summary, it was previously known that genetic mu- 

ations in CFTR with loss-of-function can induce pancreatitis or 

xacerbate existing inflammation, but the new research results 

learly show that CFTR damage induced by toxic factors mimics 

he phenotype of genetic alteration [14] . This is important be- 

ause CFTR inhibition by toxic factors is more common in everyday 

ife. 

. CFTR-targeted therapy reduces pancreatic damage 

Für et al. recently published a study demonstrating that the 

ombined use of a CFTR corrector (VX-661) and potentiator (VX- 

70), drugs that prevent degradation and enable membrane ex- 

ression and/or function of the mutated CFTR channel, reduces 

he severity of experimentally induced pancreatitis [15] . Our un- 

ublished results also show that not only experimental but also 

lcohol-induced cell damage and pancreatitis are ameliorated by 

orrector/potentiator combination therapy. This was confirmed not 

nly during pretreatment before alcohol administration but also 

uring alcohol treatment. The latter has a very important clinical 

mplication, as one of the most common causes of recurrence of 

cute pancreatitis is alcohol consumption, which first presents as 

ecurrent acute pancreatitis and later transforms into chronic pan- 

reatitis [16] . 

There are a growing number of case reports showing that 

harmacological therapy can be effective not only in vitro or 

n animal models but also in human patients as well. Car- 

ion et al. demonstrated in 6 patients with CF and recurrent 

cute pancreatitis that no patient developed recurrent pancreati- 

is during a 9-month-period ivacaftor therapy [17] . Kounis et al. 

emonstrated that ivacaftor therapy improved pancreatic dam- 

ge in a 48-year-old patient with CF with pancreatic manifes- 

ations [18] . In this patient, restoration of CFTR channel func- 

ion also had a feedback effect on acinar cells and a detectable 

ncrease in fecal elastase levels occurred. The patient required 

ess pancreatic enzyme replacement therapy and did not develop 

 new episode of pancreatitis during the therapy. Johns et al. 

chieved no recurrence of acute pancreatitis episodes during a 

9-month-period of ivacaftor therapy in a 24 year-old male pa- 

ient with CF but no respiratory symptoms [19] . Ivacaftor therapy 

ot only restored pancreas function in these cases, but also pre- 

ented recurrence, i.e. slowed or prevented the development of 

hronic pancreatitis. Whether CFTR damage caused by toxic fac- 

ors (alcohol, smoking, fatty acids) can be repaired in patients or 

hether recurrent attacks can be prevented still remains to be 

roven. 
S18 
. Clinical features of the “CF gut”

Recent reviews focused on the gastrointestinal manifestations 

f cystic fibrosis, the so-called “CF gut”, which include luminal de- 

ydration and acidosis, mucus-hyperviscosity, dysmotility, dysbio- 

is, abnormal bile acid homeostasis and inflammation, resulting in 

astroesophageal reflux, malabsorption, constipation, intestinal ob- 

truction, and colonic malignancy [ 20 , 21 ]. How exactly these vari- 

us abnormalities are caused at the molecular level by the defec- 

ive CFTR channel is still a matter of research and debate. Fig. 1 

resents a schematic diagram of some of the secondary alterations 

hat result from a defective intestinal CFTR channel. CFTR-null (no 

unctional CFTR protein at all) animal models are all extremely 

ensitive to develop intestinal obstructions, while the pancreatic 

nd pulmonary function of CFTR-null mice is hardly or not at all 

ffected [ 22 , 23 ]. 

. The search for alternative (non-CFTR) intestinal anion 

hannels 

This prompted researchers to start a search for alternative path- 

ays for anion and fluid transport. A significant number of anion 

hannel proteins are expressed in the murine wt and CFTR-null in- 

estine [24] . Nevertheless, secretagogue-stimulated electrogenic an- 

on secretion, whether elicited by cAMP, cGMP or Ca 2 + -dependent 

gonists, cannot be elicited in the small and large intestine of mice 

ith CFTR deletion [ 25 , 26 ]. In intestinal organoids from the small

r large intestine of CFTR-null mice, or in organoids from patients 

ithwith loss of function mutations in the Cftr gene, secretagogues 

ail to stimulate a “swelling” reaction [27] . Recent data suggest, 

owever, that a full anion secretory response by the CFTR chan- 

el in the intestine or the airways requires the coexpression of 

MEM16a (Ano1) chloride channels, possibly by optimizing intra- 

ellular signal transduction [ 28 , 29 ]. They may indicate (although 

t is not yet prven clinically) that loss of function mutations in 

MEM16a may results in a CF phenotype in intestinal epithelia. In 

ontrast to the situation in the intestine, alternative anion channels 

an be activated in the airways, the pancreatic, biliary and repro- 

uctive ductal system in the absence of CFTR expression [30–32] . 

. Intestinal HCO 3 
− transport pathways in the CF gut 

A lack of HCO 3 
− release into the intestine has first been de- 

cribed during measurements of pancreatic exocrine secretion and 

as already been implicated in the pathophysiology of meconium 

leus and nutrient malabsorption (rev. in [33] ). While agonist- 

nduced intestinal alkaline output is strongly (but not exclusively) 

ependent on CFTR expression in the murine proximal small in- 

estine and is mediated by direct HCO 3 
− efflux via the CFTR 

hannel as well as CFTR-dependent stimulation of Slc26a3/a6- 

ediated Cl −/HCO 3 
− exchange [ 34 , 35 ], this is not the case in the

arge intestine. While no agonist-stimulated short circuit current 

Isc) response was elicited in chambered colonic mucosa in the 

bsence of CFTR expression, a significant agonist-dependent in- 

rease in HCO 3 
− output was observed [36] . Because the agonist- 

timulated HCO 3 
− output in the CFTR-null colonic mucosa was 

lectroneutral, the transport mechanism(s) could not have been 

an) alternative anion channel(s). Further investigation revealed 

hat the likely mechanism of HCO 3 
− output in CFTR-null intes- 

ine is an agonist-mediated inhibition of the NHE3 (Slc9a3) iso- 

orm of Na + /H 

+ exchangers in the brush border membrane, with 

reserved Cl −/HCO 3 
− exchange activity, likely by Slc26a3 (DRA), 

hich is highly expressed in murine and human colonic mucosa. 

his concept was further validated by the finding that the deletion 

f Slc26a3 abrogated both the relatively high basal HCO 

− output 
3 
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Fig. 1. The “CF gut”: A functional CFTR channel results in a decrease in cellular pH (pH i ) and volume, depolarizes the apical membrane, and increases luminal fluidity and 

alkalinity. These events curb the activity of the salt absorptive transporters NHE3 and ENaC. A defective CFTR channel results in a dehydrated, acidic and viscous (“sticky”) 

mucus layer, which dilates the cryptal openings and harbours a dysbiotic microbiome. A proinflammmatory phenotype, epithelial hyperproliferation, intestinal obstructive 

episodes and an increased rate of intestinal malignancies are among the clinical sequelaue of the CF gut. 
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s well as the agonist-induced increase in HCO 3 
− output in the 

olon [ 37 , 38 ]. 

. CFTR-dependent and independent improvement of gut 

uidity and alkalinity in the CF gut 

Recent clinical investigations suggest that CFTR-targeted ther- 

py is able to improve small intestinal alkalinity [39] as well as 

mprove gut health [40] , but this issue is controversial [41] . In ad-

ition, this extremely expensive therapy is not available to all pa- 

ients with CF, and not all CFTR mutations are amenable to rescue. 

arly work demonstrated that the additional embryonic deletion of 

HE3 increased survival in CFTR-null pups, which usually die from 

ntestinal obstructions during the weaning period [42] . The appli- 

ation of FDA-approved drugs that inhibit NHE3 (and stimulate 

FTR, if present) to luminally perfused intestinal segments of anes- 

hetized CFTR-null mice was indeed able to reduce fluid absorp- 

ion and increase alkaline output in perfused segments of the small 

he large intestine, with the specific NHE3 inhibitor tenapanor be- 

ng the best candidate for further study [43] . Fig. 2 presents a 

chematic diagram that explains the molecular mechanism how 

enapanor application results in a CFTR-independent increase in 

uminal fluidity and alkalinity. An experimental trial in CFTR-null 

ice demonstrated that oral application of tenapanor, an intestinal 

elective NHE3 inhibitor, prevented intestinal obstructions, acceler- 

ted gastrointestinal transit time and improved gut health during 

he treatment course [44] . The data suggest that NHE3 inhibitors 

ay soon offer safe and affordable adjunctive therapy in patients 
S19 
ith CF to alleviate constipation and prevent recurrent distal in- 

estinal obstructive syndrome (DIOS). 

. Physiology and pathology of CFTR in the kidney 

Cystic fibrosis transmembrane conductance regulator (CFTR) is 

roadly expressed in most types of epithelial cells. Expression was 

lso detected in proximal tubular epithelial cells of the kidney. 

hus, a renal Cl − secretory function of CFTR was hypothesized, de- 

pite the fact that renal tubules reabsorb but do not secrete NaCl 

 45 , 46 ]. Renal epithelial Cl − secretion was based on experiments 

ith cultured renal epithelial cells, which remarkably change their 

ransport properties during cell culture, typically switching trans- 

ort from reabsorption to secretion. Global renal parameters and 

lectrolyte handling appeared normal in patients with CF, who do 

ot present an obvious renal pathology. However, studies from the 

970s provided some evidence for enhanced renal Na + absorption, 

47] , while Bretscher and co-workers found an abnormal response 

f renal handling of sodium and bicarbonate upon application of 

he gastrointestinal hormone secretin [48] . 

Expression of CFTR in the proximal tubule was implicated in 

he regulation of protein reabsorption by receptor-mediated endo- 

ytosis. Dysfunctional CFTR was proposed to lead to reduced acid- 

fication of endosomes, thereby leading to low molecular weight 

roteinuria. Thus, endolysosomal acidification is not only based 

n CLC-5 chloride transporters [ 49 , 50 ], but is also supported by 

FTR and by the Ca 2 + activated Cl − channel TMEM16A. Notably, 
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Fig. 2. The increase in intestinal luminal fluid content and alkaline output by tena- 

panor is explained by the inhibition of the apical Na + / H + exchanger NHE3 (Slc9a3), 

resulting in decreased Na + and water absorption and decreased proton extrusion. 

The activity of the Cl −/HCO 3 
− exchanger DRA (Slc26a3) is functionally not tightly 

coupled to NHE3, and will continue to export base (albeit at a reduced rate). 
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MEM16A knockout in mice also causes a lack of endosomal acid- 

fication and proteinuria [51] . 

Abnormal renal Na + handling observed in patients with CF 

 47 , 52 ] was confirmed later in mice, by showing enhanced frac- 

ional Na + absorption via the amiloride-sensitive epithelial sodium 

hannel (ENaC) in F508del-CFTR mice under salt restriction [53] . 

his finding corresponded to earlier observations in cystic fibro- 

is airways, which demonstrated enhanced amiloride-sensitive Na + 

bsorption in CF, possibly caused by defective regulation of ENaC 

hrough CFTR or imbalanced transport in secretory and reabsorp- 

ive directions [54] . Recent studies with improved antibodies show 

parse expression of CFTR in the collecting duct of healthy kidneys, 

nly in the apical membrane of so-called ß-intercalated cells. Be- 

ause ENaC is expressed in principal cells, this excludes a direct 

egulation of ENaC by CFTR. Whether these mild transport abnor- 

alities are related to the enhanced glomerular filtration observed 

n infants with CF, is currently not clear [ 55 , 56 ]. 

. Reduced renal HCO 3 
− secretion in cystic fibrosis 

The early finding of Bretscher et al. indicating abnormal renal 

esponse to application of secretin [48] was confirmed in subse- 

uent studies [57] . Renal HCO 3 
− excretion was found to be re- 

uced in people with CF [ 33 , 58 ]. A detailed analysis in mice with

nockout of CFTR or knockout of the HCO 3 
− transporter SLC26A4 

pendrin) demonstrated the underlying mechanisms: CFTR serves 

s a Cl − recycling channel that drives urinary HCO 3 
−excretion by 

LC26A4 in ß-intercalated cells of the renal collecting duct [ 58 , 59 ].

n addition, HCO 3 
− may be excreted into the urine directly through 

FTR channels. Because CFTR is not functional in cystic fibrosis, 

CO 3 
− is not adequately excreted when plasma HCO 3 

− or secretin 

evels increase. This leads to metabolic alkalosis, which is occa- 

ionally observed in patients with CF. Excitingly, Berg et al. de- 

eloped a simple drinking test to assess the function of CFTR in 

ivo, which was used to detect efficacy of CFTR-correctors in pa- 

ients with CF [58] . Because in ß-intercalated cells CFTR is coex- 

ressed with the Ca 2 + activated Cl − channel TMEM16, which was 

hown to be required for CFTR to operate properly, one may spec- 

late that volunteers currently treated in a phase one clinical trial 
S20
ith the TMEM16A-activator ETD002 may present enhanced uri- 

ary HCO 3 
− excretion. As defective renal HCO 3 

− excretion can lead 

o alkalosis in patients with CF [ 59 , 60 ], it may even lead to sup-

ressed alveolar ventilation [61] . This could be a factor contribut- 

ng to CF lung disease. In fact, Berg et al. convincingly demon- 

trated alkalosis-induced hypoventilation by loss of CFTR function 

n mice [62] . Thus, metabolic alkalosis may contribute to reduced 

ung function in CF, via a suppression of ventilatory drive. 

0. CFTR and polycystic kidney disease 

CFTR was also proposed to play a major role in autosomal poly- 

ystic kidney disease (ADPKD) [63] . In contrast, we recently iden- 

ified TMEM16A as the essential Cl − channel in ADPKD [64] . While 

FTR was not required for cyst formation in mice, knockout or in- 

ibition of TMEM16A almost abolished cysts growth in ADPKD in 

ivo [65] . Overall, loss of CFTR function in people with cystic fi- 

rosis only slightly compromises renal function, but can lead to 

linical symptoms depending on drug intake, nutritional status, or 

ehydration. However, a potential unrecognized life-long suppres- 

ion of ventilation could contribute to CF lung disease and should 

e taken into consideration. 

1. Compromised renal function in CF outside ion transport 

Additional renal cellular dysregulations were found in CF kid- 

eys. As mentioned above, patients with CF may develop a protein- 

ria, which is due to defective proximal tubular endocytosis [66] . 

oreover, an analysis of urinary exosomal proteins suggested that 

F kidneys adapt to the CFTR defect by upregulation of proteasome 

ctivity and impaired autophagy and endosomal targeting [67] . 

2. Summary 

This minireview demonstrates that either genetic or functional 

amage to CFTR can cause serious disease outside the lungs. The 

eview also points out novel treatment strategies. CFTR potentia- 

ors and/or modulators may be of therapeutic benefit in treating 

ancreatic diseases not only for genetic mutations but also for 

oxin-induced impairment. CF intestinal disease may be amelio- 

ated not only by CFTR targeted therapy, but also by decreasing 

uminal fluid absorption and proton secretion via NHE3 inhibition. 

enal CFTR dysfunction may result in metabolic alkalosis and re- 

uced ventilatory drive. Alternative anion channel activation may 

nhance urinary HCO 3 
− secretion. 
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